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Abstract Accurate camera calibration is a precondi-

tion for many computer vision applications. Calibration

errors, such as wrong model assumptions or imprecise

parameter estimation, can deteriorate a system’s overall

performance, making the reliable detection and quan-

tification of these errors critical.

In this work, we introduce an evaluation scheme to cap-

ture the fundamental error sources in camera calibra-

tion: systematic errors (biases) and uncertainty (vari-

ance). The proposed bias detection method uncovers

smallest systematic errors and thereby reveals imperfec-

tions of the calibration setup and provides the basis for

camera model selection. A novel resampling-based un-

certainty estimator enables uncertainty estimation un-

der non-ideal conditions and thereby extends the classi-

cal covariance estimator. Furthermore, we derive a sim-

ple uncertainty metric that is independent of the cam-
era model. In combination, the proposed methods can

be used to assess the accuracy of individual calibrations,

but also to benchmark new calibration algorithms, cam-

era models, or calibration setups. We evaluate the pro-

posed methods with simulations and real cameras.
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1 Introduction

Many applications in 3D computer vision rely on pre-

cisely knowing the camera’s mapping from the 3D world

to the 2D image. This mapping p : R3 → R2 is ob-

tained during camera calibration. Errors in the cali-

bration will lead to false assumptions on the mapping,

which can impact all subsequent inferences and deteri-

orate a system’s overall performance [22,36,4,40,5,1].

The detection and prevention of errors is therefore a

critical aspect of the calibration.

To ensure high accuracy calibration, recent advances

have focused on easily applicable calibration solutions.

Starting with the seminal work by Zhang in 2000 [39],

many contributions have been made with regard to im-

proving and simplifying the calibration process [18,11,

29,17]. Multiple open-source toolboxes provide directly

applicable functions for camera calibration, including

the detection of calibration markers, different camera

models and the complete bundle adjustment [27,20].

Furthermore, several current approaches aim at tack-

ling the problem of high uncertainty by developing sys-

tems for guided calibration [23,26,25]. These systems

infer most informative camera and calibration body

constellations and guide users towards taking these im-

ages. Thus, both the data collection and the estimation

process have been simplified substantially.

Despite this progress in the calibration process, few

have focused explicitly on tools to assess and interpret

calibration results. One of the most common tools to

assess the quality of a calibration remains to be the

inspection of reprojection errors, as they are directly

accessible after every calibration [17,20]. While resid-

ual errors reveal large systematic errors or unsuccessful

optimizations, they cannot provide a full picture on the

quality of the calibration. Such a full evaluation scheme
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A Camera Calibration

model parameters
covariance matrix 

optimization

B Detect biases, find adequate model

adjust 
model

residuals

C Quantify the remaining uncertainty

Bias ratio

Resampling-based
 uncertainty estimation

Predict the expected
mapping error

Fig. 1 Proposed evaluation scheme for camera calibration. (A) Target-based camera calibration where intrinsic and
extrinsic camera parameters are obtained through bundle adjustment. (B) Method to detect systematic errors (biases). The
bias ratio (BR) quantifies the fraction of systematic error in the calibration residuals. (C) Quantification of the uncertainty. We
propose a novel resampling-based method to estimate the covariance matrix of model parameters. Propagating the uncertainty
to image space, the expected mapping error (EME) then provides a model-independent uncertainty metric.

would be critical to ensure high accuracy calibrations,

but also to benchmark new calibration setups or solu-

tions.

In general, the error sources of camera calibration

can be divided into systematic errors (bias) and uncer-

tainty (variance) [10, p.116][12]. As in any data model-

ing problem, systematic errors occur if a chosen model

is not sufficiently flexible or imposes false assumptions

on the data (Fig. 1B). In camera calibration, systematic

errors can be caused by a camera projection model not

being able to reflect the true geometric camera charac-

teristics, e.g. if lens distortions are neglected. But also

other sources, such as an uncompensated rolling shut-

ter [21], or non-planarity of the calibration target [15]

can result in systematic errors.

A high uncertainty, on the other hand, describes that

model parameters could not be estimated reliably based

on the available data. In general, uncertainties occur if

the data is subject to noise and the amount of data

is limited (Fig. 1C). In camera calibration, high uncer-

tainties are commonly caused by a lack of images used
for calibration, bad coverage in the image, or a non-

diversity in calibration target poses [34,23,26,25].

In this paper, we address the challenge of quantify-

ing both, systematic errors and uncertainty, in target-

based camera calibration. Our goal is to reliably detect

and quantify both types of errors and to condense the

result to easily interpretable measures. Extending our

recent work on evaluation metrics [12], we provide four

main contributions (Fig. 1):

– A method to detect systematic errors (biases)

in camera calibration. The method is based on esti-

mating the observational noise in marker detections

and thereby disentangles random from systematic

errors in the calibration residual.

– A method to estimate parameter uncertainties

under non-ideal conditions. We show that the

standard estimator for the covariance matrix un-

derestimates the uncertainty under non-ideal condi-

tions and propose a resampling approach for reliable

estimation.

– A method to predict the expected mapping er-

ror (EME) in image space, which quantifies the un-

certainty (variance) in model parameters in a model-

independent way.

– A detailed comparison of existing methods to

quantify bias and uncertainty.

The main advantages of our approach towards quanti-

fying systematic errors and uncertainty are that they

are (a) applied as post-processing and thus build upon

already captured data and (b) abstract from the un-

derlying camera model, resulting in comparable results

across different calibrations. We evaluate the proposed

methods with both simulations and real cameras.

2 Related Work

2.1 Detecting systematic errors

Detecting systematic errors in camera calibration poses
a challenge, because unlike the calibration of other mea-

surement devices, there is typically no ground-truth de-

vice to compare with. Instead, camera characteristics

are typically inferred indirectly through observations of

well-known 3D objects.

The most common approach to detect systematic

errors is by inspection of reprojection errors, i.e. the

difference between predicted and observed image coor-

dinates on the calibration dataset [17,20,2,30]. As the

observational noise is typically assumed to be normally

distributed, the reprojection errors (i.e. the residuals)

should also follow a Gaussian distribution. To detect

systematic errors, the two-dimensional distribution of

residuals can be visualized and deviations from the ex-

pected Gaussian distribution are an indicator for sys-

tematic errors [2].

To put this qualitative comparison into numbers,

recent work proposed the KL-divergence between a 2D

normal distribution, and the empirical distribution of

reprojection error vectors as a measure of biasedness [30].
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More precisely, it was proposed to compute the me-

dian KL-divergence over a 50x50 grid across the image,

where low values indicate a large similarity to the Gaus-

sian (low bias) and high values indicate dissimilarities

(higher bias).

In addition to the distribution of residuals, the mag-

nitude of residuals is a common indicator for system-

atic errors. A common approach is to compare the root

mean squared error (RMSE) or reconstruction result

against expected values obtained from earlier calibra-

tions or textbooks [16]. However, the magnitude of resid-

uals varies for different cameras, lenses, calibration tar-

gets, and marker detectors and therefore only allows

capturing large errors in general.

Professional photogrammetry often makes use of pre-

cisely manufactured and highly accurate 3D calibra-

tion bodies [24]. Images captured from predefined view-

points are then used to perform a 3D reconstruction of

the calibration body, where different length ratios and

their deviation from the ground truth are compared

against empirical data. While these methods are both,

highly accurate and repeatable, they are often not feasi-

ble or too expensive for typical research and laboratory

settings and require empirical data for the camera un-

der test.

2.2 Quantification of uncertainty

The uncertainty of a calibration can, in general, be

quantified by the (co-)variance in estimated model pa-

rameters ξ̂. As calibration is typically performed as a

least squares estimation, the standard estimator for the

covariance matrix Σ̂ξ̂ξ̂,std is given by an approximated

backpropagation of the observational noise in the data,

Σ̂ξ̂ξ̂,std = ŝ2d(J
T
calibJcalib)−1, (1)

where Jcalib is the Jacobian of calibration residuals and

ŝ2d = MSEcalib/(1− NP

N ) is the estimated accuracy, ob-

tained from the mean squared error of the calibration

MSEcalib, the number of parameters NP and the num-

ber of observations N [16, p.92-96] [13, p.141-142].

