International Journal of Computer Vision (2021) 129:1580-1595
https://doi.org/10.1007/s11263-021-01440-4

®

Check for
updates

Intra-Camera Supervised Person Re-ldentification

Xiangping Zhu'2 . Xiatian Zhu3@® - Minxian Li# - Pietro Morerio? - Vittorio Murino?>® . Shaogang Gong*

Received: 19 December 2019 / Accepted: 17 January 2021 / Published online: 26 February 2021
© The Author(s) 2021

Abstract

Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data.
This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications. On
the other hand unsupervised re-id methods do not need identity label information, but they usually suffer from much inferior
and insufficient model performance. To overcome these fundamental limitations, we propose a novel person re-identification
paradigm based on an idea of independent per-camera identity annotation. This eliminates the most time-consuming and
tedious inter-camera identity labelling process, significantly reducing the amount of human annotation efforts. Consequently,
it gives rise to a more scalable and more feasible setting, which we call Intra-Camera Supervised (ICS) person re-id, for which
we formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method. Specifically, MATE is designed for self-discovering the
cross-camera identity correspondence in a per-camera multi-task inference framework. Extensive experiments demonstrate the
cost-effectiveness superiority of our method over the alternative approaches on three large person re-id datasets. For example,
MATE yields 88.7% rank-1 score on Market-1501 in the proposed ICS person re-id setting, significantly outperforming
unsupervised learning models and closely approaching conventional fully supervised learning competitors.

Keywords Person re-identification - Intra-camera labelling - Cross-camera labelling - Multi-task learning - Multi-label
learning

1 Introduction quality of the observations (Fig. 1a). While deep learning

methods (Chen et al. 2017; Li et al. 2018b; Sun et al. 2018;

Person re-identification (re-id) aims to retrieve the target
identity class in detected person bounding box images cap-
tured by non-overlapping camera views (Gong et al. 2014;
Prosser et al. 2010; Farenzena et al. 2010; Li et al. 2014;
Zhengetal. 2013). Itis a challenging task due to the non-rigid
structure of human body, highly unconstrained appearance
variation across cameras, and the low resolution and low
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Hou et al. 2019; Zheng et al. 2019; Zhou et al. 2019) have
demonstrated remarkable performance advances, they rely
on supervised model learning from a large set of cross-
camera identity labelled training samples. This paradigm
needs an exhaustive and expensive training data annotation
process (Fig. 1b), dramatically lowering the usability while
affecting the scalability of these methods for large scale
deployment in real-world applications.
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Specifically, for constructing a conventional person re-id
training dataset, human annotators usually need to annotate
person identity labels both within individual camera views
and across different camera views, and match a given person
identity from one camera view with all the persons from other
camera views (inter-camera person identity association). In
particular, associating identity classes across camera views
has a quadratic complexity with the number of both camera
views and person identities (Fig. 1a). This would significantly
increase the cost of creating conventional training dataset.

To quantify the annotation complexity, we consider that
(1) there are N persons and M camera views, and (2) the cost
of labelling every person is similar (average cost). To label
one person in an intra-camera annotation, it requires to com-
pare this person with all the other unlabelled persons and the
labelling complexity is O (N). So the labelling complexity
for annotating all persons in one camera view is O (N?), and
O (M N?) for all the camera views. For an inter-camera anno-
tation (association), we start with the intra-camera labelling
results. Given a person identity from one camera-view, an
annotator needs to compare it exhaustively against the N
identities from anyone of the other M — 1 camera-views,
i.e., N(M — 1) identities. This gives rise to a complexity
of O(N(M — 1)). To label N different persons, the annota-
tion complexity is O (N 2(M —1)). As not all persons would
appear in every camera view in most cases, this cross-camera
view association needs to repeat for all M camera views, and
the actual cost can vary according to the proportion of people
reappearing in pairs of camera views.

Therefore the inter-camera annotation complexity is between

two extremes: O(N?M) for exhaustive reappearing, and
O (M?*N?) for zero reappearing.

The problem of expensive training data collection has
received significant attention. Representative attempts for
minimising the annotation cost include:

Camera 2 Camera3 Camera 4

Camera 1

(b)

Fig. 1 a Person re-identification challenges. Each triplet bounded by
a dashed box shows the images of a single person from different
camera views. b Illustration of manually associating identities across
camera-views. The dashed arrow denotes the comparison between two
identities. The associated identities are bounded with red boxes (Color
figure online)

(1) Domain generic feature design (Gray and Tao 2008;
Farenzena et al. 2010; Zheng et al. 2015; Liao et al.
2015; Matsukawa et al. 2016),

(2) Unsupervised domain adaptation (Peng et al. 2016; Deng
et al. 2018a; Wang et al. 2018; Lin et al. 2018; Zhong
et al. 2018; Yu et al. 2019a; Chen et al. 2019),

(3) Unsupervised image/tracklet model learning (Wang et al.
2016a; Chen et al. 2018a; Lin et al. 2019; Li et al. 2019;
Wu et al. 2020), and

(4) Weakly supervised learning (Meng et al. 2019). By
hand-crafting generic appearance features with prior
knowledge, the first paradigm of methods can perform
re-id matching universally. However, their performances
are often inferior due to limited knowledge encoded in
such image representations. This can be addressed by
transferring the labelled training data of a source dataset
(domain), as demonstrated in the second paradigm of
methods. Implicitly, these methods assume that the
source and target domains share reasonably similar
camera viewing conditions for ensuring sufficient trans-
ferable knowledge. The heavy reliance on the relevance
and quality of source datasets (Zhu et al. 2019a) renders
this approach less practically useful, since this assump-
tion is often invalid. The third paradigm of methods
is more scalable, as they need only unlabelled target
domain data. While having high potential, unsupervised
re-id methods usually yield the weakest performance,
making them fail to meet the deployment requirements.
In contrast, the fourth paradigm of methods considers
a weakly supervised learning setting, where the person
identity labels are annotated at the video level without
fine-grained bounding boxes. Apart from insufficient re-
id accuracy, this paradigm is mostly sensible only when
such weak labels can be cheaply obtained from certain
domain knowledge, which however is not generically
accessible.

