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Abstract
The deep image prior showed that a randomly initialized network with a suitable architecture can be trained to solve inverse
imaging problems by simply optimizing it’s parameters to reconstruct a single degraded image. However, it suffers from two
practical limitations. First, it remains unclear how to control the prior beyond the choice of the network architecture. Second,
training requires an oracle stopping criterion as during the optimization the performance degrades after reaching an optimum
value. To address these challenges we introduce a frequency-band correspondence measure to characterize the spectral bias of
the deep image prior, where low-frequency image signals are learned faster and better than high-frequency counterparts. Based
on our observations, we propose techniques to prevent the eventual performance degradation and accelerate convergence.
We introduce a Lipschitz-controlled convolution layer and a Gaussian-controlled upsampling layer as plug-in replacements
for layers used in the deep architectures. The experiments show that with these changes the performance does not degrade
during optimization, relieving us from the need for an oracle stopping criterion. We further outline a stopping criterion to
avoid superfluous computation. Finally, we show that our approach obtains favorable results compared to current approaches
across various denoising, deblocking, inpainting, super-resolution and detail enhancement tasks. Code is available at https://
github.com/shizenglin/Measure-and-Control-Spectral-Bias.

Keywords Spectral bias · Deep image prior

1 Introduction

This paper considers the problem of inverse imaging, where
the task is to recover the original image from the one that is
degraded due to noise, blur, down-sampling and other hard-
ships (Bertero andBoccacci 1998). This problem is ill-posed,
as a degraded image may correspond to several original
images. Hence, reconstructing a unique solution that fits the
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degraded image is difficult, or impossible even, without some
prior knowledge about the image or the degradation (Engl
et al. 1996).

The classical computer vision approaches to inverse imag-
ing minimize a regularized cost function to incorporate some
prior knowledge into the solution, e.g., (Hahn et al. 2011;
Dong et al. 2015c; Arias et al. 2011; Lin et al. 2008). Despite
their excellent results, it remains difficult to handcraft an
appropriate regularizer and choose a suitable regularisation
parameter for a given application because expert knowledge
is often required (Ribes and Schmitt 2008; Jin et al. 2017).
Rather than providing the priors as input, deep neural net-
works offer the ability to learn image priors from numerous
image samples, e.g., (McCann et al. 2017; Lucas et al. 2018;
Arridge et al. 2019). By doing so, the image priors are grad-
ually encoded into network parameters during training and
reused in the inference phase. Despite its promise, the depen-
dence on image pairs seen during training may result in poor
generalization of the learned priors Zhang et al. (2017, 2018).

Contrary to the belief that learning on numerous image
samples is necessary to obtain useful image priors, Ulyanov
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et al. (2018, 2020) show that the architecture of a genera-
tor network itself contains an inductive bias independent of
learning,where a deep image prior can be implicitly captured
by a particular network architecture like an encoder-decoder.
To leverage the deep image prior for solving inverse imaging
problems, a suitably designed network is optimized, starting
from a random initialization and a random input, on just a sin-
gle degraded image through gradient descent. The network is
able to output a well-restored image, when its optimization
is stopped at the right time, with an early-stopping oracle.
The literature studying the deep image prior mostly focuses
on designing network architectures (Heckel and Hand 2019;
Cheng et al. 2019; Chen et al. 2020b; Ho et al. 2020). How-
ever, it remains unclear how to control the deep image prior
beyond the choice of the network architecture and prevent
performance degradation when an oracle to stop the opti-
mization at peak performance is unavailable. In this paper,
we study the deep image prior from a complementary per-
spective to address these problems.

As our first contribution, we study the deep image prior
through measuring its spectral bias (Sect. 3). We find that
both the networks of the original deep image prior (Ulyanov
et al. 2018, 2020) and its variants (Heckel and Hand 2019;
Cheng et al. 2019) exhibit a spectral bias during optimization,
where the low frequency components of the target images
are learned better and faster than the high-frequency compo-
nents. We believe that the spectral bias leads the networks
to capture deep image priors during optimization, beyond
the choice of the architecture, since natural images are well
approximated by low-frequency components according to
the power spectrum (Simoncelli and Olshausen 2001). We
measure the spectral bias with a new Frequency-Band Cor-
respondence metric and pinpoint why the performance of the
deep image prior gradually degrades after reaching a peak
during the optimization.

