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Abstract Existing salient instance detection (SID) meth-
ods typically learn from pixel-level annotated datasets. In
this paper, we present the first weakly-supervised approach
to the SID problem. Although weak supervision has been
considered in general saliency detection, it is mainly based
on using class labels for object localization. However, it is
non-trivial to use only class labels to learn instance-aware
saliency information, as salient instances with high seman-
tic affinities may not be easily separated by the labels. As
the subitizing information provides an instant judgement on
the number of salient items, it is naturally related to de-
tecting salient instances and may help separate instances of
the same class while grouping different parts of the same
instance. Inspired by this observation, we propose to use
class and subitizing labels as weak supervision for the SID
problem. We propose a novel weakly-supervised network
with three branches: a Saliency Detection Branch leveraging
class consistency information to locate candidate objects; a
Boundary Detection Branch exploiting class discrepancy in-
formation to delineate object boundaries; and a Centroid De-
tection Branch using subitizing information to detect salient
instance centroids. This complementary information is then
fused to produce a salient instance map. To facilitate the
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Fig. 1: Our key idea is to leverage complementary image-
level labels (class and subitizing) to train a salient instance
detection model in a weakly-supervised manner, via syner-
gically learning to predict salient objects, detecting object
boundaries and locating instance centroids.

learning process, we further propose a progressive training
scheme to reduce label noise and the corresponding noise
learned by the model, via reciprocating the model with pro-
gressive salient instance prediction and model refreshing.
Our extensive evaluations show that the proposed method
plays favorably against carefully designed baseline methods
adapted from related tasks.
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1 Introduction

Salient Object Detection (SOD) is a long-standing vision
task that aims to segment visually salient objects in a scene.
It often serves as a core step for downstream vision tasks
like video object segmentation [50], object proposal gener-
ation [4], and image cropping [49]. Recent deep learning-
based SOD methods have achieved a significant perfor-
mance progress [47,74,56,42,68,17,48], benefited from the
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powerful representation learning capability of neural net-
works and large-scale pixel-level annotated training data.
Since annotating pixel-level labels is extremely tedious,
there are some works [47,60] that aim to explore cheaper
image-level labels (e.g., class labels) to train SOD models in
a weakly-supervised manner.

Salient Instance Detection (SID) goes further from SOD
as it aims to differentiate individual salient instances. This
instance-level saliency information can benefit vision tasks
that require fine-grained scene understanding, e.g., object
rank [41], image captioning [21], image editing [59] and se-
mantic segmentation [43]. However, existing SID methods
[11,25,62] still rely on large-scale annotated ground truth
masks in order to learn how to segment salient instances
with their boundaries delineated. Hence, it is worthwhile
studying the SID problem from the weakly-supervised per-
ceptive by using cheaper image-level labels.

A straightforward solution to the weakly-supervised SID
problem is to use class labels for training, like the weakly-
supervised SOD methods [47,60]. However, using just class
labels to learn a SID model is non-trivial for two reasons.
First, while class labels can help detect semantically pre-
dominant regions [70], there is no guarantee that the de-
tected regions are visually salient. Second, objects of the
same class may not be easily distinguished due to their high
semantic affinity. We observe that subitizing refers to the
number of certain objects and is therefore naturally related
to saliency instance detection. By predicting the number of
salient objects, we may use it as a global supervision to
help separate instances of the same class while clustering
different parts of an instance with diverse appearances into
one. Inspired by this insight, we propose to learn a weakly-
supervised SID network (denoted as WSID-Net) using class
and subitizing labels.

Our WSID-Net consists of three synergic branches: a
salient object detection branch is proposed to locate can-
didate salient objects while a boundary detection branch is
proposed to delineate their boundaries, both by exploiting
semantics from the class labels; and a centroid detection
branch is proposed to detect the centroid of each salient in-
stance, by leveraging saliency cues from the subitizing la-
bels. This information is fused to obtain the salient instance
map. To facilitate the learning process, we propose a Pro-
gressive Training Scheme (PTS) to reduce the noise gener-
ated in our salient object detection branch (e.g., incomplete
object proposals and cluttered background objects), by re-
ciprocally updating the branch using generated pseudo la-
bels and refreshing the branch in a self-supervised manner.
To demonstrate the effectiveness of the proposed model, we
compare it with a variety of baselines adapted from related
tasks on the standard benchmark [25].

To summarize, this work has four main contributions:

– To the best of our knowledge, we propose the first
weakly-supervised method for salient instance detec-
tion, which only requires image-level class and subitiz-
ing labels to obtain salient instance maps.

– We propose a novel network (WSID-Net), with a novel
centroid-based subitizing loss to exploit salient instance
number, a novel Boundary Enhancement module to learn
instance boundaries, and a novel Cross-layer Attention
module to enhance cross-layer context feature learning
of centroids and the boundaries.

– We propose a novel Progressive Training Scheme, to fa-
cilitate the learning of the saliency detection branch by
reducing the noise in a self-supervised manner.

– We conduct extensive experiments to analyze the pro-
posed method, and verify its superiority against base-
lines adapted from related state-of-the-art approaches.

2 Related Work

2.1 Salient Instance Detection

Existing SID methods are fully-supervised. Zhang et al. [62]
propose to detect salient instances with bounding boxes, and
propose a MAP-based optimization framework to regress
a large amount of pre-defined bounding boxes into a com-
pact number of instance-level bounding boxes of high con-
fidences. However, this method based on bounding boxes
cannot detect salient instances with accurately delineated
boundaries. Other works predict pixel-wise masks for the
detected salient instances, and typically rely on large amount
of manually annotated ground truth labels. Specifically,
Li et al. [25] propose to first predict the saliency mask and
instance-aware saliency contour, and then apply the Multi-
scale Combinatorial Grouping (MCG) algorithm [5] to ex-
tract instance-level masks. Fan et al. [11] propose an end-
to-end SID network based on the object detection model
FPN [28], with a segmentation branch to segment the salient
instances.

Unlike these existing SID methods, we propose in this
paper to train a weakly-supervised network, which only re-
quires image-level class and subitizing labels.

The work presented in this paper extends our BMVC
oral paper [45] in three aspects. First, we provide a more
comprehensive literature survey on the weakly supervised
salient instance detection task and other relevant works. Sec-
ond, we note that the earlier method [45] typically suffers
from the salient instance incompleteness problem, due to the
noise generated in both salient object detection and bound-
ary detection branches. To address this problem, we propose
a Cross-layer Attention module here to learn boundary and
centroid features, and a self-supervised Progressive Train-
ing Scheme to reduce the noise in the salient object detec-
tion branch. Third, we perform more experiments to analyze
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the properties of our method and show its effectiveness over
existing state-of-the-art approaches.