In this work, we suggest another novel person re-
identification paradigm for scaling-up the model training
process, called Intra-Camera Supervised (ICS) person
re-id (Fig. 2b). As the name indicates, ICS eliminates
the sub-process of cross-camera identity association dur-
ing annotation, which is the majority component of the
standard annotation cost. Under the ICS paradigm the
training data involves only the intra-camera annotated
identity labels with each camera view labelled indepen-
dently. Importantly, as aforementioned, ICS naturally
enables a parallel annotation process by camera views
without labelling conflict due to no cross-camera iden-
tity association (Fig. 3b). This desirable merit is lacking
in the conventional training data labelling due to the
difficulty of obtaining disjoint labelling tasks, e.g. sub-
sets of person identity classes without overlap (Fig. 3a).
While being similar to the concurrent work (Meng et al.
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(a) Conventional fully supervised person re-id data

Fig. 2 Labels in person re-id data. a Conventional fully supervised
training data needs both per-camera and cross-camera identity annota-
tion in a unified class space. b Intra-camera supervised (ICS) training
data only needs per-camera identity annotated independently in each

2019) since they both consider explicitly the training data
labelling process, our ICS paradigm however does not
assume specific domain knowledge therefore it is more
generally applicable.

To solve the ICS re-id problem, we propose a Multi-
tAsk mulTi-labEl (MATE) deep learning model. Unlike
the conventional fully supervised re-id methods using
inter-camera identity labels, MATE is designed spe-
cially for overcoming two ICS challenges: (1) how to
learn effectively from per-camera independently labelled
training data, and (2) how to discover reliably the missing
identity association across camera views. Specifically,
MATE integrates two complementary learning compo-
nents into a unified model: (a) Per-camera multi-task
learning that separately learn individual camera views
for modelling their specificity and the implicit shared
information in a multi-task learning manner (Sect. 4.1).
This assigns a specific network branch (i.e. a learning
task) for modelling each camera view while constraining
all the per-camera tasks to share a feature representa-
tion space. (b) Cross-camera multi-label learning that
associates the identity labels across camera views in a
multi-label learning strategy (Sect. 4.2). This is based on
an idea of curriculum cyclic association that can asso-
ciate reliably multiple cross-camera identity classes from
self-discovered identity matches for multi-label model
optimisation.

The contributions of this work are:

(1) We present a novel person re-identification paradigm
for scaling up the model training process, dubbed as
Intra-Camera Supervised (ICS) person re-id. ICS is
characterised by no need for exhaustive cross-camera
identity matching during training data annotation, whilst
allowing naturally parallel labelling by camera views

@ Springer
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(b) Intra-camera supervised person re-id data
camera view with a separate class space. Camera-view index is encoded

as superscript of identity label in ICS person re-id data. Solid and dashed
arrows denote intra-camera and inter-camera association, respectively
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Fig. 3 Illustrations of data annotation process. a Conventional fully
supervised person re-id vs. b ICS person re-id in the process of training
data collection. Suppose each annotator needs to label the training data
from a different camera view. In order to minimise the labelling conflict,
an annotator may have to check if a person has been labelled or not
by others. This gives rise to expensive communication costs, which
is totally eliminated in the proposed ICS re-id paradigm, due to the
independence nature between camera views

without conflict. Consequently, it makes the training data
collection substantially cheaper and faster than the stan-
dard cross-camera identity labelling, therefore offering
a more scalable mechanism to large re-id deployments.

(2) We formulate a Multi-tAsk mulTi-labEl (MATE) deep
learning method for solving the proposed ICS per-
son re-id problem. In particular, MATE combines the
strengths of multi-task learning and multi-labelling
learning in a unified framework to account for inde-
pendent camera-specific identity label information and
self-discovering their cross-camera association relation-
ships concurrently. This represents a natural strategy for
fully leveraging the ICS supervision with per-camera
independent identity label spaces.

(3) Through extensive benchmarking and comparisons on
the ICS variant of three large re-id datasets [Market-
1501 (Zheng et al. 2015), DukeMTMC-relD (Zheng
et al. 2017; Ristani et al. 2016), and MSMT17 (Wei
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et al. 2018)], we demonstrate the cost-effectiveness
advantages of the ICS re-id paradigm using our MATE
model over the existing representative solutions includ-
ing supervised learning, semi-supervised learning, unsu-
pervised learning, unsupervised domain adaptation, and
tracklet learning.

A preliminary version of this work was published in Zhu
et al. (2019b). Compared with this earlier study, there are a
number of key differences:

(1) This study presents a more comprehensive investigation
into the proposed ICS person re-id paradigm in terms of
training data annotation complexity, along with a com-
parison to the standard cross-camera identity labelling
method. This provides a more accurate measurement
of training data collection cost, revealing explicitly the
intrinsic obstacles to scaling up model training as suffered
by the conventional supervised learning re-id paradigm.

(i) We propose a more principled Multi-tAsk mulTi-labEl
learning method that can self-discover the cross-camera
identity associations in a curriculum learning spirit.
This improves dramatically the accuracy of cross-camera
identity matching and therefore the final model general-
isation, as compared to the earlier method. Besides, this
new model performs unified end-to-end training without
the need for two-stage learning as required in the earlier
version.

(iii) We provide more comprehensive evaluations and analy-
ses of the ICS person re-id for giving holistic and useful
insights, in comparison to the existing alternative re-id
paradigms.

2 Related Work

Supervised person re-id Most existing person re-id models
are created by supervised learning methods on a separate set
of cross-camera identity labelled training data (Wang et al.
2014b, 2016b; Zhao et al. 2017; Chen et al. 2017; Li et al.
2017; Chen et al. 2018b; Li et al. 2018b; Song et al. 2018;
Chang et al. 2018; Sun et al. 2018; Shen et al. 2018a; Wei
et al. 2018; Hou et al. 2019; Zheng et al. 2019; Zhang et al.
2019; Wu et al. 2019; Quan et al. 2019; Zhou et al. 2019).
Relying on the strong supervision of cross-camera identity
labelled training data, they have achieved remarkable perfor-
mance boost. However, collecting such training data for each
target domain is highly expensive, limiting their usability and
scalability in real-world deployments at scales.