Since the covariance matrix is high dimensional and

its interpretation is non-trivial, it is typically reduced

to a scalar metric. Typical choices are the trace of the

covariance matrix [23], or the maximum index of dis-

persion [26]. However, given the variety of camera mod-

els, from a simple pinhole model with only three pa-

rameters, up to local camera models with around 105

parameters [2,30], parameter variances are difficult to

interpret and not comparable across camera models.

To address this issue, the parameter’s influence on

the mapping can be considered. The metric maxERE [25]

propagates the parameter covariance to image space by

means of a Monte Carlo simulation. More precisely, a

5x5 grid of 3D points is projected into the image with

a sampled set of model parameters. This yields a dis-

tribution of image coordinates for each grid point. The

value of maxERE is then defined by the standard devia-

tion of the most uncertain grid point. The observability

metric [32] uses an analytical approach and weights the

uncertainty in estimated parameters with the param-

eters’ influence on the mapping. This is achieved by

linearly approximating the influence of parameter er-

rors on a model cost function. Importantly, this model

cost function takes into account that errors in intrinsic

parameters can partially be compensated by a change

of the camera coordinate system (i.e. by adjusting the

extrinsics). The observability metric is then defined by

an increase in calibration cost in the least observable

parameter direction, where low observability values cor-

respond to high uncertainty.

While both of these metrics provide valuable informa-

tion about the uncertainty, there are some shortcomings

in terms of how uncertainty is quantified. The observ-

ability metric does not consider the whole uncertainty,

but only the most uncertain parameter direction. Fur-

thermore, it quantifies uncertainty in terms of an in-

crease in the calibration cost, which can be difficult

to interpret. maxERE quantifies uncertainty in image

space and is thus easily interpretable. However, it relies

on a Monte Carlo Simulation instead of an analytical

approach and it does not incorporate potential com-

pensations of errrors in the intrinsics by a change of

the coordinate system.

A final metric to assess the accuracy of a calibra-

tion are the reprojection errors on a test dataset [35,

25,31]. As in machine learning, testing errors signifi-

cantly higher than training errors (calibration residu-

als) indicate an overfit which is directly related to an

uncertainty in model parameters. While a testing error

is a valuable measure for the accuracy of a calibration,

it requires capturing a full additional test dataset. In

practice, this overhead can rarely be afforded which is

why we focus on metrics that rely only on the calibra-

tion data.

3 Calibration framework

3.1 Camera projection modeling

From a geometric perspective, cameras project points

in the 3D world to a 2D image [13]. This projection can

be expressed by a function p : R3 → R2 that maps a

3D point x = (x, y, z)T from a world coordinate system

to a point ū = (ū, v̄)T in the image coordinate system.
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The projection can be decomposed into a coordinate

transformation from the world coordinate system to the

camera coordinate system x → xc and the projection

from the camera coordinate system to the image pC :

xc → ū:

ū = p(x,θ,Π) = pC(xc,θ) = pC(Rx+ t,θ), (2)

where θ are the intrinsic camera parameters and Π

are the extrinsic parameters describing the rotation R

and translation t. For a plain pinhole model, the intrin-

sic parameters are the focal length f and the principal

point (cx, cy), i.e. θ = (f, cx, cy). For this case, the pro-

jection pC(xc,θ) is given by

ū = f/zc · xc + cx,

v̄ = f/zc · yc + cy. (3)

To account for lens distortions, more complex models

are needed. In the following, we will consider a stan-

dard pinhole camera model with varying numbers of

radial distortion parameters k1, k2, k3 and different fo-

cal lengths fx, fy

ū = fx
xc
zc

(1 + k1r
2 + k2r

4 + k3r
6) + cx,

v̄ = fy
yc
zc

(1 + k1r
2 + k2r

4 + k3r
6) + cy, (4)

where r =

√(
xc

zc

)2
+
(
yc
zc

)2
. For more wide-angled

lenses, we use the OpenCV fisheye model [19].

3.2 Calibration

Our methods build upon target-based camera calibra-

tion, in which planar targets are imaged in different

poses realitive to the camera (see Fig. 1A). Without

loss of generality, we assume a single chessboard-style

calibration target and a single camera in the follow-

ing. The calibration dataset is a set of images F =

{framej}NFj=1. The chessboard calibration target con-

tains a set of corners C = {corneri}NCi=1. The geometry

of the target is well-defined, thus the 3D coordinates of

chessboard-corner i in the world coordinate system are

known as xi = (xi, yi, zi)
T . The image coordinates of

chessboard-corners in each image are determined by a

corner detection algorithm [33], giving the observations

ui = (ui, vi)
T . Depending on the corner detector, the

perspective, the blur in the image, and many other fac-

tors, the observed coordinates ui will deviate from the

true image points ūi by a certain error, called observa-

tional noise. This error is typically assumed to be inde-

pendent identically distributed (i.i.d.) εd ∼ N (0, σ2
dI)

with a certain detector variance σ2
d. Previous work has

used a more elaborate description of the detector er-

ror by taking into account the angle under which the

corner is observed [23], but we will stick to the most

commonly used i.i.d. description.

Following [39], parameters are estimated by mini-

mizing a calibration cost function, defined by the sum

of squares of reprojection errors

ε2res =
∑
j∈F

∑
i∈C
||uij − p(xij ,θ,Πj)||2. (5)

For the sake of simplicity, we present formulas for non-

robust optimization here. To reduce the impact of po-

tential outliers, we advise robustification e.g. by using

a Cauchy kernel. Optimization is peformed by a non-

linear least-squares algorithm, which yields parameter

estimates (θ̂, Π̂) = argmin(ε2res).

To evaluate the calibration result, one of the most com-

mon metrics is the root mean squared error (RMSE)

over all N individual corners coordinates (observations)

in the calibration dataset F [13, p.133]:

RMSEcalib =

√
1

N

∑
j∈F

∑
i∈C
||uij − p(xij , θ̂, Π̂j)||2, (6)

or its squared version, the mean squared error MSEcalib =

RMSE2
calib. Note that the number of observations N is

twice the number of visible corners, i.e. N = 2NCNF if

the board was fully visible in all images.

The covariance matrix in estimated model parame-

ters ξ̂ = (θ̂, Π̂) is theoretically given by the backprop-

agation of the covariance of the corner detector:

Σξ̂ξ̂ = (JTcalibΣ
−1
εdεdJcalib)−1 = σ2

d(JTcalibJcalib)−1, (7)

where Σεdεd = σ2
dI is the covariance matrix of the

corner detector and Jcalib is the Jacobian of calibration

residuals [13, p.141-142]. As the variance of the corner

detector σ2
d is not known a priori, it is typically replaced

by the accuracy estimate ŝ2d = MSEcalib/(1 − NP

N ) [16,

p.92-96], giving

Σ̂ξ̂ξ̂,std = ŝ2d(J
T
calibJcalib)−1. (8)

The covariance matrix contains the (co-)variances of

both, the intrinsic parameters θ̂ and extrinsic param-

eters Π̂j for each image j. The covariance matrix of

intrinsic parameters Σθ̂θ̂ can then be extracted as a

submatrix of the full covariance matrix.

4 Detecting Systematic Errors: The Bias Ratio

The major challenge in quantifying systematic errors is

the fact that the residuals are always a superposition of

observational noise and potential systematic errors. As



Inferring bias and uncertainty in camera calibration 5

Decomposing the 
calibration targets 

Estimating the detector variance 
Computing the bias contribution

camera model

b
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ti
o
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and bias ratio 

by separately re-optimizing 
the pose of each group

Fig. 2 Detecting systematic errors. a Computation of the bias ratio: The calibration target is virtually decomposed into
local groups, whose poses are re-optimized separately. Re-optimizating the poses can compensate a large fraction of potential
systematic errors, so that the residuals provide an estimate for the random error contribution (detector variance σ2

d). Using this
estimate, the absolute bias εbias and the BR can be computed. b Exemplary results of the BR for a simulated C(6) camera,
when calibrating with models of increasing complexity. The BR clearly indicates the systematic error when using insufficiently
complex models (C(3), C(5)).

the magnitude of observational noise depends on mul-

tiple factors, including the camera, blur in the image,

the calibration setup and many more, it is not known

a priori. Consequently, the residuals do not provide di-

rect information on the amount of bias.

