Skip to main content
Log in

Network Adjustment: Channel and Block Search Guided by Resource Utilization Ratio

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

It is an important problem to design resource-efficient neural architectures. One solution is adjusting the number of channels in each layer and the number of blocks in each network stage. This paper presents a novel framework named network adjustment which considers accuracy as a function of the computational resource (e.g., FLOPs or parameters), so that architecture design becomes an optimization problem and can be solved with the gradient-based optimization method. The gradient is defined as the resource utilization ratio (RUR) of each changeable module (layer or block) in a network and is accurate only in a small neighborhood of the current status. Therefore, we estimate it using Dropout, a probabilistic operation, and optimize the network architecture iteratively. The computational overhead of the entire process is comparable to that of re-training the final model from scratch. We investigate two versions of RUR where the resource usage is measured by FLOPs and latency. Experiments on standard image classification datasets and a few base networks including ResNet and EfficientNet demonstrate the effectiveness of our approach, which consistently outperforms the pruning-based counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai, H., Zhu, L., & Han, S. (2018). Proxylessnas: Direct neural architecture search on target task and hardware. arXiv:1812.00332

  • Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu,J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., & Lin, D. (2019a). MMDetection: Open mmlab detection toolbox and benchmark. arXiv:1906.07155

  • Chen, Y., Yang, T., Zhang, X., Meng, G., Pan, C., & Sun, J. (2019b). Detnas: Neural architecture search on object detection. arXiv:1903.10979

  • Chen, Z., Niu, J., Xie, L., Liu, X., Wei, L., & Tian, Q. (2020). Network adjustment: Channel search guided by flops utilization ratio. In: Computer Vision and Pattern Recognition

  • Chu, X., Zhang, B., Xu, R., & Li, J. (2019). Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv:1907.01845

  • Dong, X., & Yang, Y. (2019). Network pruning via transformable architecture search. arXiv:1905.09717

  • Dong, X., Huang, J., Yang, Y., & Yan, S. (2017). More is less: A more complicated network with less inference complexity. In: Computer Vision and Pattern Recognition

  • Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv:1803.03635

  • Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). Dropblock: A regularization method for convolutional networks. arXiv:1810.12890

  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition

  • Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T. J., & Choi, E. (2018). Morphnet: Fast & simple resource-constrained structure learning of deep networks. In: Computer Vision and Pattern Recognition

  • Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., & Sun, J. (2019). Single path one-shot neural architecture search with uniform sampling. arXiv:1904.00420

  • Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks. In: Computer Vision and Pattern Recognition

  • Han, S., Mao, H., & Dally, W. J. (2015a). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv:1510.00149

  • Han, S., Pool, J., Tran, J., & Dally, W. (2015b). Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition

  • He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In: International Conference on Computer Vision, IEEE

  • He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for accelerating deep convolutional neural networks. arXiv:1808.06866

  • He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Computer Vision and Pattern Recognition

  • Hinton, G., Vinyals, O., & Dean, J. (2015) Distilling the knowledge in a neural network. arXiv:1503.02531

  • Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., & Tan, M., Wang W, Zhu Y, Pang R, Vasudevan V, et al. (2019). Searching for mobilenetv3. arXiv:1905.02244

  • Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016) Deep networks with stochastic depth. In: European Conference on Computer Vision. Springer

  • Huang, G., Liu, Z., Van, Der Maaten, L., & Weinberger, K. Q. (2017) Densely connected convolutional networks. In: Computer Vision and Pattern Recognition

  • Huang, Z., & Wang, N. (2018). Data-driven sparse structure selection for deep neural networks. In: European Conference on Computer Vision

  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  • Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems

  • Larsson, G., Maire, M., & Shakhnarovich, G. (2016). Fractalnet: Ultra-deep neural networks without residuals. arXiv:1605.07648

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Li, H., Kadav, A., Durdanovic, I., Samet, H, & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv:1608.08710

  • Li, X., Chen, S., Hu, X., & Yang, J. (2019). Understanding the disharmony between dropout and batch normalization by variance shift. In: Computer Vision and Pattern Recognition

  • Liu, H., Simonyan, K., & Yang, Y. (2018a). Darts: Differentiable architecture search. arXiv:1806.09055

  • Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In: International Conference on Computer Vision

  • Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2018b). Rethinking the value of network pruning. arXiv:1810.05270

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition

  • Lym, S., Choukse, E., Zangeneh, S., Wen, W., Erez, M.&, Shanghavi, S. (2019). Prunetrain: Gradual structured pruning from scratch for faster neural network training. arXiv:1901.09290

  • Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch

  • Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural architecture search via parameter sharing. arXiv:1802.03268

  • Qiao, S., Lin, Z., Zhang, J.,&Yuille, A. L. (2019). Neural rejuvenation: Improving deep network training by enhancing computational resource utilization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 61–71

  • Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence, 33, 4780–4789

  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

    Article  MathSciNet  Google Scholar 

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: Computer Vision and Pattern Recognition

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  • Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.

    MathSciNet  MATH  Google Scholar 

  • Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., & Marculescu, D. (2019) Single-path nas: Designing hardware-efficient convnets in less than 4 hours. arXiv:1904.02877

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In: Computer Vision and Pattern Recognition

  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016a). Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv:1602.07261

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016b). Rethinking the inception architecture for computer vision. In: Computer Vision and Pattern Recognition

  • Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv:1905.11946

  • Tan, M., & Le, Q. V. (2021). Efficientnetv2: Smaller models and faster training. arXiv:2104.00298

  • Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019) Mnasnet: Platform-aware neural architecture search for mobile. In: Computer Vision and Pattern Recognition, pp. 2820–2828

  • Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. In: Computer Vision and Pattern Recognition

  • Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles of relatively shallow networks. In: Advances in Neural Information Processing Systems

  • Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T.,&Chen, K., et al. (2020). Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12965–12974

  • Wang, J., Bai, H., Wu, J., Shi, X., Huang, J., King, I., Lyu, M., & Cheng, J. (2020a). Revisiting parameter sharing for automatic neural channel number search. Advances in Neural Information Processing Systems 33

  • Wang, X., Yu, F., Dou, Z. Y., Darrell, T., & Gonzalez, J. E. (2018). Skipnet: Learning dynamic routing in convolutional networks. In: European Conference on Computer Vision

  • Wang, Y., Zhang, X., Xie, L., Zhou, J., Su, H., Zhang, B., & Hu, X. (2020b). Pruning from scratch. In: AAAI Conference on Artificial Intelligence, pp 12273–12280

  • Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems

  • Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., & Keutzer, K. (2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In: Computer Vision and Pattern Recognition

  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural networks. arXiv:1611.05431

  • Xu, Y., Xie, L., Zhang, X., Chen, X., Shi, B., Tian, Q., & Xiong, H. (2020) Latency-aware differentiable neural architecture search. arXiv preprint arXiv:2001.06392

  • Yu, J., & Huang, T. (2019). Network slimming by slimmable networks: Towards one-shot architecture search for channel numbers. arXiv:1903.11728

  • Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv:1605.07146

  • Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2017). Learning transferable architectures for scalable image recognition. arXiv:1707.07012

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFB1301100), National Natural Science Foundation of China (61772060, U1536107, 61472024, 61572060, 61976012, 61602024), and the CERNET Innovation Project (NGII20160316). We would like to thank Dr. Xin Chen for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jifeng Dai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xie, L., Niu, J. et al. Network Adjustment: Channel and Block Search Guided by Resource Utilization Ratio. Int J Comput Vis 130, 820–835 (2022). https://doi.org/10.1007/s11263-021-01566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-021-01566-5

Keywords

Navigation