2.2 Salient Object Detection

SOD methods aim at detecting salient objects in a scene
without differentiating the detected instances. Liu et al. [30]
formulate the SOD task as a binary segmentation problem
for segmenting out the visually conspicuous objects of an
image via color and contrast histogram based priors.

Traditional methods propose to leverage different hand-
crafted priors to detect salient objects, e.g., image colors
and luminance [1], global and local contrast priors [37,8],
and background geometric distance prior [57]. Recently,
deep learning based SOD methods achieve superior per-
formances on the standard SOD benchmarks [57,27,39,19,
47,8]. Among them, several methods explore boundary in-
formation for salient object detection. Xu et al. [56] pro-
pose a CRF-based architecture to refine boundaries of both
deep features and saliency maps in a coarse-to-fine manner.
Some methods [74,71,53,42] propose to formulate saliency
and edge detection with two network branches as multi-task
learning. Feature fusion strategies have also been widely ex-
plored in salient object detection. DSS [17], DGRL [48], and
MINet [35] integrate multi-level features in the top-down
direction. In GBMPM [66] and PAGE-Net [51], multi-level
saliency features are fused in both top-down and bottom-
up directions, to detect salient objects of varying scales.
F3Net [52] and PFPN [46] propose to fuse features progres-
sively, to enrich saliency features with recurrent feedback
information. Attention mechanism has also been exploited
to reweigh multi-scale features in order to suppress noise
and enhance context learning, via dynamic weight decay
scheme [13], mutual relation learning of object parts [6],
gate-based interference control [69], and spatial-/channel-
wise attentions on different features [68]. In particular, He
et al.[16] propose to leverage numerical representation of
subitizing to enrich spatial representations of salient objects.
These methods are typically benefited from the powerful
learning ability of deep neural networks as well as large-
scale annotated ground truth data.

To alleviate the data annotation efforts, many weakly-
supervised SOD methods are proposed, by investigating dif-
ferent approaches of generating pseudo saliency labels. A
method leverage subitizing information alone for refining
saliency prediction Some methods [61,65,31] propose to
use traditional SOD methods to generate pseudo labels for
training deep saliency models. Some other methods [47,60]
propose to train weakly-supervised deep models using ob-
ject class labels and class activation maps (CAMs) [70].
There are also some methods [26,64] that propose to com-
bine pre-trained contour networks with segment propos-

als [26] or scribbles [64] to generate pseudo labels for train-
ing saliency detection networks.

However, existing weakly-supervised SOD methods
cannot be directly applied to our problem, as class labels
along do not provide instance-level information. In this pa-
per, we propose to use class and subitizing labels to train our
SID model.

2.3 Noise Reduction

Noise commonly exists in a weakly-supervised setting, typ-
ically when the task is a pixel-level prediction and the su-
pervision is provided at the image-level. Existing methods
typically rely on auxiliary full-annotated labels (referred
to as clean labels) or pre-trained models to regularize the
noise. Hu et al. [18] formulate it as a multi-task learning
problem, in which the networks trained on a small set of
clean labels can help regularize the noise in the networks
trained on a large set of weak labels. Zhang et al. [63] pro-
pose a noise-aware method for learning a disentangled clean
saliency detector from noisy labels. Lu et al. [32] propose a
sparse learning model to learn the noise statistics from over-
segmented superpixels, while Zhu et al. [73] propose to filter
out noisy segment proposals with low matching scores. Both
methods rely on additional pre-trained models for noise re-
duction.

Unlike the above methods, we do not leverage clean la-
bels or pre-trained proposals as assistances. We achieve this
goal by training our salient object detection branch in a pro-
gressive manner, via model refreshing and pseudo label re-
generation.

3 Methodology

Class labels are widely explored in weakly-supervised SOD
methods for learning to localize candidate objects, based
on the pixel-level semantic affinity derived from the net-
work responses to the class labels. However, class labels
lack instance-level information, causing over- and under-
detection when salient instances are from the same category.
We note that subitizing, which is a cheap image-level label
that denotes the number of salient instances of a scene, can
serve as a complementary supervision to the class labels to
provide instance-related information. Hence, we propose to
use both class and subitizing labels to address our weakly-
supervised SID problem. To this end, we propose a weakly-
supervised SID network (WSID-Net), as shown in Figure 2.

The proposed WSID-Net has three branches:

1. A Saliency Detection Branch for locating candidate
salient objects. This saliency detection branch is based
on Deeplab [7] by modifying its last layer for binary
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prediction. We propose a novel Progressive Training
Scheme (PTS) to self-correct the noise coming from the
weak labels and the corresponding noise learned by this
saliency branch.

2. A Centroid Detection Branch for detecting the cen-
troids of salient instances, where subitizing knowledge
is utilized in a novel loss function to provide regulariza-
tion on the global number of instance centroids.

3. A Boundary Detection Branch for delineating
salient instance boundaries, where a novel Boundary En-
hancement (BE) module is introduced to resolve the dis-
continuity problem of detected boundaries.

Finally, we propose a novel Cross-layer Attention (CA)
module for the Centroid Detection Branch and Boundary
Detection Branch to learn the context information for de-
tecting centroids and boundaries, respectively.

3.1 Centroid Detection Branch

Detecting object centroids is crucial to separating object in-
stances in a weakly-supervised scheme. Unlike existing se-
mantic (instance) segmentation methods [2,34,72,9,73,24]
that detect the centroids based on network responses to the
class labels, we propose to introduce subitizing information
to explicitly supervise the salient centroid detection process.

3.1.1 Centroid-based Subitizing Loss

It has been shown that penalizing the centroid loss [2,34]
helps cluster local pixels with high semantic affinities. How-
ever, this typically fails when salient instances from the
same object category have varying shapes and appearances.
The reason is that the clustering process of local pixels
lacks global saliency supervision. Hence, we introduce the
centroid-based subitizing loss LSU to resolve this problem.
We use subitizing to explicitly supervise the number of pre-
dicted centroids, which is implicitly related to the learned
offset vectors as Lsu is back-propagated to the centroid de-
tection branch during training, to guide the centroid-aware
pixel clustering process. The detailed formulation is dis-
cussed below.