In the following, we derive a novel method to disentan-

gle these two contributions and thereby quantify the

fraction of systematic error in the mean squared repro-

jection error MSEcalib of a calibration. Following the

assumptions made in Section 3.2, MSEcalib can be for-

mulated as a superposition of random errors, caused by

the observational noise (detector variance σ2
d), and a

systematic error contribution. Taking into account the

number of parameters and the number of observations,

one finds asymptotically (by augmentation of [13, p.

136])

MSEcalib = σ2
d(1− NP

N
)︸ ︷︷ ︸

random error

+ ε2bias(1−
NP
N

)︸ ︷︷ ︸
systematic error contribution

,

(9)

where NP is the total number of free intrinsic and ex-

trinsic parameters and εbias denotes the bias introduced

through systematic errors1. The detector variance σ2
d is

generally camera-dependent and not known a priori.

Thus, to disentangle random and systematic error con-

tributions to MSEcalib, the detector variance σ2
d must

be determined independently.

The rationale behind many calibration approaches,

and in particular guided calibration, is to find most

informative camera-target configurations. To estimate

σ2
d, we propose the opposite. We explicitly use config-

urations which are less informative for calibration but

at the same time also less likely to be impacted by sys-

tematic errors. Such an uninformative configuration is

1 Note, that the normalization of εbias is different to [12],
to clarify its relation to the estimated accuracy ŝ2d. The defi-
nition of the bias ratio, however, remains unaffected.

given if a calibration target only covers small local im-

age regions, as a large fraction systematic errors can

then be compensated by adjusting the target pose.

To obtain such an uninformative configuration with-

out capturing additional data, we decompose the cali-

bration target virtually into several smaller calibration

targets V = {targetv}
NV
v=1, usually consisting of exclu-

sive sets of the four corners of a checker board tile (cf.

Fig. 2a). The pose of each virtual calibration target

in each image of the calibration dataset is then re-

estimated individually while keeping the camera intrin-

sic parameters fixed. Here, pose estimation is overdeter-

mined with a redundancy of two (four tile corners and

six pose parameters). From the resulting mean squared

errors, MSEv with v ∈ V, we compute estimates of σ2
d

via (9). As systematic errors are mostly compensated

after separately re-optimizing the poses, it can be as-

sumed that ε2bias is negligible here:

σ̂2
dv =

MSEv

1− NP,v

Nobs,v

=
MSEv

1− 6
8

= 4 MSEv. (10)

To obtain an overall estimate of σ̂2
d, we compute the

MSE in (10) across the residuals of all virtual targets,

using the median absolute deviation (MAD) as a robust

estimator2.

Given an estimate for the detector variance σ̂2
d, we can

use the decomposition of MSEcalib (9) to determine the

systematic error contribution

ε̂2bias = max

(
MSEcalib

1− NP

N

− σ̂2
d, 0

)
= max(ŝ2d − σ̂2

d, 0),

(11)

where max(·, ·) ensures that the expression does not get

negative due to the statistical nature of MSEcalib and

2 Here, we assume the underlying distribution is Gaussian
but might be subject to sporadic outliers. The MAD mul-
tiplied by a factor of 1.4826 gives a robust estimate for the
standard deviation [28].
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σ̂2
d. Finally, as a simple metric between zero and one,

we compute the bias ratio as

BR =
ε̂2bias(1−

NP

N )

MSEcalib
. (12)

The bias ratio is close to zero for unbiased calibration

and close to one if the results are dominated by sys-

tematic errors. In combination, the bias ratio BR and

the amount of bias ε̂bias provide an intuitive measure

for the systematic error in a calibration.

Note, that this method is closely related to an F-test

for regression model comparison [8]. By decomposing

the calibration target, we are constructing a much more

complex model. If there was no bias in the calibration,

i.e. if the data was already explained without decompos-

ing the target, the re-optimizations would only result in

a further compensation of the observational noise. The

reduction in the mean squared error (MSE) would then

be fully explained by the larger number of free param-

eters. On the other hand, if the calibration was biased,

the reduction in MSE would be larger than expected

by merely adding unnecessary parameters. This addi-

tional reduction in MSE is the basis for computing the

amount of bias εbias and the bias ratio.

Generally, this kind of analysis can be performed for

any separable3 calibration target. In practice, one may

also choose to cite
√
BR, as linear quantities may be

easier to interpret than the quadratic BR. The algrithm

is summarized below.

Bias Ratio: Practical implementation

Computation of the bias ratio for target-based cali-

bration procedures:

1. Perform robust camera calibration and extract

a robust estimate of MSEcalib and the optimal

parameters θ̂ and Π̂.

2. Compute the residuals for all v ∈ V:

– Decompose the calibration targets in each im-

age into NV exclusive virtual targets.

– Optimize their pose independently leaving θ̂

unchanged.

3. Compute a robust estimate of the MSE over all

residuals and determine σ̂2
d using (10).

4. Use σ̂2
d to estimate the bias contribution εbias

via (11).

5. Finally, compute the bias ratio as BR = ε̂2bias(1−
NP

N )/MSEcalib.

3 The decomposition of the target must lead to an overde-
termined estimation problem.

5 Uncertainty Estimation

The second type of error, in addition to biases, are er-

rors caused by a high uncertainty in estimated model

parameters. The two major challenges in quantifying

uncertainty are (i) the reliable estimation of the un-

certainty and (ii) the formulation of parameter uncer-

tainties as a model-independent and easily interpretable

metric. In the following, we will address both chal-

lenges. First, we propose a resampling method to re-

liably estimate the covariance matrix of model parame-

ters even under non-ideal conditions. Subsequently, we

derive the model-independent uncertainty metric EME

that predicts the expected error in image space.

5.1 Resampling-based uncertainty estimation

In general, the uncertainty of a calibration can be quan-

tified by the covariance matrix of estimated model pa-

rameters. As parameters are estimated via nonlinear

least squares, the standard estimator for the covariance

matrix is a backpropagation of the detector variance

(Eq. 8). While this estimator is unbiased in theory and

in simulations, we observed that for real data, it tends

to underestimate the uncertainty of a calibration. Com-

paring (a) the variance in estimated model parame-

ters across multiple calibrations with (b) the average

predicted variance, the latter tends to be smaller (see

Figs. 3a, 4). This effect is especially detectable in the

presence of small systematic errors, including imperfec-

tions of the calibration target or unmodeled lens distor-

tion. As such small deviations from the ideal assump-

tions are almost inevitable in practice, a more robust

estimator for the covariance matrix is needed to reli-

ably estimate the uncertainty of a calibration. In the

following, we will derive a resampling method to esti-

mate uncertainty and we will propose an approximation

of the method that is less computationally costly.

5.2 Bootstrapping Method

We propose to apply bootstrapping [7], a nonparamet-

ric statistical technique, to obtain a more robust esti-

mate of the covariance matrix (see Fig. 3b). Instead of

relying on specific assumptions on the distribution of

the data and the resulting analytical expressions, boot-

strapping relies only on the data itself. The main as-

sumption is that the dataset (sample) is representative

for the population. Parameter variances and confidence

intervals are then obtained by repeated resampling of

the data.
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Fig. 3 Resampling-based uncertainty estimation. a The standard estimator for the covariance matrix of model parame-
ters underestimates the uncertainty in non-ideal, real-world scenarios. The histograms show the distribution of the focal length
fx and radial distortion parameter r1 when running calibrations with multiple image subsets of the same camera (manta
lens). The observed variance is larger than predicted by the standard covariance estimator. b Resampling-based uncertainty
estimation by bootstrapping the calibration dataset. Bootstrap samples are obtained by sampling images with replacement
from the original dataset. For each bootstrap sample a calibration is performed, yielding a bootstrap distribution of estimates
θ̂. Finally, the covariance matrix is computed as the covariance of the bootstrap distribution.