Semi-supervised person re-id A typical strategy for super-
vision minimisation is by semi-supervised learning. The key
idea is to self-mine supervision information from unlabelled
training data based on the knowledge learned from a small

proportion of labelled training data. A few attempts have
been made in this research direction (Figueira et al. 2013;
Liuetal. 2014; Wang et al. 2016a; Xin et al. 2019). However,
this paradigm not only suffers from significant performance
degradation but also still needs a fairly large proportion of
expensive cross-view pairwise labelling.

Weakly supervised person re-id Recently, Meng et al. (2019)
propose a weakly supervised person re-id paradigm where
the identity labels are annotated at the untrimmed video level.
This setting makes more sense when such identity labels are
readily available from certain domain knowledge which may
be not generally provided. This is because, the major annota-
tion cost of re-id training data comes from matching identity
classes across camera views, rather than drawing person
bounding boxes. Often, person images are directly detected
from the raw videos by an on-the-shelf person detection
model. Therefore, this paradigm is not sufficiently general.
Unsupervised person re-id Unsupervised model learning is
an intuitive solution to avoid the need of exhaustively col-
lecting a large number of labelled training data for every
application domain. Early hand-crafted feature based unsu-
pervised learning methods (Wang et al. 2014a; Kodirov et al.
2015, 2016; Khan and Bremond 2016; Ma et al. 2017; Ye
et al. 2017; Liu et al. 2017) offer significantly inferior re-
id matching performance, when compared to the supervised
learning counterparts. Deep learning based methods (Lin
et al. 2019; Wu et al. 2020) reduce this performance gap.
Besides, there are two research lines on unsupervised re-id
learning that become increasingly topical recently.

(1) Unsupervised domain adaptation
The key idea of domain adaptation based methods (Wang
et al. 2018; Fan et al. 2018; Peng et al. 2018; Yu et al.
2017; Zhu et al. 2017; Deng et al. 2018b; Zhong et al.
2018) is to explore the knowledge from the labelled data
in related source domains with model adaptation on the
unlabelled target domain data. Typical strategies include
appearance style transfer (Zhu et al. 2017; Deng et al.
2018b; Chen et al. 2019), semantic attribute knowledge
transfer (Peng et al. 2018; Wang et al. 2018), and progres-
sive source appearance information adaptation (Fan et al.
2018; Yu et al. 2017). Although performing better than
the earlier unsupervised learning methods, they require
implicitly similar data distributions between the labelled
source domain and the unlabelled target domain. This
limits their scalability to arbitrarily diverse (unknown)
target domains in real-world deployments.

(2) Unsupervised tracklet learning Instead of assuming
transferable source domain training data, a small number
of methods (Li et al. 2018a, 2019; Chen et al. 2018a; Wu
etal. 2020) leverage the auto-generated tracklet data with
rich spatio-temporal information for unsupervised re-id
model learning. In many cases this is a feasible solution
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as long as video data are available. However, it remains
highly challenging to achieve good model performance
due to noisy tracklets with unconstrained dynamics.

In this work, we introduce a new more scalable person
re-id paradigm characterised by intra-camera supervised
(ICS) learning, complementing the existing re-id scenar-
ios as mentioned above. In comparison, ICS provides a
superior trade-off between model accuracy and annota-
tion cost, i.e. higher cost-effectiveness. This makes it a
favourable choice for large scale re-id applications with
high accuracy performance requirement and reasonably
limited annotation budget.

3 Problem Formulation

We formulate the Intra-Camera Supervised (ICS) person
re-identification problem. As illustrated in Fig. 2b, ICS
only needs to annotate intra-camera person identity labels
independently, whilst eliminating the most-expensive inter-
camera identity association as required in the conventional
fully supervised re-id setting.

Suppose there are M camera views in a surveillance cam-
era network. For each camera view p € {1,2,..., M},
we independently annotate a set of training images D? =
{(xf , y,f )} where each person image xf’ is associated with an
identity label y/ € {yV, y}, ...,y ,}, and N7 is the total
number of unique person identities in D”.! For clarity, we
express the camera view index in the superscript due to the
per-camera independent labelling nature in the ICS setting.
By combining all the camera-specific labelled data D?, we
obtain the entire training setas D = {D1 JD2, ., DM}, For
any two camera views p and g, their k-th person identities
y,f and yZ usually describe two different people, i.e. they are
two independent identity label spaces (Fig. 2b). This means
exactly that the cross-camera identity association is not avail-
able, in contrast to the fully supervised re-id data annotation
(Fig. 2a).

The ICS re-id problem presents a couple of new modelling
challenges: (1) how to effectively exploit the per-camera per-
son identity labels, and (2) how to automatically and reliably
associate independent identity label spaces across camera
views. The existing fully supervised re-id methods do not
apply due to the need for identity annotation in a single label
space across camera views. A new learning method tailored
for the ICS setting is required to be developed.

I We use i, Jj to denote image indexes, k, [, t to denote identity indexes
and p, g to denote camera indexes.

@ Springer

4 Method

We introduce a novel ICS deep learning method, capable of
conducting Multi-tAsk mul7i-labEl (MATE) model learning
to fully exploit the independent per-camera person identity
label spaces. In particular, MATE solves the aforementioned
two challenges by integrating two complementary learning
components into a unified solution: (i) Per-camera multi-
task learning that assigns a separate learning task to each
individual camera view for dedicatedly modelling the respec-
tive identity space (Sect. 4.1), (ii) Cross-camera multi-label
learning that associates the independent identity label spaces
across camera views in a multi-label strategy (Sect. 4.2).
Combining the two capabilities with a unified objective
function, MATE explicitly optimises their mutual compat-
ibility and complementary benefits via end-to-end training.
An overview of MATE is depicted in Fig. 4.