We observe that deep image prior performance degrades
when high-frequency noise is learned beyond a certain level,
which could affect the high-frequency image details. As
our second contribution, we therefore propose to prevent
performance degradation by restricting the ability of the
network to fit high-frequency noise (Sect. 4). We bound
the layers of our network with Lipschitz regularization and
introduce a Lipschitz-variant of batch normalization to accel-
erate and stabilize the optimization. We also observe that
widely used upsampling methods, like bilinear upsampling,
over-smooth, which introduces a bias towards lower frequen-
cies. This slows down the learning of the desired higher
frequencies, delaying optimization convergence. Therefore,
we propose an upsampling method which allows controlling
the amount of smoothing and is capable of balancing per-
formance and convergence. Besides these two methods for
controlling spectral bias, we further introduce a simple auto-
matic stopping criterion to avoid superfluous computation.

Lastly, we demonstrate the effectiveness of our method on
four inverse imaging applications and one image enhance-
ment application: image denoising, JPEG image deblocking,
image inpainting, image super-resolution and image detail
enhancement (Sect. 5). The experiments show that our
method no longer suffers from eventual performance degra-
dation during optimization, relieving us from the need for
an oracle criterion to stop early. The automatic stopping
criterion avoids superfluous computation. Our method also
obtains favorable restoration and enhancement results com-
pared to current approaches, across all tasks.

2 RelatedWork

2.1 Inverse Problems in Imaging

An inverse problem in imaging is the task of recovering an
unknown image x∗ ∈ X from its noisymeasurements y ∈ Y ,
where y = A(x∗) + e. Here e ∈ Y denotes some noise
in the measurements. The mapping A : X → Y denotes
the forward operator, which could represent various inverse
problems, such as an identity operator for image denoising,
convolution operators for image deblurring, filtered subsam-
pling operators for super-resolution, etc.Since the operatorA
has a non-trivial null space, these inverse problems are often
ill-posed. Meaning that the solution is unstable with respect
to the measurements, or there are several possible solutions
that are consistent with the measurements (Bertero and Boc-
cacci 1998). To solve these ill-posed inverse problems, we
review the classical knowledge-driven approaches and the
recent data-driven approaches with deep neural networks.

The classical knowledge-driven approaches assume some
prior knowledge about the image x∗, such as smoothness (Tit-
terington 1985; Katsaggelos 1989) or sparsity (Daubechies
et al. 2004; Elad et al. 2010). These approaches typically
aim to find a solution that fits well with the measurements
y and is consistent with the assumed prior knowledge. To
do so, an optimization criterion is used, such as the mini-
mization of the l2 error norm ||y − A(x∗)||2. Then, prior
knowledge is incorporated into the solution process through
regularization. Specifically, Rudin et al. (1992) leveraged
the fact that in natural images nearby pixels tend to have
similar values, and proposed a denoising model with the
total variation regularization, which promotes smoothness
while preserving edges in images. Based on the finding that
natural images can be generally coded by structural primi-
tives such as edges and line segments (Olshausen and Field
1996), sparse representation-based regularization models,
e.g., (Elad et al. 2010; Daubechies et al. 2004; Portilla 2009),
have been successfully used in image deconvolution tasks. A
natural image often has many repetitive local patterns, and
thus a local image patch always has many similar patches
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across the image (Efros andLeung1999). This non-local self-
similarity prior was later employed in many inverse imaging
problems such as image denoising (Dabov et al. 2007), image
deblurring (Kindermann et al. 2005) and super-resolution
(Protter et al. 2008). Later,Mairal et al. (2009) proposed non-
local sparse regularization models which combine the local
sparsity and the non-local self-similarity into a unified frame-
work, where the similar image patches are simultaneously
coded to improve the robustness of the inverse reconstruc-
tion. Despite their excellent results, a downside of these
approaches is that their handcrafted regularization only cap-
tures a fraction of the prior knowledge about the image,
limiting the inverse imaging ability of their models (Ribes
and Schmitt 2008; Jin et al. 2017).

Data-driven approaches leverage large collections of train-
ing data to directly compute regularized reconstructions
with deep neural networks. The central idea is to create a
paired dataset of ground truth images x and corresponding
measurements y, which can be done by simulating (or phys-
ically implementing) the forward operator A on clean data.
Subsequently, one can train a network to learn a direct map-
ping from measurements y to the ground truth images x .
Most approaches have focused on designing a proper net-
work architecture to learn a high-performing mapping. For
example, Dong et al. (2015b) learned a convolutional neu-
ral network for image super-resolution, and Jain and Seung
(2008) learned a convolutional neural network for image
denoising. Mao et al. (2016) demonstrated convolution neu-
ral networks with encoder-decoder architectures perform
better for restoring degraded images. Zhang et al. (2017) pro-
posed to use the convolution neural networks with residual
blocks and skip connections to further improve image super-
resolution and denoising performance. Ledig et al. (2017)
proposed a generative adversarial network for image super-
resolution to recover the finer texture details. Li et al. (2018)
proposed a computationally efficient frequency domain deep
network for image super-resolution. Despite their excellent
results, these approaches are sensitive to changes or uncer-
tainty to the forward operator A. For image denoising, for
example, a specific network needs to be trained for each
considered noise level. To remedy this issue, Lefkimmiatis
(2018) proposed a universal denoising network with non-
local filtering layers, which is able to handle a wide range
of noise levels using a single set of learned parameters.
Recently, Chen et al. (2020a) proposed a plugin module,
which can be inserted into any backbone networks. This plu-
gin allows the once trained network to be used for multiple
forward operators in various image processing tasks, includ-
ing image smoothing, image denoising, image deblocking,
image enhancement and neural style transfer. Wan et al.
(2020) proposed a triplet domain translation network for
restoring old photos, in which multiple degradations exist
and are mixed. Such supervised approaches typically per-