Let F = {framej}NFj=1 be the set of NF calibra-

tion images. We now construct nBS bootstrap sam-

ples {FBS,l}nBS

l=1 by sampling with replacement from the

original set of images. Each of the bootstrap samples

contains a total of NF images (i.e. some images will

be contained multiple times and others will be miss-

ing). Now, the calibration is conducted with each of

these bootstrap samples, yielding an estimate θ̂BS,l for

each sample FBS,l. The whole set of bootstrap estimates

{θ̂BS,l}l=1,...,nBS
forms the so-called bootstrap distribu-

tion. Based on this distribution, the covariance matrix

can directly be estimated:

Σ̂θ̂θ̂,BS = Cov(θ̂BS, θ̂BS) =



σ2
1 σ12 · · · σ1Nθ

σ21 σ2
2 · · · σ2Nθ

...
...

. . .
...

σNθ1 σNθ2 · · · σ2
Nθ


.

(13)

with

σ̂2
m :=

1

nBS − 1

nBS∑
l=1

(
θlm − θm

)2
(14)

σ̂nm :=
1

nBS − 1

nBS∑
l=1

(θln − θn)(θlm − θm). (15)

5.3 Approximated Bootstrapping Method

Our results indicate that the bootstrap method pro-

vides a reliable estimate of the covariance matrix (see

Section 7.2). However, a major drawback lies in the

computation time, as the entire calibration has to be

conducted nBS times.

To reduce the computation time, we propose an approx-

imated bootstrapping method (aBS) which re-uses the

already computed Jacobian of calibration residuals. In-

stead of conducting the entire calibration with each of

the bootstrap samples, the aBS method only conducts

the last iteration of the nonlinear optimization, as we

will explain in detail below.

The bundle adjustment performed during camera cal-

ibration relies on non-linear least squares estimation.

Optimal parameters are found iteratively by perform-

ing so-called Gauss-Newton steps:

(JTJ)∆θ = JT r (16)

θk+1 = θk +∆θ (17)

where J is the local Jacobian at θk and r are the residu-

als at the current iteration k. Note, that for calibration,

an augmented system is typically used (e.g. Levenberg-

Marquardt), but for the aBS method we omit the aug-

mentation and use the plain Gauss-Newton formula-

tion. At the end of the calibration, the optimal param-

eters θ̂, the local Jacobian J and the residuals r are

known, where the k-th row of the Jacobian corresponds

to the local derivatives k-th residual.

This is where the approximated bootstrapping method

is applied: As for the original bootstrap method, we

construct nBS bootstrap samples {FBS,l}l=1,...,nBS
by

sampling with replacement from the original set of im-

ages. For each of these bootstrap samples FBS,l, the

Jacobian and the residual vector are re-composed, such

that they contain only the observations of FBS,l. Thus,

for each bootstrap sample, we get a re-composed pair
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std BS aBS
method

E
M
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10 1
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10 3

10 2

10 1 average error w.r.t.
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average error w.r.t.
reference calibration

10 1

100

101

102

103
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10 3

10 2

10 1

100
average error w.r.t.
true model
reference calibration

average error w.r.t.
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Fig. 4 Validation of resampling based uncertainty estimation. For an ideal simulation, the standard method (std), the
bootstrapping method (BS) and the approximated bootstrapping method (aBS) provide similar estimates for the uncertainty
and the corresponding EMEs coincide with the average true error in image space (horizontal line). When simulating an
underfit, the standard method significantly underestimated the uncertainty, while the estimates of both resampling methods
remained close to the average error. For real cameras, the results were similar to a simulated underfit. The standard method
underestimated the uncertainty, while BS and aBS remained close to the true error. For comparability, same bootstrap samples
were used for the BS and aBS method.

(JBS,l, rBS,l). For instance, if the bootstrap sample FBS,l

contained the first image of the original dataset twice,

the pair would be given by

JBS,l =


J1

J1

J3

...

JNF

 , rBS,l =


r1
r1
r3
...

rNF

 , (18)

where the entry Jj describes the rows of the Jacobian

that corrsepond to image j and rj is the residual vector

corresponding to image j.

To obtain the bootstrap estimates θ̂BS,l, only the last

Gauss-Newton step is conducted:

(JTBS,lJBS,l)∆θBS,l = JTBS,lrBS,l (19)

θ̂aBS,l = θ̂ +∆θBS,l. (20)

Having performed this last step for each bootstrap sam-

ple, we again get a distribution of bootstrap estimates

{θ̂aBS,l}l=1,...,nBS and the covariance matrix Σ̂θ̂θ̂,aBS

can be estimated as in 5.2.

Thus, in short, the aBS simplifies the BS method by re-

using the Jacobian and residual vector of the original

calibration, which are typically costly to compute.

5.4 The Expected Mapping Error

Given a reliable estimate of the parameter covariance

matrix, the second challenge lies in the formulation

of the uncertainty in a model-independent and eas-

ily interpretable manner. We will now derive the ex-

pected mapping error (EME), a novel uncertainty met-

ric which quantifies the expected difference between the

mapping of a calibration result pC(x, θ̂) and the true

(unknown) model pC(x, θ̄).

Inspired by previous works [6,25], we quantify the map-

ping difference in image space, as pixel differences are

easily interpretable. We define a set of points in im-

age space G = {ug}NGg=1, from which the correspond-

ing sight rays are computed via the inverse projection

pC
−1(ug, θ̄) using one set of model parameters θ̄. Then,

points on the viewing rays are backprojected to the im-

age using the other set of model parameters θ̂ [2]. The

mapping error is then defined as the average squared

distance between original image coordinates ug and

back-projected image points pC(xg, θ̂) (see Fig. 5):

K̃(θ̂, θ̄) =
1

2NG

∑
g∈G
||ug − pC(pC

−1(ug, θ̄), θ̂)||2, (21)

where 2NG is the total number of image coordinates.

Formulation (21) of the mapping error assumes that

an error in the intrinsics fully propagates to the image.

However, the overall projection of a camera generally

also includes the coordinate transformation from the

world coordinate system to the camera coordinate sys-

tem x → xc. As the camera pose and therefore the

extrinsics are oftentimes re-estimated in practical set-

tings, we additionally take into account that deviations

in intrinsic parameters can partially be compensated

by a change in extrinsic parameters [32] and allow for

a virtual compensating rotation R of the viewing rays.

Thus, we formulate the effective mapping error as fol-

lows:

K(θ̂, θ̄) = min
R

1

2NG

∑
g∈G
||ug−pC(R pC

−1(ug, θ̄), θ̂)||2.

(22)
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Fig. 5 Predicting the mapping error based on parameter uncertainties. a Schematic of the derived uncertainty metric
EME = trace(Σθ̂θ̂

1/2HΣθ̂θ̂
1/2). We define the mapping error K as the difference between two camera models in image space.

Approximating K with a quadratic form in ∆θ, we can predict its expected value by propagation of uncertainties. b Validation
of the EME in simulations. The EME predicts the average true mapping error, i.e. the difference between the calibration result
and the true camera model. Error bars are 95% bootstrap confidence intervals.

The uncertainty metric EME is defined by the ex-

pected value of the mapping error, which can be re-

duced to a simple mathematical expression, as we will

show below:

EME = E[K(θ̂, θ̄)] = trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ), (23)

where Σθ̂θ̂ is the covariance matrix in model parame-

ters and H is the so-called model matrix obtained from

an approximation of the effective mapping error.

In the following, we will derive expression (23). Note,

that the derivation is independent of the particular choice

of K, provided that we can approximate K with a Tay-

lor expansion around θ̂ = θ̄ up to second order:

K(θ̂, θ̄) ≈ K(θ̄, θ̄) + grad(K)∆θ +
1

2
∆θTHK∆θ

≈ 1

2NG
∆θT (Jres

TJres)∆θ

≈∆θTH∆θ,
(24)

where ∆θ = θ̄ − θ̂ is the difference between true and

estimated intrinsic parameters, resg(θ̂, θ̄) are the map-

ping residuals, i.e.

resg(θ̂, θ̄) = ug − pC(R pC
−1(ug, θ̄), θ̂),

and Jres = dres/d∆θ is the Jacobian of the residu-

als. Furthermore, we defined the model matrix H :=
1

2NG
Jres

TJres. For a more detailed derivation of the

second step in 24, see Supplementary.