4.1 Per-Camera Multi-Task Learning

To maximise the use of multiple camera-specific identity
label spaces with some underlying correlation (e.g. partial
identity overlap) in the ICS setting, multi-task learning is
a natural choice for model design (Argyriou et al. 2007).
This allows to not only mine the common knowledge among
all the camera views, but also to improve per-camera model
learning concurrently given augmented (aggregated) training
data.

Specifically, given the nature of independent label spaces
we consider each camera view as a separated learning
task, all of which share a feature representation network
for extracting the common knowledge in a multi-branch
architecture design. One branch is in charge of a specific
camera view. This forms per-camera multi-task learning in
the ICS context. By such multi-task learning, our method can
favourably derive a person re-id representation with implicit
cross-camera identity discriminative capability, facilitating
cross-camera identity association (Li et al. 2019). This is
because during training, all the branches concurrently propa-
gate the respective camera-specific identity label information
through the shared representation network fy (Fig. 4b), lead-
ing to a camera-generic representation. This process is done
by minimising the softmax cross-entropy loss.

Formally, for atraining image (xf’ , y,f ) € DP from camera
view p, the softmax cross-entropy loss is used for formulating
the training loss:

L) = =10])l0g(g” (fxD) ) M

where given the camera-shared feature vector fp(x!) €
R*1 the classifier g”(-) for the camera view p predicts
an identity class distribution in its own label space with
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Update multi-labels
into training dataset

LY. Per-camera multi-task learning loss for camera p

Fig.4 Overview of the proposed Multi-tAsk mulTi-labEl (MATE) deep
learning method. a Given per-camera independently labelled training
images, MATE aims to learn an identity discriminative feature represen-
tation model. This is achieved by designing two learning components: b
Per-camera multi-task learning where we consider each individual cam-
era view as a separate learning task with its own identity class space
and optimise these camera-specific tasks on a common feature repre-

N, classes: R*1 . RNpxl The Dirac delta function
1() : R — R returns a one-hot vector with “1” at
the specified index.

By aggregating the loss of training samples from all the
camera views, we formulate the per-camera multi-task learn-
ing objective function as:

| M | B
— _ P i
L=~ | 55 22 L® )
p=1 i=1
where B? denotes the number of training images from the
camera view p in a mini-batch.

4.2 Cross-Camera Multi-Label Learning

Cross-camera person appearance variation is a key chal-
lenge for re-id. Whilst this is implicitly modelled by the
proposed multi-task learning as detailed above, the per-
camera multi-task learning is still insufficient to fully capture
the underlying identity correspondence relationships across
camera-specific label spaces.

However, it is non-trivial to associate identity classes
across camera views. One major reason is that a different
set of persons may appear in a specific camera view, leading
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sentation (Sect. 4.1), and ¢ Cross-camera multi-task learning where
we self-discover the underlying identity matching relationships across
camera views via curriculum cyclic association and design a multi-
label optimisation algorithm to exploit these discovered cross-camera
association information during model training. The two components
are integrated together in a single MATE formulation, resulting in an
end-to-end trainable model

to no one-to-one identity matching between camera views.
Conceptually, this gives rise to a very challenging open-set
recognition problem where a rejection strategy is often addi-
tionally required (Scheirer et al. 2013, 2014). Compared
to generic object recognition in natural images, open-set
modelling in re-id is more difficult due to small training
data, large intra-class variation, subtle inter-class difference,
and ambiguous visual observations of surveillance person
imagery. Besides, existing open-set methods often assume
accurately and completely labelled training data, and the
unseen classes only in model test. In contrast, we need to dis-
cover cross-camera identity correspondences during training
with small (unknown) overlap across different spaces.

This is hence a harder learning scenario with a higher risk
of error propagation from noisy cross-camera association.
An intuitive solution for open-set recognition is to find an
operating threshold, e.g. by Extreme Value Theory (De Haan
and Ferreira 2007) based statistical analysis. This relies on
optimal supervised model learning from a sufficiently large
training dataset, which however is unavailable in the ICS
setting.

To circumvent the above problems, we design a cross-
camera multi-label learning strategy for robust cross-camera
identity association. This is realised by (i) designing a
curriculum cyclic association constraint to find reliable
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cross-camera identity association, and (ii) forming a multi-
label learning algorithm to incorporate the self-discovered
cross-camera identity association into discriminative model
learning (Fig. 4c).

4.2.1 Curriculum Cyclic Association

For more reliable identity association across camera views,
we form a cyclic prediction consistency constraint. Specifi-
cally, given an identity class y,f IS {y{’, yg, R yf,p} from
a camera view p € {1,2,..., M}, we need to find if a true
matching identity (i.e. the same identity) exists in another
camera view g. We achieve this in the following process.

(1) We first project all the images of each person identity y,f
from camera view p to the classifier branch of camera
view ¢ to obtain a cross-camera prediction 57,': 74 via

averaging as:

SF
g1 ¢
Vi =D (f)) e RN, 3)

Sk i=1

where S ,f is the number of images from identity y ,f . Each
element of y,’j 4 denoted as )7,1: (1), means the identity
class matching probability at which y,f (an identity from
camera view p) matches qu (an identity from camera
view ¢) in a cross-camera sense.

(il) We then nominate the person identity qu* from camera
view ¢ with the maximum likelihood probability as the
candidate matching identity:

I* = argmlaxy{’*q(n, le{l,2,..., Ny} 4)

With such one-way (p — ¢) association alone, the
matching accuracy should be not satisfactory since it
cannot handle the cases of no-true-match as typical in
the ICS setting. To boost the matching robustness and
correctness, we further design a curriculum cyclic asso-
ciation constraint.

(iii) Specifically, in an opposite direction of the above steps,
we project all the images of identity qu* from camera view
q to the classifier branch of camera view p in a similar
way as Eq. (3), and obtain the best candidate match-
ing identity yt’i with Eq. (4). Given this back-and-forth
matching between camera view p and ¢, we subsequently
filter the above candidate pair (y,f , qu*) by a cyclic con-
straint as:

P )4
if Yer = Vi
otherwise.

is a candidate match,

P 4
Oic> Yie) { is not a candidate match,

&)

@ Springer

This removes non-cyclic association pairs. While being
more reliable, it is observed that only the cyclic associa-
tionin Eq. (5) is not sufficiently strong for hard cases (e.g.
different people with very similar clothing appearance),
leading to false association.