The Centroid Detection Branch predicts an offset vector
map V ∈ RW×H×2, where W ×H denotes the spatial size
of the map, and each 2D vector vi ∈ V indicates the vertical
and horizontal distances of the ith pixel from its associated
instance centroid. We follow [2] to iteratively derive V as:

vm+1
i = vmi + vvmi +pi , (1)

where pi is the coordinates of the ith pixel, m is the itera-
tion number, and vmi + pi indexes the the current centroid
that the offset of the ith pixel points to. Ideally, Eq. 1 would
converge within a few iterations when vm+1

i = vmi and the

offset of the centroid is zero, and yields a set of centroids
that represent the instances. Pixel i can then be assigned to
its corresponding centroid cn by measuring its distance from
the centroid, as described by:

ci→n = argmin
n

‖vi + pi − pcn‖. (2)

We then use the saliency map S of the saliency detection
branch to filter out non-salient instances by computing their
IoU = (SIn ∩ S)/SIn > θ, to obtain a set of saliency
instances SI∗ = {SI1,SI2, ...,SIT∗}, where T ∗ repre-
sents the number of predicted salient instances. Finally, we
use MSE to measure Lsu as:

Lsu =MSE(T ∗, T ), (3)

where T is the subitizing ground truth, and T ∗ denotes the
number of predicted centroids extracted from the offset vec-
tors of the pixels in the salient region. Note that the loss Lsu
is back-propagated to update the offset vectors only in the
salient region, which avoids the learning process of instance
centroid detection being distracted by the non-salient back-
ground. The gradient δ of Lsu is calculated as:

δ =
1

K
· ∂Lsu
∂V∗

, (4)

where V∗ are the offset vectors in the salient region, and K
is the total number of offset vectors in V∗.

Figure 3 visualizes the results from centroid detection
and the corresponding instance segmentation, with and with-
out using the centroid-based subitizing LSU loss function.
We can see that the network groups the two dogs into one
when not using LSU , as these two dogs have similar appear-
ances and lie next to each other (Figure 3(b,e)). By intro-
ducing LSU , the network is able to predict a correct number
of centroids, and generate reasonable salient instance masks
compared with the ground truth (Figure 3(c,f)).

3.1.2 Network Structure

We adopt the image-to-image translation scheme, where our
network outputs a 2D centroid map, in which the value of
each pixel location indicates the offset vector to its instance
centroid. The bottom part of Figure 2 shows the network
structure of our centroid detection branch. Given an input
image, we first extract multi-scale backbone features f1 to
f5 and feed them to the Cross-layer Attention (CA) modules
with boundary-aware features for joint refinement (to be dis-
cussed in Section 3.3). We then fuse the high-level features
to obtain fh: fh = Conv(Concat(f4

∗, f5
∗)), which is fur-

ther fused with the low-level features to produce the centroid
map V: V = σ(Conv(Conv(Concat(fh, f1

∗, f2
∗, f3

∗)))).
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Fig. 2: Pipeline overview. Our SID model is trained using only image-level class and subitizing labels. It has three syner-
gic branches: (1) a Boundary Detection Branch for detecting object boundaries using class discrepancy information; (2) a
Saliency Detection Branch for detecting objects using class consistency information; and (3) a Centroid Detection Branch
for detecting salient instance centroids using subitizing information. A random walk method is further applied to fuse these
information to obtain a final salient instance mask.

(a) input
image

(b) centroid
(w/o LSU )

(c) centroid
(w/ LSU )

(d) ground
truth

(e) instance mask
(w/o LSU )

(f) instance mask
(w/ LSU )

Fig. 3: Visualization of the centroid detection branch with
and without LSU . Using class labels alone fails to train the
network to detect instance centroids (denoted by red stars)
if they have similar appearances (b), resulting in wrong seg-
mentations (e). In contrast, our proposed subitizing loss can
segment these salient objects in instance-level (f), by learn-
ing to identify the correct number of salient instances (c).

3.2 Boundary Detection Branch

Boundaries provide strong cues for separating salient in-
stances. Unlike fully-supervised SID methods that learn
boundary-aware information based on pixel-level ground
truth masks, we propose the Boundary Enhancement mod-
ule to leverage the Canny prior [20] to delineate continuous
instance boundaries.

3.2.1 Boundary Enhancement (BE) Module

We apply a random walk algorithm to search a salient in-
stance from a centroid to its boundary. However, it may

fail when part of the boundary is discontinuous as the ran-
dom walk algorithm will also search the region outside the
boundary. Hence, we propose the BE module to incorporate
the edge prior for learning continuous instance boundaries,
as shown in Figure 4. Specifically, we first extract low-level
features along the horizontal and vertical directions from the
input image, by two 1 × 7 and 7 × 1 convolution layers.
These low-level features are then fed into three Residual
Blocks [15] for feature refinement, which are further con-
catenated with enriched edges computed from the Canny op-
erator [20]. To compute the final enriched boundary features,
another 1×1 convolution layer is applied.

C
o

n
v

 1
×

7
,

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

C
a

n
n

y

In
p

u
t 

Im
a

g
e C

o
n

v
 1
×

1
, 

8

E
n

h
a

n
c

ed
 

B
o

u
n

d
a

ry
F

e
a

tu
re

s

C
o

n
v

 1
×

1
, 

1

C
a

n
n

y

H
o

ri
zo

n
ta

l 
B

o
u

n
d

a
ry

F
e

a
tu

re
s

V
e

rt
ic

a
l 

B
o

u
n

d
a

ry
F

e
a

tu
re

s

C
o

n
v

 7
×

1
,

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

R
e

s
B

lo
c

k,
 

1
2

8

C
o

n
v

 1
×

1
, 

1

C
o

n
v

 1
×

1
, 

8

Fig. 4: Boundary Enhancement (BE) module.

Figure 5 visualizes two examples of boundary detection
and the corresponding salient instance detection with and
without the BE module. We can see that our BE module
helps detect the boundaries between objects, which is cru-
cial to salient instance segmentation.
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input
image

boundary
(w/o BE)

instance mask
(w/o BE)

boundary
(w/ BE)

instance mask
(w/ BE)

Fig. 5: Visualization of the boundary detection branch with
and without the BE module, which shows the effectiveness
of our proposed BE module in mining continuous boundary
information for separating salient objects of same classes.