Estimated model parameters θ̂ obtained from a least

squares optimization are a random vector, asymptoti-

cally following a multivariate Gaussian with mean µθ =

θ̄ and covariance Σθ̂θ̂ [37, p. 8]. Likewise, the param-

eter error ∆θ = θ̄− θ̂ follows a multivariate Gaussian,

with mean µ∆θ = 0 and covarianceΣ∆θ∆θ = Σθ̂θ̂. We

propagate the distribution of the parameter error ∆θ

to find the distribution of the mapping error K(θ̂, θ̄).

In short, we find that the mapping error K(θ̂, θ̄) can

be expressed as a linear combination of χ2 random vari-

ables:

K(θ̂, θ̄) = ∆θTH∆θ

=

Nθ∑
n=1

λnQn, with Qn ∼ χ2(1).
(25)

The coefficients λn are the eigenvalues of the matrix

product Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 and Nθ is the number of eigen-

values which equals the number of parameters θ. The

full derivation of relation (25) is shown in the Supple-

mentary. Importantly, based on expression (25), we can

derive the expected value of K(θ̂, θ̄):

E[K(θ̂, θ̄)] = E[

Nθ∑
n=1

λnQn] =

Nθ∑
n=1

λnE[Qn] =

Nθ∑
n=1

λn

= trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ),

(26)

where we used that the χ2-distribution with one de-

gree of freedom χ2(1) has expectation value E[χ2(1)] =

1. We therefore propose the expected mapping error

EME = trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) as a model-independent

measure for the uncertainty.
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Expected Mapping Error: Practical imple-

mentation

The expected mapping error EME can be deter-

mined for any given bundle-adjustment calibration:

1. Run the calibration and extract the optimal pa-

rameters θ̂ and the Jacobian Jcalib of the cali-

bration cost function.

2. Compute the intrinsic parameter covariance ma-

trix Σθ̂θ̂ using the resampling method, or, given

ideal conditions, via the classical relation (8).

3. Determine the model matrix H:

– Implement the mapping error (Eq. (22)) as a

function of the parameter estimate θ̂ and a

parameter difference ∆θ.

– Numerically compute the Jacobian Jres =

dres/d∆θ at the estimated parameters θ̂ and

compute H = 1
2NG

Jres
TJres.

4. Compute EME = trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ).

Note, that although the EME is measured in the

same units as the mean squared error MSEcalib, they

conceptually differ. The MSEcalib describes the devia-

tion of observations in the calibration dataset from the

model predictions. It can be interpreted as a training

error and could be reduced by simply using less obser-

vations or more model parameters in the calibration.

The EME, on the other hand, can rather be interpreted

as a prediction for the testing error4. It will increase

when less observations or more unneccessary model pa-

rameters are used and thereby indicate the potential

overfit.

6 Experimental Evaluation

6.1 Simulations

We simulated 3D world coordinates of a single pla-

nar calibration target in different poses relative to the

camera (random rotations ϕx, ϕy, ϕz ∈ [−π4 ,
π
4 ], trans-

lations tz ∈ [0.5 m, 2.5 m], tx, ty ∈ [−0.5 m, 0.5 m]).

We then computed the resulting image coordinates us-

ing different camera models. To simulate the detector

noise, we added Gaussian noise with σd = 0.05 px to

all image coordinates. For example images, see Fig. S1.

4 More precisely, it is a prediction of the testing error, as-
suming a perfect test dataset where observations homoge-
neously cover the image and are free of noise. In a real test
dataset, a random error of feature detection within the test
images would have to be added.

6.2 Rendered images

By simulating marker detection, we neglect the charac-

teristics of the real corner, but assume i.i.d. Gaussian

noise in the detection. To get a better understanding

of potential deviations from this assumption, and their

effect on our metrics, we additionally used rendered im-

ages. During rendering, we used a ray casting technique

and simulated the camera’s point spread function using

multiple weighted samples per pixel. For rendered im-

ages, both the camera model and the calibration target

are known and do not introduce any bias. Thereby, the

full calibration pipeline, including corner detection, can

be evaluated. For example images, see Fig. S1.

6.3 Evaluation with real images

We tested the methods using real images from three dif-

ferent lenses (see Fig. 6a for example images and Fig. S1

for more details on the lenses and the dataset). For each

lens, we collected a dataset with images of a single pla-

nar calibration target. We use a coded target proposed

by [33], to be able to associate corners across images.

As no ground-truth model was available for the real

lenses, we used a reference calibration5 as an approxi-

mate ground-truth to verify the evaluation methods.

7 Results

7.1 Evaluating the bias ratio

Validating the BR in simulations and experiments

To test the bias metric, we ran calibrations using cam-

era models of increasing complexity (increasing num-

ber of non-zero intrinsic parameters), including insuf-

ficiently complex models. We then computed the ro-

bust estimate of the RMSE (median absolute deviation,

MAD) and the bias ratio (BR) for each calibration. For

calibrations with an insufficiently complex model, the

bias ratio should detect systematic errors.

Fig. 6 shows the results of calibrations of four cam-

eras (one rendered dataset and three real cameras shown

in Fig. 6a). Each camera was calibrated with five differ-

ent camera models of increasing complexity. In detail,

5 As reference, we used the average of ten calibrations with
50 random images each.
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b

camera model camera model camera model camera model

c

camera model camera model camera model

a rendered manta cinegon xenoplan

accounting for
board-nonplanarity:

Fig. 6 Experimental evaluation of the bias ratio (BR). a Exemplary rendered image and images of the same scene
taken with the three different lenses used for evaluation. b Robust estimate of the RMSE (MAD, blue) and bias ratio (red)
of calibrations with models of increasing complexities. For the rendered camera images, the BR drops once a model with the
capability to describe the simulated mapping is employed. For all real lenses, the BR remains unexpectedly high even when
using the fisheye model C(8). c Taking into account that the calibration target was not perfectly planar (∆z ∼ 10−4 m) further
reduced the BR significantly. Error bars are standard deviations of ten calibrations with 50 random images each.

the individual parameter sets are (cf. Sec. 3.1)

θC(3) = (f, cx, cy),

θC(5) = (fx, fy, cx, cy, k1),

θC(6) = (fx, fy, cx, cy, k1, k2),

θC(7) = (fx, fy, cx, cy, k1, k2, k3),

θC(8) = (fx, fy, cx, cy, k1, k2, k3, k4).

For all cameras, the MAD and BR could be reduced by

using more complex camera models, as the projections

were not rectilinear and thus necessitate some kind of

(nonlinear) distortion modeling.

For the rendered images, the bias ratio was close

to one for the first camera model C(3), indicating that

the residuals were dominated by systematic errors. For

the second camera model C(5), it reduced to BR ≈ 0.6,

indicating that this model was better, but not yet suf-

ficient. When using the camera model with two radial

distortion parameters C(6), which is consistent with the

model that was used for rendering, the BR dropped to

BR < 0.2. Adding additional parameters (C(7), C(8))

did not lead to a further reduction. The bias ratio thus

correctly detected the presence of systematic errors for

models C(3) and C(5) and indicated that one of the

more complex models should be chosen for the calibra-

tion.

Surprisingly, the BR of all three real lenses remained

comparatively high across all tested camera models,

demonstrating that some sort of systematic error re-

mained (Fig. 6b). Further analyses revealed that the

calibration board was not perfectly planar: running the

calibrations again after precisely measuring the board

geometry [33] lead to a significant further reduction

in systematic error (Fig. 6c). The non-planarity of the

board was on the order of 10−4 m which demonstrates

that even smallest imperfections in the calibration setup

can be detected by the BR.