(iv) To overcome this problem, inspired by the findings of
cognitive study which suggest a better learning strategy is
to start small (Elman 1993; Krueger and Dayan 2009), we
design a curriculum association constraint. It is based on
the cross-camera identity matching probability. Formally,
we define a cyclic association degree as:

TS T (R T (9 ©6)

which measures the joint probability of a cyclic asso-
ciation between two identities y,f and qu*. Given this
unary measurement, we can deploy a curriculum thresh-
old v € [0, 1] for selecting candidate matching pairs via:

. &
it (o0 >,
otherwise.

is a match,

. rP 4
Cyclic (y;, yp) { is not a match,

@)

This filtering determines if a cyclically associated iden-
tity pair (y!, y{.) will be considered as a match.

Curriculum threshold The design of the curriculum
threshold t has a crucial influence on the quality of cross-
camera identity association. In the spirit of curriculum
learning, we consider t as an annealing function of the model
training time to enable a progressive selection. Meanwhile,
we need to take into account that the magnitude of maximum
prediction usually increases along the training process as the
model gets more mature. Taking these into consideration, we
formulate the curriculum threshold as:

" = min (t”, 4+ ﬁ(l — rl)> )

where r specifies the current training round, with a total of R
rounds. We maintain two thresholds: t“, which denotes the
upper bound, and 7!, which denotes the lower bound. Both
of these two thresholds can be estimated by cross-validation.

Summary We perform the above curriculum cyclic asso-
ciation process for every camera view pairs, which outputs
a set of associated identity pairs across camera views. This
self-discovered pairwise information will be used to improve
model training as detailed in the following.



International Journal of Computer Vision (2021) 129:1580-1595

1587

4.2.2 Multi-Label Learning

To leverage the above identity association results for improv-
ing model discriminative learning, we introduce a multi-label
learning scheme in a cross-camera perspective. It consists of
(1) multi-label annotation and (ii) multi-label training.

(1) Multi-label annotation. For easing presentation and
understanding, we assume two camera views, and it is
straightforward to extend to more camera views. Given
an associated identity pair (y,i7 , qu*) obtained as above,
we annotate all the images X lp of yip from camera view
p with an extra label qu* of camera view g. We do the
same for all the images X lq* of qu* in an inverse direction.
Both image sets are therefore annotated with the same
two identity labels, i.e. these images are associated. See
anillustration example in Fig. 4c. Given M camera views,
for each identity y,f we perform at most M — I times such
annotation whenever a cross-camera association is found,
resulting in a multi-label set Yip = {y,f, qu*, ...} for le
with the cardinality 1 < |Y/| < M. When |Y/| = 1,
it means no cross-camera association is obtained. When
|Yl.p | = M, it means an identity association is found in
every other camera view.

(i) Multi-label training. Given such cross-camera multi-
label annotation, we then formulate a multi-label training
objective for an image Xf as

1 . .
Lo =55 3 —10e(g () ©)

i1 yeey?

where ¢ indices the camera view of Yl.p with the corre-
sponding identity label simplified as y. For mini-batch
training, we design the cross-camera multi-label learning
objective as:

1 .
L= Zcﬁﬂm (10)
i,p

which averages the multi-label training loss of all the B
number of training images in a mini-batch.

Remarks Itis noteworthy to point out that, in contrast to the
conventional single-task multi-label learning (Tsoumakas
and Katakis 2007), we jointly form multi-label learning and
multi-task learning in a unified framework, with a unique
objective of associating different label spaces and merging
the independently annotated labels with the same semantics.

4.3 Final Objective Loss Function

By combining per-camera multi-task (Eq. (2)) and cross-
camera multi-label (Eq. (10)) learning objectives, we obtain
the final model loss function as:

AC:»Cmt‘i‘)hlev (11)

where the weight parameter A € [0, 1] is to trade-off the
two loss terms. With this formula as model training super-
vision, our method can effectively learn discriminative re-id
model using both camera-specific identity label spaces avail-
able under the ICS setting (L) and cross-camera identity
association self-discovered by MATE itself (L) concur-
rently. The MATE model training process is summarised in
Algorithm 1.

Algorithm 1 The MATE model training procedure.

Input: Intra-camera independently labelled training data;
Output: A trained person re-id model;
Model training:
for r = 1to R do:
Calculate the curriculum threshold 7
Cross-camera identity association as in Eqs. (3)—(7);
for ¢ = 1 to epoch_number do:
for t = 1 to per-epoch mini-batch number do:
Feed forward a mini-batch of training images;
Compute learning loss using Eq. (11);
Update the network model by back-propagation;
end for
end for
end for

5 Experiments

Datasets Due to no existing re-id datasets for the proposed
scenario, we introduced three ICS re-id benchmarks. We sim-
ulated the ICS identity annotation process on three existing
large person re-id datasets, Market-1501 (Zheng et al. 2015),
DukeMTMC-reID (Ristani et al. 2016; Zheng et al. 2017)
and MSMT17 (Wei et al. 2018). Specifically, for the training
data of each dataset, we independently perturbed the original
identity labels for every individual camera view, and ensured
that the same class labels of any pair of different camera
views correspond to two unique persons (i.e. no labelled
cross-camera association). We used the same original test
data of each dataset for model performance evaluation.
Performance metrics Following the common person re-id
works, the Cumulative Matching Characteristic (CMC) and
mean Average Precision (mAP) metrics were used for model
performance measurement.
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Table 1 Benchmarking the ICS person re-id performance

Dataset Market-1501

Metric (%) R1 R10 R20 mAP
MCST 34.9 60.1 69.3 16.7
EPCS 42.6 64.6 71.2 19.6
PCMT 78.4 93.1 95.7 52.1
MATE (Ours) 88.7 97.1 98.2 71.1
Dataset DukeMTMC-relD