3.2.2 Network Structure

The top part of Figure 2 shows the architecture of the
boundary detection branch. Given an input image I, the
backbone network produces multi-scale features (f1 to f5),
each of which is enhanced by a CA module (to be dis-
cussed in Section 3.3) before they are concatenated and
computed to predict the boundary map. We also feed the
input image into the BE module to obtain enhanced edge
features fb. The output boundary map B is then computed
as: B = σ(Conv(Concat(f1

∗, ..., f5
∗, fb1, fb2))), where σ

is the sigmoid activation function.

3.3 Cross-layer Attention (CA) Module

Detecting instance centroids and boundaries are two highly
coupled sub-tasks, i.e., they can influence each other and fur-
ther affect the SID performance. To effectively learn these
two sub-tasks, we propose the Cross-layer Attention (CA)
module for refining backbone features before they are used
for these two sub-tasks. Its design is based on two obser-
vations. First, low-level features contain high-resolution but
noisy information for delineating salient instance bound-
aries, while high-level features have low-resolution but ro-
bust information for salient instance localization. Second,
since salient instances may have various shapes and they
may correspond to different class labels, we need to model
both long-range spatial and cross-channel contextual infor-
mation. Unlike existing dual attention mechanisms [54,12]
that only enhance the feature representation capacity of one
fixed layer, our CA module first incorporates a Cross-layer
Feature Mixing (CFM) unit to enhance the communica-
tion across different levels of backbone features and then
uses multiple Mutual Attention (MA) units to learn hierar-
chical channel-wise and spatial-wise attentive features for
each sub-task. The CFM unit shares its parameters to al-
low information exchanges across the boundary and centroid
branches. Figure 6 shows the module structure.
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Fig. 6: Cross-layer Attention (CA) module.

3.3.1 Structure of CFM Unit

Figure 7 shows the structure of the CFM unit. f1 to f5 are
the features from the pyramid layers of the ResNet back-
bone. We first upsample f2, f3, f4, and f5 such that the
given feature maps have the same resolution, and apply 1×1
convolution on the five feature maps such that they have the
same channel depth (256). We get features f1

′
to f5

′
that

have the same shape for the following operation. We then
apply CFM on the pyramid features to generate cross-layer
features. CFM is implemented via a concatenation-split-
concatenation operation on the feature channels. We con-
catenate features f1

′
to f5

′
as fc, with 1280 (256×5) chan-

nels. The split-concatenation operation could be considered
as a reshape-transpose-reshape process. We reshape channel
dimension of fc to 2 dimensions (i.e., [5, 256]), transpose it
to [256, 5], and then flatten it to 1280. Finally, we concate-
nate the features before/after CFM, and feed these concate-
nated features to 1×1 convolutional filters to generate the
final enhanced features (f1

′′
to f5

′′
).
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Fig. 7: Cross-layer Feature Mixing (CFM) unit.

3.3.2 Structure of MA Unit

Figure 8 shows the structure of our MA unit. The top and
bottom branches are channel-wise and spatial-wise atten-
tion blocks, respectively. Specifically, given the input fea-
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tures fn
′′

, we compute the channel-wise attention features
Fc as:

Fc = σ(MLP (AvgPoolc(fn
′′
)) +MLP (MaxPoolc(fn

′′
))),

(5)

where MaxPoolc and AvgPoolc denote two channel-wise
pooling operations, and MLP is the multi-layer perception
with one hidden layer to generate the attention features. We
also compute the spatial-wise attention features Fs as:

Fs = σ(Conv7×7([AvgPools(fn
′′
);MaxPools(fn

′′
)])),

(6)

where Conv7×7 is a convolutional layer with kernel size 7.
The final attention features fn∗ are then computed as:

fn
∗ = fn

′′
×Fc + fn

′′
×Fs, (7)

where × denotes the dot product operation, and + is the
element-wise summation operation.
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Fig. 8: Mutual Attention (MA) unit.

Figure 9 shows the effectiveness of the proposed CA
module in enhancing the boundary and centroid detection
performances.

input
image

boundaries
(w/o CA)

centroids
(w/o CA)

instance mask
(w/o CA)

ground
truth

boundaries
(w/ CA)

centroids
(w/ CA)

instance mask
(w/ CA)

Fig. 9: Illustration on how the CA module benefits both
boundary and centroid tasks. We can see that the CA module
influence both the continuity of the detected boundaries and
the accuracy of detected centroids.

3.4 Progressive Training Scheme (PTS)

Weak annotated labels would inevitably introduce noise into
the learning process. To reduce the noise, previous works
propose to use temporal ensemble learning [23,44] in a
semi-supervised setting, where latent knowledge learned
from labeled data can be applied to noisy unlabeled data.
We extend this idea in our weakly-supervised setting. Since
we do not have fully-annotated data, we explore this ensem-
ble learning strategy in a progressive self-supervised man-
ner, i.e., by reciprocally training the salient object detec-
tion branch using newly predicted salient instance maps.
It mainly contains two iterative steps: pseudo label genera-
tion, and model refreshing. Figure 10 shows the overview of
the proposed Progressive Training Scheme, and Algorithm 1
summarizes the main steps.

3.4.1 Pseudo Label Generation

Since we do not have any fully-annotated labels to learn
a noise-free representation, we propose to use our WSID-
Net as a pseudo-label generator and refine its salient object
detection branch in a self-supervised manner. This is be-
cause the output of our WSID-Net has more accurate bound-
aries with the help of other two branches, compared with its
salient object detection branch. On the other hand, the re-
trained saliency detection branch can further boost the per-
formance of our WSID-Net due to the improved salient ob-
ject localization. To this end, we first forward the WSID-Net
to generate salient instance masks, and use them as the ini-
tial pseudo training labels to update the network parameters
of the salient object detection branch. In the next training
iteration, we update the pseudo training labels using the re-
trained WSID-Net.