Using only the RMSE of the calibrations, some of

the systematic errors could have been overlooked. For

the rendered images, for instance, the RMSE already

dropped to RMSE < 0.1 pixels when using camera

model C(5), which may have been considered sufficiently

low. Likewise, even without taking into account the

board-nonplanarity, the RMSE of all three real lenses

was below 0.1 pixels and the calibrations may have been

considered sufficiently accurate. This highlights the ad-

vantage of using the bias ratio to assess a calibration

result.
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Fig. 7 Comparison of different bias metrics. Each cell shows the distribution of residuals, the RMSE, the median
Kullback-Leibler divergence (KLD), the bias ratio (BR) and the absolute bias (εbias) of the respective calibration. The results
are based on simulated data, with varying degrees of observational noise and bias influences. Note the different limits of x-
and y-axes. All metrics are of statistical nature, so that the precise values can vary for different calibrations. The same plots
for real cameras are shown in the Supplementary.

For the calibrations shown in Fig. 6, the BR got

close to zero, but did not reach a value of zero for any

of the rendered and real cameras. This could be ex-

plained by the fact that the observational noise of the

true corner detector was not perfectly i.i.d., zero-mean

Gaussian distributed [9]. As the images used here were

of high quality and generally showed a low observa-

tional noise (σd ∼ 0.03 px), such small deviations from

the expected Gaussian can become visible in the BR.

For the real lenses, it is furthermore conceivable that

some small systematic error remained, despite already

taking into account the deformation of the calibration

target.

Comparison of different bias metrics

We compare the bias ratio with other state-of-the-art

bias metrics introduced in Section 2. We focus on the

RMSE, the visualization of residuals in a smoothed 2D

histogram [2] and the Kullback-Leibler divergence be-

tween a 2D normal distribution and the empirical dis-

tribution of residual vectors [30]. While [30] uses 50x50

grid across the image and computes the KL-divergence

in each cell, we use a 4x4 grid, as we are working with

chessboard targets and significantly less observations.

We calibrated simulated cameras with high and low ob-

servational noise, using the correct camera model (C(6),

unbiased), using a model with only one radial distortion

parameter (C(5), weakly biased) and using a plain pin-

hole model (C(3), strongly biased) (see Fig. 7).

The RMSE increased with increasing amount of bias.

However, as the observational noise it not known a pri-

ori, it is hard to tell whether a value of RMSE ≈ 0.4 px

reflects a correspondingly high observational noise σd ≈
0.4 px or whether the observational noise is lower, and

the RMSE reflects a bias (Fig. 7, upper middle cell).

The 2D histogram of residuals was already more in-

formative: visible deviations from an expected 2D Gaus-

sian indicated a bias (Fig. 7, right column, Fig. S2).

However, as the simulations show, even in the presence

of biases, such deviations are not always visible (Fig. 7,

middle column).

Instead of relying on visual inspection, the Kullback-

Leibler divergence measures deviations from the ex-

pected Gaussian distribution: Higher values indicate
higher deviations and therefore systematic errors. The

KLD clearly indicated the increasing bias in the pres-

ence of low observational noise (Fig. 7, upper row).

However, in the presence of high observational noise,

this noise partially overshadowed systematic errors (Fig. 7,

lower middle cell). In this high noise / weak bias case,

the KLD remained close to zero despite the bias (see

also Fig. S2 for calibrations with real lenses).

A similar effect was visible for the bias ratio: in the

presence of high observational noise, the BR was lower,

as it describes the fraction of systematic error. To get

a full picture on the amount of systematic error, we

therefore recommend to take into account both, the

BR and the absolute amount of bias εbias. The abso-

lute amount of bias εbias increased consistent with the

increasing amount of bias, regardless of the amount of

observational noise. In combination, the BR and εbias
were able to capture the systematic errors in all scenar-

ios (see also Fig. S2 for calibrations with real lenses).
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Note, that all metrics presented here are of statisti-

cal nature, and the precise values will fluctuate depend-

ing on the dataset and the optimization, even if the

same model is chosen. Note also, that the KLD metric

and the 2D histogram were originally designed for cal-

ibrations with highly complex camera models and sig-

nificantly more observations [30,2]. It is therefore con-

ceivable that these metrics are more powerful in such

settings.

7.2 Evaluating the resampling-based uncertainty

estimation

To test the resampling-based uncertainty estimation,

we compared the estimated (co-)variances to the aver-

age deviation of the calibration result from the ground-

truth parameters. If variances were estimated correctly,

the variance of a parameter should, on average, reflect

the parameter’s mean squared deviation from the true

parameter.

We compared the covariance estimates of the stan-

dard method (std), the novel bootstrapping method

(BS) and the approximated bootstrapping method (aBS)

(Fig. 4). Using both, simulated and real images, we

ran calibrations with 50 random datasets containing

NF = 25 images each. For better comparability, we vi-

sualize the EME, i.e. the propagation of the covariance

matrices to image space.

For an ideal simulation with no systematic errors

and i.i.d. Gaussian distributed observational noise, all

three methods provided similar estimates (Fig. 4, left).

For all methods, the average EME was close to the true

average mapping error6.

When simulating an underfit, i.e. when calibrating

a camera with only one radial distortion parameter al-

though the ground-truth camera contained two non-

zero radial distortion parameters, the methods differed.

The standard method significantly underestimated the

uncertainty and thereby the EME. This means that the

standard estimator lead to overly optimistic assump-

tions on the uncertainty. The BS method and the aBS

method, on the other hand, remained close to the true

average error.

Importantly, for the two real cameras, the results

were similar to the underfit: the standard method un-

derestimated the variance, leading to overly optimistic

assumptions on the uncertainty. The BS method and

the aBS method, on the other hand, remained close

to the true error7. Our results thus indicate that in

6 Mapping error compared to the simulated ground-truth
camera model.
7 Mapping error compared to the reference calibration.

practice, where small systematic errors are almost in-

evitable8, the resampling-based methods provide more

reliable estimates for the uncertainty than the standard

method.

7.3 Evaluating the uncertainty metric

Validating the prediction of the EME

To validate the uncertainty metric EME in simulations,

we simulated datasets with different numbers of images

(NF ∈ {10, 15, ..., 50}) and ran calibrations using a suf-

ficiently complex camera model. Fig. 5b shows the un-

certainty metric EME = trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) and the

average true mapping error compared to the ground-

truth model. Consistent with Eq. (23), the EME pre-

dicted the average mapping error, i.e. the EME and the

average mapping error were approximately equal.

Fig. 8a,b show the same plots for two real cameras.

Here, we used a reference calibration as ground-truth

and ran calibrations with different numbers of images

(NF ∈ {10, 15, ..., 50}). In Fig. 8a, we used the standard

covariance estimator in the computation of the EME.

The EME is highly correlated with the average error,

but its absolute values are significantly lower. The EME

must therefore be interpreted as an upper bound for the

precision that can be achieved based on a given dataset.

In Fig. 8b, we used the aBS method in the computa-

tion of the EME. Using the aBS method, the EME was

consistent with the average real mapping error across

most calibrations. Only for calibrations with few im-

ages (NF ≤ 15), the EME tended to overestimate the

true error. This is caused by the fact that the theory

of bootstrapping is based on asymptotic assumptions

(infinite sample sizes). Although it typically works well

for smaller sample sizes as well, predictions become less

reliable. In the case of camera calibration, this results

in overly pessimistic uncertainty estimates. Note, how-

ever, that for most applications an overly pessimistic

error estimate is to be preferred over an overly opti-

mistic estimate of the standard covariance estimator.

In summary, when using the standard covariance es-

timator, the EME provides an upper bound to precision

that can be achieved based on a given dataset. When

using the aBS method to estimate the covariance, the

EME can be interpreted as an actual prediction of the

mapping error given a sufficient number of calibration

images.
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cinegon (aBS) manta (aBS)b

c

a cinegon (std) manta (std)

EME

E
M
E

Fig. 8 Experimental evaluation of the expected map-
ping error (EME). a, b Validation of the EME with two
real lenses (cinegon and manta). Using the standard covari-
ance estimator (std), the EME and true error were highly
correlated, but the absolute values of the EME were lower.
Using the aBS method, the EME was consistent with the
true average true error across most calibrations. c Compar-
ison of state-of-the-art uncertainty metrics in simulated cal-
ibrations. On average, the true error K decreases with the
number frames. For comparability with maxERE, we show√
K and

√
EME in units of pixels. All metrics are correlated

with the true error, but absolute values, scales, and units dif-
fer. Values are means across 50 random samples, error bars
are 95% bootstrap confidence intervals.