Metric (%) R1 R10 R20 mAP
MCST 25.0 50.1 58.8 16.3
EPCS 38.8 58.9 64.6 22.1
PCMT 65.2 81.1 85.6 44.7
MATE (Ours) 76.9 89.6 92.3 56.6
Dataset MSMT17

Metric (%) R1 R10 R20 mAP
MCST 12.1 26.3 33.0 4.8
EPCS 16.8 31.5 37.4 5.4
PCMT 39.6 59.6 65.7 15.9
MATE (Ours) 46.0 65.3 71.1 19.1

Implementation details The ImageNet pre-trained ResNet-
50 (He et al. 2016) was selected as the backbone network of
our MATE model. As shown in Fig. 4, each branch in MATE
was formed by a fully connected (FC) classification layer.
We set the dimension of the re-id feature representation to
512. The person images were resized to 256 x 128 in pixel.
The standard stochastic gradient descent (SGD) optimiser
was adopted. The initial learning rate of the backbone net-
work and classifiers were set to 0.005 and 0.05, respectively.
We set a total of 10 rounds to anneal the curriculum thresh-
old t (Eq. (7)), with each round covering 20 epochs (except
the last round where we trained 50 epochs to guarantee the
convergence). We empirically estimated ! = 0.5 (the lower
bound of t) and " = 0.95 (the upper bound of t) for Eq. (8).
In order to balance the model training across camera views,
we randomly selected from each camera the same number of
images, i.e. 4 images, per identity and the same number of
identities, i.e. 2 identities, to construct a mini-batch. Unless
stated otherwise, we set the loss weight A = 0.5 for Eq. (11).
In test, the Euclidean distance was applied to the camera-
generic feature representations for re-id matching.

5.1 Benchmarking the ICS Person Re-ID

Since there is no dedicated methods for solving the proposed
ICS person re-id problem, we formulated and benchmarked
three baseline methods based on the generic learning algo-
rithms:

@ Springer

1. Multi-Camera Single-Task (MCST) learning (Fig. Sa):
given no identity association across camera views, we
simply consider that identity classes from different cam-
era views are distinct people and merge all the per-camera
label spaces into a joint space cumulatively. This enables
the conventional supervised model learning based on
identity classification. We therefore train a single re-id
model, as in the common supervised learning paradigm.
Attest time, we extract the re-id feature vectors and apply
the Euclidean distance as the metrics for re-id matching.

2. Ensemble of Per-Camera Supervised (EPCS) learning
(Fig. 5b): without inter-camera identity labels, for each
camera view we train a separate re-id model with its own
single-camera training data. During deployment, given
a test image we extract the feature vectors of all the
per-camera models, concatenate them into a single rep-
resentation vector, and utilise the Euclidean distance as
the matching metrics for re-id.

3. Per-Camera Multi-Task (PCMT) learning (Fig. 5c): while
being a variant of our MATE model without the cross-
camera multi-label learning component, we simultane-
ously consider it as a baseline due to the use of the
multi-task learning strategy.

To implement fairly the baseline learning methods, we
used the same backbone ResNet50 as our method, a widely
used architecture in the re-id literature. We trained each of
these models with the softmax cross-entropy loss function in
their respective designs.

Results We compared our MATE model with the three base-
line methods in Table 1. Several observations can be pointed:

1. Concatenating simply the per-camera identity label spaces,
MCST yields the weakest re-id performance. This is not
surprised because there is a large (unknown) proportion
of duplicated identities but mistakenly labelled with dif-
ferent classes, misleading the model training process.

2. The above problem can be addressed by independently
exploiting camera-specific identity class annotations, as
EPCS does. This method does produce better re-id model
generalisation consistently. However, the over accuracy
is still rather low, due to the incapability of leveraging
the shared knowledge between camera views and mining
the inter-camera identity matching information.

3. To address this cross-camera association issue, PCMT
provides an implicit solution and significantly improves
the model performance.

4. Moreover, the proposed MATE model further boosts
the re-id matching accuracy by explicitly associating
the identity classes across camera views in a reliable
formulation. This verifies the efficacy of our model in
capitalising such cheaper and more scalable per-camera
identity labelling.
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Table2 Comparative evaluation of representative person re-id paradigms in the model training supervision perspective

Supervision Method Market-1501 DukeMTMC-reID MSMT17
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP
None RKSLT 340 - - 11.0 - - - - 154 - - 43
ISR' 403 - - 143 - - - - 215 - - 6.1
DICT 502 - - 22.7 - - - - 228 - - 7.0
BUC 66.2 845 - 38.3 474 684 - 27.5 - - - -
TSSL 712 - - 433 622 - - 38.5 - - - -
Tracking TAUDL 63.7 - - 41.2 61.7 - - 43.5 - - - -
UTAL 69.2 855 89.7 462 623 80.7 844 446 314 510 581 13.1
Source domain CAMEL 54.5 - - 26.3 - - - - - - - -
TJ-AIDL 582 - - 26.5 443 - - 23.0 - - - -
CR-GAN 59.6 - - 29.6 522 - - 30.0 - - - -
MAR 677 - - 40.0 67.1 - - 48.0 - - - -
ECN 75.1 91.6 - 43.0 633 804 - 40.4 302 468 - 10.2
Intra-camera MATE (Ours) 88.7 97.1 98.2 71.1 76.9 89.6 92.3 56.6 46.0 653 71.1 19.1
Cross-camera (semi) ResNet50* 66.1 - - 42.1 50.0 - - 30.3 - - - -
WRNS50* 65.8 - - 422 494 - - 30.9 - - - -
MVC 722 - - 49.6 529 - - 33.6 - - - -
Cross-camera HA-CNN 912 - - 75.7 80.5 - - 63.8 - - - -
SGGNN 923 - - 82.8 81.1 - - 68.2 - - - -
PCB 93.8 - - 81.6 833 - - 69.2 682 - - 40.4
JDGL 948 - - 86.0 86.6 - - 74.8 712 - - 52.3
OSNet 948 - - 84.9 88.6 - - 73.5 787 - - 52.9
fResults from Yu et al. (2019b)
*Results from Xin et al. (2019)
@ Springer
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To further examine the model performance, in Fig. 6 we
visualised the feature distributions of a randomly selected
person identity with images captured by all the camera views
of Market-1501. It is shown that the feature points of our
model present the best camera-invariance property, qualita-
tively validating the superior re-id performance over other
competitors.