form very well but rely on a paired dataset of ground truth
images and their measurements, which may not be available.
In this work, we consider the unsupervised inverse imaging
approach with a deep image prior.

2.2 Deep Image Prior

The deep image prior, introduced by Ulyanov et al. (2018,
2020), revealed the remarkable ability of untrained convolu-
tion neural networks to solve challenging inverse problems
by optimizing on just a single degraded image. Let fθ :
Z → Y denote a convolutional neural network parameter-
ized by θ ∈ Θ , which transforms a tensor/vector z ∈ Z to a
degraded image y ∈ Y . Without training, the network fθ has
no knowledge about high-level semantic concepts such as the
categories of objects in the images. However, the deep image
prior found that the network does contain knowledge about
the low-level structure of natural images. This prior knowl-
edge is sufficient to model the conditional image distribution
p(x∗|y0). Here, the unknown image x∗ has to be deter-
mined given ameasurement y0, which allows solving inverse
problems in imaging. Specifically, we consider energy min-
imization problems of the type, θ∗ = argmin

θ

E( fθ (z); y0)
where E( fθ (z); y0) is a task-dependent data term. For inverse
imaging problems, y0 is a noisy, low-resolution, compressed,
or occluded image. The minimizer θ∗ is obtained using
an optimizer such as gradient descent, starting from a ran-
dom initialization of the parameters. Given a minimizer θ∗
obtained by N steps of gradient descent, we obtain a restora-
tion result by y∗= fθ∗(z). Competitive performance is even
feasible when stopping the network optimization with an
early-stopping oracle.

The deep image prior has inspiredmany to investigate how
to expand its applications (Gandelsman et al. 2019; Kattamis
et al. 2019; Rasti et al. 2021; Vu et al. 2021; Dai et al. 2020),
how to improve its performance (Mataev et al. 2019; Chen
et al. 2020b; Liu et al. 2019;Asim et al. 2019; Zukerman et al.
2020), how to understand its workings (Ulyanov et al. 2018,
2020; Cheng et al. 2019; Heckel and Soltanolkotabi 2020),
and how to avoid its early-stopping oracle (Cheng et al. 2019;
Heckel and Hand 2019).

Liu et al. (2019) and Mataev et al. (2019) employ extra
regularization to boost performance of the deep image prior.
Chen et al. (2020b); Ho et al. (2020) leverage neural archi-
tecture search to obtain a better deep image prior network
for improved performance. Asim et al. (2019) employ deep
image prior on image patches, which improves its recon-
struction ability. Zukerman et al. (2020) improve the deep
image prior by using a backprojection loss function. These
approaches improve results, but still require an oracle to
determine when to stop the optimization. In this paper, we
boost the performance of the deep image prior by controlling
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its spectral bias, and achieve an automatic stopping with a
new criterion.

An intuition provided by Ulyanov et al. (2018, 2020) for
the workings of the deep image prior is that their network fol-
lows an encoder-decoder architecture, which imposes strong
priors about natural images. Heckel and Soltanolkotabi
(2020) further attribute the effects of the deep image prior to
the special architecture with convolutions using fixed inter-
polating filters. Alternatively, Cheng et al. (2019) explain
the deep image prior from a Bayesian perspective by show-
ing that the model behaves like a stationary Gaussian process
at initialization. These works have focused on studying the
workings of deep image prior, mostly from the view of the
network architecture design. In this paper, we provide a com-
plementary perspective. We show that the spectral bias leads
the networks to capture deep image priors during optimiza-
tion, beyond the choice of the architecture. We do so by
introducing a metric, the Frequency Band Correspondence,
which offers a spectral measurement of the deep image prior,
revealing the low-frequency natural image signals are learned
faster and better than high-frequency noise signals.