Comparison of different uncertainty metrics

We compare the EME with the other state-of-the-art

uncertainty metrics introduced in Section 2. We focus

on trace(Σθ̂θ̂), maxERE [25] and observability [32],

as these are the metrics closest to ours. Fig. 8c shows

the result of all metrics for simulated calibrations with

different numbers of images. To demonstrate how the

uncertainty depends on both, the amount of observa-

tional noise σd and the informativeness of calibration

images, we simulated three different settings (low noise

/ informative images, low noise / less informative im-

ages, high noise / informative images).

Fig. 8c shows the true mapping error compared to

the ground truth camera model
√
K, as well as all un-

certainty metrics. The uncertainty, and therefore the

average true error, decreased with an increasing num-

ber of images (an increasing number of observations N).

As expected from theory, the scaling is approximately

given by Σθ̂θ̂ ∝ N−1 (see also Fig.S4). Furthermore,

the uncertainty was lowest for calibrations with low

noise and informative images, and significantly higher

for high noise or uninformative images.

All metrics were correlated with the true error. How-

ever, the metrics quantify uncertainty in very different

ways: trace(Σθ̂θ̂) quantifies the uncertainty in model

parameters, and thus inherently differs depending on

the camera model. Furthermore, as its value represents

the sum of different parameters variances, it does not

have a unit. By re-parametrizing the camera model, the

value of trace(Σθ̂θ̂) can change over orders of magni-

tude, making the comparison across different calibra-

tions difficult.

The observability metric shows a qualitatively dif-

ferent scaling than the other metrics as it increases lin-

early with the number of images. High observabilities

imply that parameters were well observable based on

the data. As the EME, the observability accounts for

the parameter’s effect on the mapping and for compen-

sations of errors in the intrinsics via different extrinsics.

However, it does not incorporate the full uncertainty,

but only the least observable direction. Furthermore, it

does not account for the observational noise, but rather

evaluates whether the setup was informative. It there-

fore serves to evaluate a calibration setup rather than

the uncertainty of the specific calibration result.

Both, maxERE and the EME quantify the expected

error in image space and are thus easily interpretable.

While maxERE predicts a maximum error, the EME

reflects the average error. In contrast to maxERE, the

EME does not require a Monte Carlo simulation. Fur-

8 The calibrations shown in Fig. 4 already take into account
the board non-planarity.
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thermore, the EME can account for a compensation via

different extrinsics, which we consider a reasonable as-

sumption in most practical scenarios.

8 Discussion and Conclusion

In this work, we derived an evaluation scheme for cam-

era calibration, including the detection of systematic

errors and the quantification of uncertainty.

We have shown that it is possible to reliably capture

systematic errors by disentangling the systematic errors

from the random errors in the calibration residuals. The

proposed method can thereby uncover wrong model as-

sumptions and smallest imperfections in the calibration

setup. Compared to other state-of-the-art methods to

detect biases, the proposed method was more reliable

and more easily interpretable, as it does not involve

visual inspections of error distributions, nor does it re-

quire experience or comparative values from past cali-

brations.

To quantify uncertainty, we proposed a resampling-

based estimation of the covariance matrix. In contrast

to the standard covariance estimator, the resampling

method does not impose strict assumptions on the error

distribution and can therefore be applied under practi-

cal, non-ideal conditions. While the standard estimator

led to an underestimation of the uncertainty in non-

ideal settings, the proposed method provided reliable

estimates even in the presence of systematic errors. One

disadvantage of the resampling method is a required

minimum size of the calibration dataset, otherwise the

estimation becomes overly pessimistic. This is because

the theory behind bootstrapping is based on asymptotic

assumptions (infinite sample sizes), which are not met

with too few calibration images. In most applications,

however, such overly pessimistic error estimates are to

be preferred over the overly optimistic estimates of the

standard method.

To reduce the computation time of the resampling

method, we additionally derived an approximation of

the method that completely avoids recomputation of

Jacobians and residuals and is therefore significantly

faster. Thereby, the resampling method becomes feasi-

ble in practice.

Finally, we have derived a model-independent and

easily interpretable uncertainty metric called expected

mapping error (EME). The EME quantifies the ex-

pected difference between the calibration result and the

true camera in image space. By propagating the param-

eter uncertainty to image space, the metric is indepen-

dent of the underlying camera model and comparable

across different calibrations. The EME allows to quan-

tify how informative a certain dataset is for the cal-

ibration and can thereby help to improve calibration

setups.

Importantly, our derivation of the EME can also be

used to predict other, application specific errors. As a

generic choice, we have used the average error across

the image, but one could also weight image regions dif-

ferently, or define an application-specific error, such as

a triangulation error of a stereo system. Furthermore,

the EME can be applied for calibration guidance, in or-

der to guide users to collect calibration datasets that

explicitly minimize the uncertainty [12].

In summary, our results suggest that target-based

camera calibration can be evaluated reliably by (i) com-

puting the bias ratio to detect systematic errors, (ii) us-

ing the resampling method to estimate the uncertainty,

and (iii) computing the EME to quantify the uncer-

tainty in a model-independent manner. Together, the

proposed methods can be used to assess the accuracy

of individual calibrations, but also to benchmark new

calibration algorithms, camera models, or calibration

setups.
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Supplementary Material

simulation

rendered

manta

cinegon

xenoplan

image size: (4000 px, 4000 px)
intrinsics: fx = 4000 px

fy = 4100 px
cx = 2000 px
cy = 2000 px
k1 = -0.1
k2 = 0.09

image size: (720 px, 720 px)
intrinsics: fx = 900 px

fy = 900 px
cx = 361 px
cy = 361 px
k1 = -0.4
k2 = -0.15

image size: (1936 px, 1216 px)
intrinsics
(estimated): 

fx = 2163.84 px
fy = 2163.96 px
cx = 944.92 px
cy = 597.63 px
k1 = -0.104
k2 =0.172 

image size: (1936 px, 1216 px)
intrinsics
(estimated): 

fx = 3000.85 px
fy = 3001.25 px
cx = 970.26 px
cy = 614.11 px
k1 = -0.230
k2 = 0.533

image size: (1936 px, 1216 px)
intrinsics
(estimated): 

fx = 851.92 px
fy = 851.95 px
cx = 947.60 px
cy = 601.86 px
k1 = 0.058
k2 = 0.058
k3 = -0.037 
k4 = 0.046

Fig. S1 Example images of datasets used for evaluation. For the real images (xenoplan, cinegon, manta), we used the same
camera (Manta G-235 [38]), but different lenses (XENOPLAN 1.4/17, CINEGON 1.4/12, CINEGON 1.8/4.8).
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Fig. S2 Comparison of different bias metrics. Each cell shows the distribution of residuals, the RMSE, the median Kullback-
Leibler divergence (KLD), the bias ratio (BR) and the absolute bias (εbias) of a calibration.
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1 More detailed derivation of the expected mapping error (EME)

In the following, we will show a more detailed derivation of the distribution of a quadratic mapping error K(θ̂, θ̄),

which quantifies the difference between the mapping of a calibration result pC(x; θ̂) and the true (unknown) model

pC(x; θ̄). The derivation is independent of the particular choice of K(θ̂, θ̄), provided that it can be approximated

with a Taylor expansion around θ̂ = θ̄ up to second order:

K(θ̂, θ̄) =
1

2NG
res(θ̂, θ̄)T res(θ̂, θ̄)

≈ K(θ̄, θ̄) + grad(K)∆θ +
1

2
∆θTHK∆θ,

(27)

where, res(θ̂, θ̄) are the mapping residuals and 2NG is the number of residuals. The gradient and the Hessian of

K w.r.t. the parameter error ∆θ = θ̂ − θ̄ are given by

grad(K) =
dK

d∆θ
= 2

1

2NG
res(θ̂, θ̄)TJres

HK =
d2K

d∆θ2
= 2

1

2NG
Jres

TJres + higher order terms,

(28)

where Jres = dres/d∆θ is the Jacobian of the residuals. It follows that

K(θ̂, θ̄) ≈ K(θ̄, θ̄) +
2

2NG
res(θ̄, θ̄)TJres∆θ +

1

4NG
∆θT (2Jres

TJres)∆θ

≈ 1

2NG
∆θT (Jres

TJres)∆θ

≈∆θTH∆θ,

(29)

where we defined the model matrix H := 1
2NG

Jres
TJres. Here we made the Gauss-Newton approximation d2res/d∆θ2 ≈

0, so that the higher-order terms of the Hessian vanish [37, p. 16]. This approximation also implies that both Jres

and H are independent of where they are evaluated [37, p.16]. In the second step we used that res(θ̄, θ̄) = 0 and

thus K(θ̄, θ̄) = 0. This holds if we assume that the camera model is adequately chosen (especially not underpa-

rameterized).