5.2 Comparing Different Person Re-ID Paradigms

As a novel re-id person scenario, it is informative and
necessary to compare with other existing scenarios in the
problem-solving and supervision cost perspectives. To this
end, we compared ICS with existing representative re-id
paradigms in an increasing order of training supervision cost:

1. Unsupervised learning (no supervision): RKSL (Wang
et al. 2016a), ISR (Lisanti et al. 2014), DIC (Kodirov
et al. 2015), BUC (Lin et al. 2019), and TSSL (Wu et al.
2020);

2. Tracking data modelling: TAUDL (Li et al. 2018a) and
UTAL (Li et al. 2019);

3. Unsupervised domain adaptation (source domain super-
vision): CAMEL (Yu et al. 2017), TJ-AIDL (Wang et al.
2018), CR-GAN (Chen et al. 2019), MAR (Yu et al.
2019b), and ECN (Zhong et al. 2019);

4. Semi-supervised learning (cross-camera supervision at

small size): ResNet50 (He etal. 2016), WRNS50 (Zagoruyko

and Komodakis 2016), and MVC (Xin et al. 2019);

5. Conventional fully supervised learning (cross-camera
supervision): HA-CNN (Li et al. 2018b), SGGNN (Shen
et al. 2018b), PCB (Sun et al. 2018), JDGL (Zheng et al.
2019), and OSNet (Zhou et al. 2019).

Table 2 presents a comprehensive comparative evaluation
of different person re-id paradigms in terms of the model
performance vs. supervision requirement. We highlight the
following observations:

1. Early unsupervised learning re-id models (RKSL, ISR,
DIC), which rely on hand-crafted visual feature represen-
tations, often yield very limited re-id matching accuracy.

Table 3 Evaluating the model components of MATE: Per-Camera
Multi-Task (PCMT) learning, Cross-Camera Multi-Label (CCML)
learning, and Curriculum Thresholding (CT)

Component R1 R10 R20 mAP
PCMT 78.4 93.1 95.7 52.1
PCMT+CCML 85.3 96.2 97.6 65.2
PCMT+CCML+CT (full) 88.7 97.1 98.2 71.1

Dataset: Market-1501
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matching pairs (correct predicted pairs). b The precision and recall of
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While deep learning clearly improves the performance
as shown in BUC and TSSL, the results are still largely
unsatisfactory.

2. By exploiting tracking information including spatio-
temporal object appearance continuity, TAUDL and
UTAL further improve the model generalisation.

3. Unsupervised domain adaptation is another classical
approach to eliminating the tedious collection of labelled
training data per domain. The key idea is knowledge
transfer from a source dataset (domain) with cross-
camera labelled training samples. This strategy con-
tinuously pushes up the matching accuracy. It has the
clear limitation that a relevant labelled source domain
is assumed which however is not always guaranteed in
practice.

4. While semi-supervised learning enables label reduction,
the model performance remains unsatisfactory and is rel-
atively inferior to unsupervised domain adaptation. This
paradigm relies on expensive cross-camera identity anno-
tation despite at smaller sizes.
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5. With full cross-camera identity label supervision, super-
vised learning methods produce the best re-id perfor-
mance among all the paradigms. However, the need
for cross-camera identity association leads to very high
labelling cost per domain, restricting significantly its
scalability in realistic large scale applications typically
with limited annotation budgets.

6. The ICS re-id is proposed exactly for solving this
low cost-effectiveness limitation of the conventional
supervised learning re-id paradigm, without the expen-
sive cross-camera identity association labelling. Despite
much weaker supervision, MATE can approach the per-
formance of the latest supervised learning re-id methods
on Market-1501. However, the performance gap on the
largest dataset MSMT 17 is still clearly bigger, suggesting
a large room for further ICS re-id algorithm innovations.

5.3 Further Evaluation of Our Method

We conducted a sequence of in-depth component evaluations
for the MATE model on the Market-1501 dataset.

5.3.1 Ablation Study

We started by evaluating the three components of our MATE
model: Per-Camera Multi-Task (PCMT) learning, Cross-

Camera Multi-Label (CCML) learning, and Curriculum
Thresholding (CT). The results in Table 3 show that:

(C) Iteration 5

0.6 08 1 0 0.2 0.4 06 08 1 0 0.2 0.4 06 08 1

(d) Iteration 10 (e) Fully supervised training
initial feature space before training starts. Dataset: Market-1501 Best
viewed in colour (Color figure online)

i
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Fig. 10 Illustration of three methods for identity cyclic association
across camera views: a Association across two camera views, adopted
by MATE; b Association across three camera views; ¢ Transitive asso-
ciation across three camera views. yk, y;, y; are three identities from
different camera views. Sold arrow denotes the correspondence relation
discovered as in Sect. 4.2, and dashed arrow in (¢) denotes transitive
association. Both (b) and (¢) can be further extended to more camera
views

Vi @e T OO0

(1) Usingthe PCMT component alone, the model can already
achieve fairly strong re-id matching performance, thanks
to the ability of learning implicitly cross-camera feature
representation via a specially designed multi-task infer-
ence structure.

Adding the CCML component significantly boosts the
accuracy, verifying the capability of our cross-camera
identity matching strategy in discovering the underlying
image pairs.

With the help of CT, a further performance gain is
realised, validating the idea of exploiting curriculum
learning and the design of our curriculum threshold.