3.4.2 Model Refreshing

Before we update the pseudo training labels in the next iter-
ation, we need to refresh our salient object detection branch.
Note that we do not have any clean data (fully-annotated la-
bels in our case) that can be used for learning noise-free fea-
tures. It is possible that our model may overfit the noise in
the pseudo labels and converge to a local minimum. To avoid
these problems, we adopt the Exponential Moving Average
method to update the model parameters with a weighted sum
of model parameters in the current and former iterations. We
define ωr as the model weight in iteration r, and the model
refreshing is formulated as:

ωr+1 = αωr−1 + (1− α)ωr, (8)

where α is the smoothing hyper-parameter that balances the
contributions of model parameters from different iterations.
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Initial
Pseudo

Labels (ρr = 1)

Saliency
Detection

Model (ωr = 1)

Regenerated
Pseudo

Labels (ρr = 2)

Saliency
Detection

Model (ωr = 2)

Regenerated
Pseudo

Labels (ρr = 3)

Saliency
Detection

Model (ωr = 3)
generate

Initialize the weight

train train generate

Model
Refreshing

train

output for Initializing 
the weight

following 
iterations of 
progressive 

training

input

(r = 4, 5, …)

α × ωr = 1
(1- α) × ωr = 2

Fig. 10: Progressive Training Scheme for our saliency detection branch. Each training iteration in the dashed box contains
two steps, model refreshing and pseudo label regeneration, leading the model to correct the noise in a self-supervised manner.

Algorithm 1 : Progressive Training Scheme (PTS).

Input: Initial pseudo label ρ1, initial model weight ω1, training itera-
tions R, and training epochs E per iteration

Output: Final trained model weight ωf
1: for r = 1 to R do
2: for e = 1 to E do
3: update model weight ωr via backpropagating gradients

and learning from pseudo labels ρr
4: end for
5: if r > 2 then
6: update model weight ωr using Eq. 8
7: end if
8: generate pseudo label ρr+1 using WSID-Net, where the

saliency branch uses model weight ωr , and further uses CRF to
refine the boundaries of the pseudo labels

9: end for
10: ωf = ωR

(a) Input (b) Ground truth (c) Centroids (d) Boundaries

(e) Saliency map
(w/o PTS)

(f) Instance mask
(w/o PTS)

(g) Saliency map
(w/ PTS)

(h) Instance mask
(W/ PTS)

Fig. 11: Illustration of how the proposed PTS benefits
our task progressively in a self-supervised manner. While
WSID-Net initially fails due to inaccurate detection (e), the
output of WSID-Net (f) is still better than (e) with the help
of the centroid (c) and boundary (d) detections. By using
(f) to further refine the saliency detection branch (g), our
WSID-Net could also enjoy the performance boost (h).

Figure 11 shows one example of how the proposed PTS
benefits our task in a self-supervised manner: given a chal-
lenging input image of two persons leaning on each other
(a), our saliency detection branch fails to detect the majority
of the salient regions due to the diverse foreground appear-
ance and cluttered background (e), which further causes the
failure of our WSID-Net (f). However, since (f) is still bet-
ter than (e) due to the help of the centroid and boundary
detections ((c) and (d)), after we have applied the proposed
PTS training strategy, we can see that our saliency detection
branch enjoys a better performance in detecting the saliency

region as a whole (g), leading to an accurate salient instance
detection result (h).

4 Experiments

4.1 Implementation Details

We implement WSID-Net on the Pytorch framework [36].
Both training and testing are performed on a PC with an i7
4GHz CPU and a GTX 1080Ti GPU. CRF is used to gen-
erate or refine pseudo labels. The hyper parameters of CRF
are set as w1 = 4.0, w2 = 3.0, σα = 49.0, σβ = 5.0,
and σγ = 3.0. We choose ResNet50 as the backbone for
all three branches in WSID-Net. The backbone are initial-
ized as in [40]. Input images are resized to 512×512 res-
olution. To minimize the loss function, we use the SGD
optimizer with batch size 6 and initial learning rate 0.01.
The learning rate decreases following poly policy (lritr =

lrinit(1− itr
maxitr

)γ). We train our WSID-Net for 5 epoches.
The proposed PTS training is further applied to refine the
saliency detection branch for another 6 iterations, of which
each iteration contains 8 epoches (R and E in Algorithm 1).
α in Eq. 8 is set to r

r+1 , where r is the current iteration index.
The learning rate begins with 0.0001, and the decay follows
the aforementioned poly policy.

4.2 Training and Evaluation Details

Datasets. Our WSID-Net is trained on two kinds of image-
level labels, class and subitizing. We use the class labels
from the PASCAL VOC 2012 [10] dataset (which is orig-
inally proposed for semantic and instance segmentation) to
train our network. For subitizing labels, we count the num-
bers of salient instances from the ILSO [25] dataset, and
train our network on this training set. For the proposed
progressive training scheme, we augment the training data
by using the unlabeled training data from C2SNet [26].
For testing, following the existing fully-supervised SID
method [11], we perform SID evaluations on the test set of
ILSO [25].

Training and Inference. We train the boundary and cen-
troid branches together with different losses, and train the
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Table 1: Quantitative evaluation of our method against six baseline methods and state-of-the-art fully-supervised SID meth-
ods. For the compared methods, we show their original tasks, supervision types, training labels and auxiliary pre-trained mod-
els in the 2nd to 5th columns. SID, SOD, OD, and SIS represent salient instance detection, salient object detection, object
detection and semantic instance segmentation, respectively. FS and WS denote Fully-Supervised and Weakly-Supervised.
Best performances among the weakly-supervised methods are marked in red.

Methods Original
task

Supervision
types Training labels Auxiliary

models
mAP

@0.5↑
mAP

@0.7↑

MSRNet [25] SID FS
object-level and

instance-level pixel masks MAP [62], MCG [5] 65.3% 52.3%

MAP [62] SID FS instance-level bounding boxes N/A 56.6% 24.8%
S4Net [11] SID FS instance-level pixel masks N/A 82.2% 59.6%

C2SNet [26] SOD WS unlabeled images
CEDN [58],

MAP [62], MCG [5] 41.1% 25.4%

NLDF [33] SOD WS object-level pixel masks MAP [62], MCG [5] 45.5% 24.5%
DeepMask [38] OD WS instance-level bounding boxes N/A 37.1% 20.5%

PRM+D [9] SIS WS class, subitizing labels MCG [5] 49.6% 31.2%
IRN [2] SIS WS class labels N/A 57.1% 37.4%

Ours SID WS class, subitizing labels N/A 68.3% 51.7%

saliency branch independently. We train the centroid de-
tection branch using the proposed centroid-based subitizing
loss together with the centroid loss introduced in [2,34]. We
train the boundary detection branch using the boundary loss
introduced in [3,2]. To train the saliency detection branch,
we follow existing weakly-supervised SOD methods to use
pseudo masks derived from class labels. Specifically, we
first compute class activation maps via [70]. We then feed
these maps together with the input image to a Conditional
Random Field (CRF) [22] to generate pseudo object maps,
and use these pixel-level pseudo labels to train the saliency
detection branch. We further utilize the proposed PTS with
model refreshing and self-generated pseudo labels to retrain
the saliency detection branch.