We now show that for an ideal, bias-free calibration, the effective mapping error K(θ̂, θ̄) can be predicted by
propagating parameter uncertainties. Estimated model parameters θ̂ obtained from a least squares optimization

are a random vector, asymptotically following a multivariate Gaussian with mean µθ = θ̄ and covariance Σθ̂θ̂.

Likewise, the parameter error ∆θ follows a multivariate Gaussian, with mean µ∆θ = 0 and covariance Σ∆θ∆θ =

Σθ̂θ̂ (the quadratic cost function corresponds to the log-likelihood [37, p.9]). Finally, as ∆θ is a random variable,

so is K(θ̂, θ̄) a random variable.

We propagate the distribution of the parameter error ∆θ to find the distribution of the mapping error K(θ̂, θ̄):

Based on ∆θ, we can define a multivariate standard Gaussian distributed random variable

z := Σθ̂θ̂
−1/2(∆θ − µ∆θ)

⇔ ∆θ = Σθ̂θ̂
1/2z + µ∆θ

⇔ ∆θ = Σθ̂θ̂
1/2(z +Σθ̂θ̂

−1/2µ∆θ).

(30)

Plugging this into the second order approximation of K (29), we get

K = ∆θTH∆θ

= (z +Σθ̂θ̂
−1/2µ∆θ)TΣθ̂θ̂

1
2HΣθ̂θ̂

1
2 (z +Σθ̂θ̂

−1/2µ∆θ).
(31)

We now diagonalize the matrix Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 = P TΛP where Λ is a diagonal matrix containing the eigenvalues

and P is an orthogonal matrix (P TP = I) where the columns are the corresponding eigenvectors (spectral
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theorem).

Plugging this into the definition of K, we get

K = (z +Σθ̂θ̂
−1/2µ∆θ)TΣθ̂θ̂

1
2HΣθ̂θ̂

1
2 (z +Σθ̂θ̂

−1/2µ∆θ)

= (z +Σθ̂θ̂
−1/2µ∆θ)TP TΛP (z +Σθ̂θ̂

−1/2µ∆θ)

= (Pz + PΣθ̂θ̂
−1/2µ∆θ)TΛ(Pz + PΣθ̂θ̂

−1/2µ∆θ)

= (u+ b)TΛ(u+ b).

(32)

In the last step, we replaced b = PΣθ̂θ̂
1/2µ∆θ and u = Pz. As z ist multivariate standard Gaussian distributed

and P is orthogonal, u will also be multivariate standard Gaussian distributed with identity covariance and

expectation zero.

Finally, since Λ is a diagonal matrix containing the eigenvalues λn=1,...,Nθ of the matrixΣθ̂θ̂
1
2HΣθ̂θ̂

1
2 , this reduces

to

K = ∆θTH∆θ

=

Nθ∑
i=n

λn(un + bn)2 with un ∼ N (0, 1),
(33)

where Nθ is the number of eigenvalues λn, which equals the number of parameters (the length of the parameter

vector θ).

Expression 33 is a linear combination of χ2-distributed random variables. The eigenvalues λn are the coefficients

and the bn determine the non-centrality.

As µ∆θ = 0, it follows that b = 0. K is therefore just a linear combination of central first-order χ2-distributed

random variables:

K =

Nθ∑
n=1

λnQn, with Qn ∼ χ2(1). (34)

Fig. S3 shows examples of the distribution of the mapping error K, predicted by a single calibration result via

equation 33, as well as the observed distribution, obtained from simulating nr = 100 noise realizations. The

predicted and the observed distributions coincide well, which is consistent with our derivation.

There is no closed-form solution of the cumulative distribution function of the weighted sum of i.i.d. χ2-distributed

random variables [3]. However, it can be approximated, e.g. with the Imhof method [14]. Furthermore, the expected

value is directly accessible: The χ2-distribution with one degree of freedom χ2(1) has expectation value E[χ2(1)] =

1. We can thus determine the expected value of the mapping error K:

E[K(θ̂, θ̄)] = E[

Nθ∑
n=1

λnQn] =

Nθ∑
n=1

λnE[Qn] =

Nθ∑
n=1

λn

= trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 )

= trace(Σθ̂θ̂H).

This is the proposed uncertainty metric EME (expected mapping error).
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Fig. S3 Predicted and observed distribution of the mapping error K for simulated calibrations with σd = 1 px. Vertical lines show
true and predicted expected value E[K]. With an increasing number of frames, the distribution becomes increasingly narrow (note the
different x-axes). The prediction coincides well with the observed distribution.

Fig. S4 Re-scaled visualization of Fig. 8c. The uncertainty scales with the number of observations N , and therefore with the number
of frames NF approximately as Σθ̂θ̂ ∝ N

−1. Re-scaling the metrics with the number of frames therefore gives approximately constant
values. Values are means across 50 random samples, error bars are 95% bootstrap confidence intervals.
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2 Application in calibration guidance
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Fig. S5 Application of EME for calibration guidance. a For the original model, both metrics lead to a similarly fast reduction
in uncertainty. Rescaling the model to a different unit of the focal length results in a reduced performance of trace(Σθ̂θ̂), while

trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) remains unaffectd. Uncertainty is quantified by the average of the uncertainty map proposed by calibration

wizard [23]. b Examples of suggested poses.

To demonstrate the practical use of the EME, we apply it in calibration guidance. Calibration guidance refers

to systems that predict most informative next observations to reduce the remaining uncertainty and then guide

users towards these measurements. We choose an existing framework, called calibration wizard [23] and extend it

with our metric.

Calibration wizard predicts the next best pose by minimizing the trace of the intrinsic parameter’s covariance

matrix trace(Σθ̂θ̂). This is equivalent to minimizing the sum of the parameter’s variances. However, depending

on the camera model, parameters will affect the image in very different ways. High variance in a given parameter

will not necessarily result in a proportionally high uncertainty in the image.

To avoid such an imbalance, we suggest to minimize the uncertainty in image space, instead of parameter

space, i.e. to replace trace(Σθ̂θ̂) with the EME given by trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ).

To compare the methods, we used a dataset of calibration images (see Fig. S5b). Starting with two random images,

the system successively selected the most informative next image with (i) the original metric trace(Σθ̂θ̂), (ii) our

metric trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) and (iii) randomly. Using the pinhole model with radial distortion, the poses suggested

by trace(Σθ̂θ̂) and trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) were similarly well suited, both leading to a significantly faster reduction

in uncertainty than random images (Fig. S5). However, when changing the camera model, e.g. by parameterizing

the focal length in millimeters instead of pixels, simulated here by a division by 100 (f → 0.01 · f), the methods

differed: the poses proposed by trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) reduced uncertainty significantly faster than trace(Σθ̂θ̂). This

can be explained by the fact that when minimizing trace(Σθ̂θ̂), the variance of less significant parameters will be

reduced just as much as the variance of parameters with large effect on the mapping. This example shows that

the performance of trace(Σθ̂θ̂) can be affected by the choice of the model, while trace(Σθ̂θ̂
1
2HΣθ̂θ̂

1
2 ) remains

unaffected.
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