2

3)

As a key performance contributor, we further examined
CCML by evaluating its essential part—cross-camera iden-
tity association. To this end, we tracked the statistics of
self-discovered identity pairs across camera views over the
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camera views are involved in cyclic consistent association

training rounds, including the precision and recall measure-
ments. It is shown in Fig. 7 that our model can mine an
increasing number of identity association pairs whilst main-
taining very high precision which therefore well limits the
risk of error propagation and its disaster consequence. This
explains the efficacy of our cross-camera multi-label learn-
ing. On the other hand, while failing to identify around 40%
identity pairs, our model can still achieve very competitive
performance as compared to fully supervised learning mod-
els. This suggests that our method has already discovered the
majority of re-id discrimination information from the associ-
ated identity pairs, missing only a small fraction embedded
in those hard-to-match pairs. In this regard, we consider the
proposed model is making a satisfactory trade-off between
identity association error and knowledge mining. To check
the impact of cross-camera identity association together with
per-camera learning, we visualised the change of feature dis-
tribution during training. For a set of multi-camera images
from a single person, it is observed in Fig. 8 that they are
associated gradually in the re-id feature space, reaching a
similar distribution as in the supervised learning case. For a
set of images from five random persons,

our model enables them to be gradually pushed away,
as shown in Fig. 9. These observations are in line with the
numerical performance evaluation above.
Associative scope Conceptually, the proposed concept of
cyclic consistent association can be extended to three or more

camera views. An example for three camera views is illus-
trated in Fig. 10b. For a more focused evaluation, we analysed
this aspect without curriculum threshold. We considered
2, 3, and 4 camera views involved during association. We
obtained Rank-1/mAP rates of 85.3%/65.2%, 83.5%/64.2%,
and 80.7%/58.9%, respectively. This result shows that the
more camera views involved, the lower model performance
obtained. The plausible reason is that the negative effect of
error propagation would be amplified when additional cam-
era views are added into the associating cycle. This is clearly
reflected in the comparison of association precision, as shown
in Fig. 11.

Transitive association As shown in Fig. 10c, transitive asso-
ciation means that if two identities (y; and y;) are both
associated with another identity (y;) in a cross-camera sense,
then the two identities y; and y; should be also associated.
In MATE, the transitive association is implicitly considered.
More specifically, when y; and y; both are pulled close
towards y; concurrently, y; and y; will be made close in fea-
ture space during training, i.e. yx and y; are associated. This
transitive association can be further extended to 4 or more
camera views. To verify the above analysis, we evaluated the
effect of explicitly exploiting the transitivity information in
training MATE. We obtained 88.9%/71.2% in R1/mAP, sim-
ilar to the performance of 88.7%/71.1% when it is implicitly
utilised. In design, we finally choose to implicitly mine such
transitive relations for reduced model complexity.

5.3.2 Hyper-Parameter Analysis

We examined the performance sensitivity of three parameters
of MATE: the loss weight A (default value 0.5) in Eq. (11),
the lower (default value 0.5) and upper (default value 0.95)
bound of curriculum threshold in Eq. (8). We evaluated each
individual parameter by varying its value while setting all the
others to their default values. Figure 12 shows that all these
parameters have a wide range of satisfactory values in terms
of performance. This suggests the ease and convenience of
setting up model training and good accuracy stability of our
method.

~ 100 ~ 100 ~ 100
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Fig. 12 Hyper-parameter analysis: a the loss weight A in Eq. (11), the b lower and ¢ upper bound of curriculum threshold in Eq. (8). Dataset:

Market-1501

@ Springer



International Journal of Computer Vision (2021) 129:1580-1595

1593

5.4 Intra-Camera Annotation Cost

We conducted a controlled data annotation experiment to
annotate intra-camera person identity labels on the MSMT17
dataset (Wei et al. 2018). Specifically, we annotated the iden-
tity labels of person images in a camera-independent manner,
with the original identity information discarded. Due to the
nature of per-camera person labelling, the entire identity
space is split into multiple independent, smaller spaces. This
allows us to decompose the labelling task easily and enable
multiple annotators to conduct the labelling job in parallel
without any interference and conflict among them. These
merits reduce significantly the annotation cost.

We provide a quantitative comparison on the annotation
costs between ICS and a conventional fully supervised person
re-id setting. This experiment was performed on a subset of
MSMT17. Specifically, we randomly selected up to 50 per-
sons from each camera-view which gives rise to a total of 714
identities. We asked three annotators to label the images using
the same labelling tool we developed. The labelling costs of
ICS and the fully supervised setting are respectively 2.5 and
8 person-days. This empirical validation is largely consistent
with our annotation cost complexity analysis provided in the
Introduction section. This experiment demonstrates that our
ICS setting is significantly more efficient and more scalable
by reducing the annotation complexity and costs.

In terms of performance, our method achieves a Rank-
1/mAP rate of 46.0%/19.1%, vs. 78.7%/52.9% by the best
supervised learning model OSNet, whilst clearly outper-
forming all unsupervised, tracking, domain adaptation based
alternatives (cf. Table 1). This is an encouraging preliminary
effort of intra-camera supervised person re-id, with a good
improvement space remaining in algorithm innovation.

6 Conclusions

In this work, we presented a novel person re-identification
paradigm, i.e. intra-camera supervised (ICS) learning, char-
acterised by training re-id models with only per-camera
independent person identity labels, but no the conventional
cross-camera identity labelling. The key motivation lies in
eliminating the tedious and expensive process of manually
associating identity classes across every pair of camera views
in a surveillance network, which makes the training data
collection too costly to be affordable in large real-world
application. To address the ICS re-id problem, we formulated
a Multi-tAsk mulTi-labEl (MATE) learning model capable of
fully exploiting per-camera re-id supervision whilst simulta-
neously self-discovering cross-camera identity association.
Extensive evaluations were conducted on three re-id bench-
marks to validate the advantages of the proposed MATE
model over the state-of-the-art alternative methods in the pro-

posed ICS learning setting. Detailed ablation analysis is also
provided for giving insights on our model design. We con-
ducted extensive comparative evaluations to demonstrate the
cost-effectiveness advantages of the ICS re-id paradigm over
a wide range of existing representative re-id settings and the
performance superiority of our MATE model over alternative
learning methods.
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