During inference, given an input image, WSID-Net first
computes the centroids, boundaries, and saliency maps.
We first obtain the initial saliency instance map SI∗ via
the saliency map and centroid map, as discussed in Sec-
tion 3.1.1. We then use the boundary map to refine the initial
saliency instance map with the random walk algorithm. The
transition probability matrixM is defined as:

M = D−1Hχ, (9)

where H is the affinity matrix of the learned boundary map
B, and D is a diagonal matrix relating to H. The element in
H is defined as: hk = 1 − max

k∈Πij
B(xk), where Πij is a set

of pixels on the line between boundary pixels xi and xj . In
addition, Hχ is the self production of H with power χ for
affinity distillation, and D’s diagonal element Dii equals to∑
hχij for summarizing values of Hχ by row. The random

walk algorithm for instance-wise saliency value propagation

is conducted as:

vec(SI∗n) =Mivec(SI∗n(1− B)), (10)

where vec() refers to the vectorization of the matrix, and
SI∗n is our final saliency instance map.

Evaluation Metrics. We use the mean Average Precision
(mAP) metric [14] to evaluate the SID performance. The
IoU is set to 0.5 and 0.7 for this metric.

4.3 Comparing to the State-of-the-art Methods

As we are the first to propose a weakly-supervised SID
method, we compare our method to 2 existing fully-
supervised state-of-the-art SID methods: S4Net [11] and
MSRNet [25]. We also prepare the following baselines
from related tasks for evaluation. We choose 6 state-of-the-
art weakly-supervised methods, with two from the SOD
task C2SNet [26] and NLDF [33]; one from the SID task
MAP [62]; one from the object detection (OD) task, Deep-
Mask [38]; and two from the Semantic Instance Segmenta-
tion task, PRM+D [9] and IRN [2]. We adapt them by adding
different post-processing strategies to these methods for de-
riving instance-level saliency maps from their original out-
puts, or modifying their networks and retrain them using our
training data. Details are summarized as follows:

– We choose “MCG [5] + MAP [62]” as the post-
processing strategy for the weakly-supervised SOD
methods (i.e., C2SNet [26] and NLDF [33]), inspired by
the fully-supervised SID method MSRNet [25]. It has
been shown in [25] that MCG [5] can be used to produce
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segments given the contour maps as input and assign
these segments with confidence scores. Segments with
low confidences can then be filtered out by MAP [62].
Considering that both C2SNet [26] and NLDF [33] learn
to produce contour maps, we find this post-process strat-
egy suitable for weakly-supervised SOD methods with
contour predictions.

– We select CRF [22] as the post-processing strategy
for fully-supervised bounding-box-based SID method
MAP [62], due to the fact that CRF is a popular graphi-
cal model used as post-processing for boosting segmen-
tation performance. Considering that MAP [62] can gen-
erate instance-level bounding boxes, CRF can be used to
obtain instance maps by refining the boundaries, which
gives a performance boost of 3%.

– We choose a weakly-supervised SOD method as post-
processing for filtering out non-salient segments pro-
duced by DeepMask [38], as DeepMask [38] is a class-
agnostic object detection method that is not aware
of saliency information. We choose WSS [47] as the
weakly-supervised SOD method for a fair comparison,
as it performs closely to our Saliency Detection Branch
in our preliminary experiment. This strategy improves
the performance by 5%.

– IRN [2] produces class-specific instance segmentation
maps, which do not have saliency information. To adapt
its results from class-specific to class-agnostic, we re-
move the CAM in their method and directly use their
centroid and boundary maps to obtain instance maps. We
then utilize WSS [47] to select salient instances.

– PRM+D [9] is trained with class and per-class subitiz-
ing labels to predict semantic instance maps. However,
this method can only response to the instances with pre-
defined class labels. To adapt it to class-agnostic, we
merge its per-class outputs (originally 20 output maps
for 20 classes) into one class-agnostic map by adding an
additional convolutional layer, and then retrain it using
our training data.

Quantitative Comparisons. We quantitatively evaluate our
method in Table 1†. It is worth noting that our method
achieves a significantly better performance of about 20%
over the second-place weakly-supervised baseline, on the
mAP@0.7 metric (which is very challenging as it requires
the IoU value to be over 70%). These results show that our
method achieves the best performance using just two image-
level labels.

† As of today, the codes for MSRNet [25] are still not available.
Following [11], we directly copy the numbers reported in [25] to our
submission for a quantitative comparison.

Qualitative Comparisons. We further qualitatively evaluate
our method with fully-supervised methods and baselines in
Figure 12. The visual results verify that our method is able
to delineate the instance boundaries clearly, and output ac-
curate numbers of segmented salient instances directly for
different scenes, i.e. scenes with single instances, small in-
stances, (non-)adjacent instances, similar/varied instances,
and cluttered contents. In contrast, the compared methods
exhibit different limitations as follows:

– PRM+D and IRN fail to detect integral instances with
inferior detected boundaries (e.g., rows 1, 13).

– C2SNet and NLDF tend to recognize texture boundaries,
causing fragmented instances (e.g., rows 10, 12, 14).

– DeepMask and S4Net suffer from the over-detection
problem, as they fail to distinguish instance proposals
belonging to the same instance (e.g., rows 2, 3, 13).

– MAP is a bounding-box based method. It fails to get
clear instance boundaries even post-processed by CRF
(e.g., rows 1, 2, 7).

Overall, our method outperforms all these baselines, as
a result of the centroid-based subitizing loss, the carefully
designed BE and CA modules, and the progress training
scheme.

4.4 Internal Analysis and Discussions

4.4.1 Ablation Study of Network Design

We begin by investigating the effectiveness of the proposed
network design, including the proposed Boundary Enhance-
ment module, Cross-layer Attention module, Progressive
Training Scheme, and LSU loss. Table 2 shows the results.
We can see that the SID performance would drop if we re-
move any of the components from the network. This shows
that these components can help boost the performances
of the saliency, centroid and boundary detection sub-tasks,
which play a vital role in detecting salient instances. Fig-
ures 3, 5, and 9 provide additional visual comparisons to
demonstrate the effectiveness of these components.

Table 2: Ablation study of network design.

method mAP@0.5↑ mAP@0.7↑

Ours (w/o CA, BE, PTS, LSU ) 57.1% 37.4%
Ours (w/o CA) 64.3% 48.4%
Ours (w/o BE) 65.2% 48.9%

Ours (w/o LSU ) 62.1% 46.9%
Ours (w/o PTS) 63.9.% 47.2%

Ours 68.3% 51.7%
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Fig. 12: Qualitative results of our method, compared with existing fully-supervised methods (S4Net[11] and MAP [62]) and
modified baselines (PRM+D [9], DeepMask [38], C2SNet [26], NLDF [33], and IRN [2]). Refer to Section 4.3 and Table 1
on how we modify and train these baselines, in order to carry out a fair comparison.



12 Xin Tian* et al.

4.4.2 Evaluation of the CA Module

We then investigate our CA module on its design choices
and intermediate feature visualization.

Design Choices: we examine our CA module against its
variants, as reported in Table 3. First, we study the bene-
fits of the CFM and MA units. Row 1 shows that remov-
ing the CFM unit leads to a performance drop, due to the
reduction in communication enhancement among the pyra-
mid feature layers. Row 2 also shows a performance drop
without the MA unit, as we are not able to learn long-range
dependencies. Second, we study the connection styles (par-
allel and cascade) of the attention mechanisms in the MA
unit. Rows 3, 4 and 5 show that parallel connection of the
spatial- and channel-wise attentions performs better than the
cascade one. This may be because cascade connection may
lose the learned context information of the former attention
mechanism.

Table 3: Evaluation of different designs of the CA module.
s→c represents using spatial-wise attention before channel-
wise attention, while c→s represents the reverse connection.
The best performance among different designs is marked in
bold.

method mAP@0.5↑ mAP@0.7↑

w/o CL, w/ parallel MA 66.1% 49.5%
w/ CL, w/o parallel MA 66.8% 50.2%

w/ CL, w/ cascade (s→c) MA 67.4% 51.4%
w/ CL, w/ cascade (c→s) MA 67.2% 51.0%
Ours (w/ CL, w/ parallel MA) 68.3% 51.7%

Feature Visualization: we visualize multi-level inter-
mediate features learned by our CA module in Figure 13.
Given multi-level backbone features f1 ∼ f5 (1st row),
the CFM unit in the CA module first generates multi-
level mixed context features f∗1 ∼ f∗5 (2nd row), which
are then used for learning boundary features f∗1⇒B ∼
f∗5⇒B (3rd row) and centroid features f∗1⇒V ∼ f∗5⇒V
(4th row), respectively. First, we can see that our CFM unit
is able to highlight the salient objects via aggregating multi-
level backbone features, as shown in row 2. Second, the
boundary-aware feature maps have high responses in dif-
ferent regions as shown in row 3, which suggests that de-
termining the instance boundaries also require multi-level
features. Third, in row 4, the visualization of centroid-aware
features generally corresponds to the centroid map V , where
the instance boundaries are generally highlighted, and pixel
values of the centroid locations are close to zero. Overall,
our proposed CA module is able to help adapt the backbone
features into different task-specific features.

In addition, our CA module differs from CAM in two
aspects. First, CAM is conditioned on the class label in-
put, but our CA module learns class-agnostic attentions from

pseudo labels. Second, CAM is unable to delineate clear
boundary and instance information, while our CA module
can learn this information to complement the CAM for de-
tecting salient instances, as shown in Figure 14.

4.4.3 Evaluation of the BE Module

We conduct ablation studies to investigate the effect of the
Canny filter in the Boundary Enhancement (BE) module.
We compare our BE module to two ablated versions: re-
moving the Canny filter from the BE module (denoted as
BE Module w/o Canny), and using Canny filter only (de-
noted as Canny Only). Results are shown in Table 4. We can
see that our method outperforms both ablated versions. The
Canny filter is used to enrich the high-level boundary fea-
tures with low-level edge information. Without the Canny
filter, the BE module may not detect small boundaries accu-
rately. However, relying only on the Canny filter cannot ob-
tain high-level boundary information, which typically leads
to over-segmentation of instances.

Table 4: Evaluation on the Canny filter. Best performances
are marked in bold.

method mAP@0.5↑ mAP@0.7↑

BE Module w/o Canny 65.0% 49.3%

Canny Only 63.7% 48.0%

Ours 68.3% 51.7%

4.4.4 Evaluation of Parameter settings for the Canny Filter

We empirically set the thresholds (i.e., θup and θlow for con-
trolling the connectivity and density of the detected edges)
in the Canny operator to be automatically determined by the
channel median of the gray-scale image. We find that this
works well in our experiments.

To further investigate how these two thresholds affect the
performance, we provide both qualitative and quantitative
comparisons between our threshold choice with two manual
choices described below:

– Large range: we manually set θlow and θup to 30 and
200, respectively, so that the Canny operator is sensitive
to textures and can detect more edges.

– Small range with large values: we manually set θlow and
θup to 230 and 260, respectively, so that only structural
edges of objects can be detected.

Table 5 shows that both manual strategies would degrade
the performance. Figures 15 and 16 show two scenes that
these manual strategies fail. In row 2 of Figure 15, if the
Canny edge map provides insufficient object structure infor-
mation and the learned boundaries are partially weak, our
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input: I f1 f2 f3 f4 f5

inferred SI∗ f1∗ f2∗ f3∗ f4∗ f5∗

predicted B f∗1⇒B f∗2⇒B f∗3⇒B f∗4⇒B f∗5⇒B

predicted V f∗1⇒V f∗2⇒V f∗3⇒V f∗4⇒V f∗5⇒V

Fig. 13: Visualization of the multi-level intermediate features learned by our CA module.

input: I inferred SI∗ ground truth predicted S predicted B predicted V CAM CA: f∗2⇒B CA: f∗3⇒V

Fig. 14: Visual comparison between CAM and CA features. As shown in column 7, CAM itself cannot delineate the bound-
aries between two persons and locate their centroids. Hence, we only use CAM in the saliency detection branch. Our CA
module successfully learns this information for complementing CAM.

Table 5: Evaluation on different parameter settings for the
Canny operator in the BE module. Best performances are
marked in bold.

settings of θlow and θup mAP@0.5↑ mAP@0.7↑

θlow = 30, and θup = 200 67.4% 50.8%

θlow = 230, and θup = 260 66.9% 50.2%

Ours 68.3% 51.7%

method fails to separate nearby instances. In row 1 of Fig-
ure 16, the Canny edge contains extensive non-structure tex-
tures that affect the learned boundaries, making it difficult

for the saliency values to propagate to the target boundaries
from the centroid for determining the instance. In contrast,
our choice successfully detects accurate instances since we
can obtain high-quality boundaries, as shown in rows 1 and
3 in Figure 15, and rows 2 and 3 in Figure 16. This visually
verifies that the Canny edge generated under our automatic
setting is more stable to provide pleasant instance bound-
aries.

4.4.5 Evaluation of PTS

We study how PTS helps improve the saliency detection per-
formance iteration by iteration. Figure 17 and 18 show the
progressively improving results over six training iterations.
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(a) input: I (b) predicted S (c) predicted V (d) GT

(e1) canny edge 1
(θlow = 30 & θup = 200)

(f1) predicted B
(using canny edge 1)

(g1) inferred SI∗

(using canny edge 1)

(e2) canny edge 2
(θlow = 230 & θup = 260)

(f2) predicted B
(using canny edge 2)

(g2) inferred SI∗

(using canny edge 2)

(e3) canny edge 3
(automatic generated

θlow & θup)

(f3) predicted B
(using canny edge 3)

(g3) inferred SI∗

(using canny edge 3)

Fig. 15: Visual comparison between results using different
parameters of the Canny operator.

Intermediate results in both figures verity that our PTS does
not only penalize the background distraction but also re-
cover the integral objects. Overall, our PTS is able to re-
duce noise and improve the performance in a self-supervised
manner.

4.4.6 Evaluation of the Saliency Detection Branch

Since our WSID-Net relies on the performance of the
saliency detection branch in detecting salient objects, we are
particularly interested in the question of to what extent that
the quality of the saliency object detection maps may af-
fect the SID performance. To answer this question, we re-
place the outputs of our weakly-supervised salient object
detection branch with five state-of-the-art full-supervised
SOD methods (i.e., DSS [48], PiCANet [29], EGNet [67],
ITSD [71], and SCRN [55]), as well as the ground truth
saliency maps, to generate the salient instance maps. Results
are reported in Table 6. We can see that the performance gen-
erally increases when inferring salient instance masks using
the fully-supervised SOD results. This is because the fully-
supervised methods are more robust to background distrac-
tions and able to delineate full object masks. However, we
can still observe that the performance would not be saturated

(a) input: I (b) predicted S (c) predicted V (d) GT

(e1) canny edge 1
(θlow = 30 & θup = 200)

(f1) predicted B
(using canny edge 1)

(g1) inferred SI∗

(using canny edge 1)

(e2) canny edge 2
(θlow = 230 & θup = 260)

(f2) predicted B
(using canny edge 2)

(g2) inferred SI∗

(using canny edge 2)

(e3) canny edge 3
(automatic generated

θlow & θup)

(f3) predicted B
(using canny edge 3)

(g3) inferred SI∗

(using canny edge 3)

Fig. 16: Visual comparison between results using different
parameters of the Canny operator.

input
image

Salmap
(iter. 1)

Salmap
(iter. 2)

Salmap
(iter. 3)

Salmap
(iter. 4)

Salmap
(iter. 5)

Salmap
(iter. 6)

ground
truth

Fig. 17: Visualization of intermediate results over six train-
ing rounds. The dashed red regions denote background dis-
traction noise. We can see that the noise is progressively sup-
pressed over the iterations.

even if we feed the ground truth saliency maps to generate
the SID maps. This is because the instance boundaries are
still very difficult to detect, especially when these salient in-
stances overlap each other. This suggests that developing an
effective method for detecting salient instance boundaries in
a weakly-supervised setting would be a promising solution.
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input
image

Salmap
(iter. 1)

Salmap
(iter. 2)

Salmap
(iter. 3)

Salmap
(iter. 4)

Salmap
(iter. 5)

Salmap
(iter. 6)

ground
truth

Fig. 18: Visualization of intermediate results over six train-
ing rounds. The dashed red regions denote missed salient
parts that are progressively recovered over the iterations.
We can see that the detected objects are becoming more and
more complete.

Table 6: Investigation on how the SID performance is af-
fected by the quality of the SOD maps. We show the perfor-
mances by replacing the saliency maps (denoted Salmap)
predicted by our saliency detection branch with saliency
maps computed by different fully-supervised state-of-the-art
SOD methods.

method mAP@0.5↑ mAP@0.7↑

Salmap → GT 72.1% 58.3%
Salmap → DSS [48] 67.2% 54.3%

Salmap → PiCANet [29] 67.9% 53.8%
Salmap → EGNet [67] 69.3% 54.9%
Salmap → ITSD [71] 70.0% 56.4%
Salmap → SCRN [55] 69.2% 55.9%

Ours 68.3% 51.7%

4.4.7 Evaluation of CRF in the Saliency Branch

CRF is used to produce pseudo ground truth saliency maps
given the coarse CAM activation maps, so that the saliency
detection branch can learn more accurate boundary informa-
tion. Figure 19 shows that CRF helps produce more accurate
pseudo ground truth saliency maps. We also provide quan-
titative results in Table 7, from which we can see that the
performance drops without CRF refinement.

Table 7: Evaluation of the effect of CRF to the saliency
branch. Best performances are marked in bold.

method mAP@0.5↑ mAP@0.7↑

w/ CRF 62.4% 43.1%

w/o CRF (Ours) 68.3% 51.7%

input image CAM CRF result ground truth

Fig. 19: Visualization of the effect of CRF on refining the
coarse CAM.

5 Conclusion and Future Work

In this paper, we have proposed the first weakly-supervised
SID method, called WSID-Net, which is trained on class
and subitizing labels. Our WSID-Net learns to predict ob-
ject boundaries, instance centroids, and salient regions. By
using the proposed Boundary Enhancement module, Cross-
layer Attention module, Progressive Training Scheme, and
centroid-based subitizing loss, our method can identify and
segment salient instances effectively. Both quantitative and
qualitative experiments demonstrate the effectiveness of the
proposed method compared with baseline methods.

Our method does have its limitation. It may fail when
the images are taken with improper exposures. Therefore,
our method cannot detect salient objects/instances with low
contrast to their surroundings. As a future work, we are cur-
rently exploring the use of a discriminative network of gen-
erative adversarial learning to overcome this limitation. We
would also like to extend this work for videos.
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