A downside of the original deep image prior (Ulyanov
et al. 2018, 2020) is the requirement of an oracle to determine
when to stop the optimization as its performance degrades
after reaching a peak over the iterations of optimization.
Heckel andHand (2019) tackle this problemwith an underpa-
rameterized network, at the expense of reduced performance.
Cheng et al. (2019) avoid the need for early stopping with
a Bayesian approach, at the expense of slower convergence.
In this paper, we prevent the performance degradation over
iterations with Lipschitz-controlled spectral bias and enable
stopping the optimization automatically at an appropriate
moment with a new criterion.

A few recent works (Rahaman et al. 2019; Xu et al. 2020;
Chakrabarty and Maji 2019) have paid attention to the spec-
tral bias as well. Rahaman et al. (2019) and Xu et al. (2020)
analyze the spectral bias for classification problems with
supervised learning, not for generative models with a sin-
gle image. Chakrabarty and Maji (2019) exposed the deep
image prior has a spectral bias by adding noise at different
frequencies to the image and analyzing the optimization tra-
jectories from different noisy versions of the input. However,
they do not measure and control the bias. In this work, we
propose a frequency band correspondence to measure the
spectral bias of the deep image prior. We further control the
bias to address the performance degradation problem and the
performance-convergence trade-off problem.

3 Measuring Spectral Bias

The literature attributes the ability of an untrained network
to obtain restored results from degraded target images to

a particular architecture, like an encoder-decoder, which
imposes strong priors about natural images. In this work,
we show that the spectral bias leads the networks to capture
deep image priors during optimization, beyond the choice
of the architecture. We do so by introducing a metric, the
Frequency Band Correspondence, which offers a spectral
measurement of the deep image prior, revealing the low-
frequency natural image signals are learned faster and better
than high-frequency noise signals, and pinpoint why inverse
images can be restored, when the network optimization is
stopped at the right time.

3.1 Frequency-Band CorrespondenceMetric

TheproposedFrequency-BandCorrespondencemetric exam-
ines the input-output correspondence in the frequency
domain across several frequency bands. For this metric, let
{θ(1), . . . , θ (T )} denote the trajectory of T steps of gradi-
ent descent in the parameter space and let { fθ(1) , . . . , fθ(T )}
denote the corresponding trajectory in the output space.
We propose to analyze the Fourier spectrum of the output
images fθ(t),t=1,...,T to show the convergence dynamics of
different frequency components of the target image. The
Fourier spectrum of the output image fθ(t) is obtained by
the Fourier transform F , denoted as F{ fθ(t)} for step t . We
similarly compute the Fourier transform for the target image
y0, denoted asF{y0}. We then compute an element-wise cor-
respondence between both transforms as:

Hθ(t) = F{ fθ(t)}
F{y0} . (1)

Intuitively, Hθ(t) denotes to what extent any deep image prior
at step t corresponds with image y0 in the frequency domain;
the closer the values are to 1, the higher the correspondence.
As we are interested in the spectral bias of the deep image
prior, we divide the correspondence map into N subgroups
corresponding to N non-overlapping frequency bands. Since
the correspondence map is symmetrical around the center,
we group it according to the distance between its elements
and its center uniformly, as illustrated in Fig. 1. To transform
the 2D map to the 1D one, we compute the mean correspon-
dence for each band, denoted as H̄ (n)

θ(t) , with n=1, . . . , N . The

value of H̄ (n)

θ(t) indicates the convergence dynamics of differ-
ent frequency components of a target image.

3.2 Spectral Measurement of Deep Image Prior

We use this metric, denoted as FBC (Frequency-Band Corre-
spondence), to measure how well the network output of the
deep image prior corresponds to the target image as a func-
tion of N frequency bands. Since the FBCmetric is computed
with the Fourier transform, our spectral measurement in this
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Fig. 1 Frequency-band correspondence metric. The left image
shows an example of correspondence map H , which is computed
according to Eq. (1). We divide the correspondence map into N sub-
groups corresponding to N non-overlapping frequency bands. Since
the correspondence map is symmetrical around the center, we group it
according to the distance between its elements and its center uniformly,
as illustrated by the right image when N = 5. Different colors rep-
resent different subgroups. We compute the mean correspondence for
each band to transform the 2D map to the 1D one

section denotes the frequency domain analysis. The Fourier
transform F in Eq. (1) is implemented by means of the 2D
Fast Fourier Transform, where only the magnitude is used to
compute the Fourier spectrum of the images. We use N=5
where frequency bands are divided into the lowest frequency,
low frequency, medium frequency, high frequency and the
highest frequency. We perform empirical studies on three
inverse imaging problems, including image denoising, JPEG
image deblocking, and image inpainting with the ‘peppers’,
‘F16’ and ‘Lena’, images fromDabov et al. (2007). For image
denoising, the image is degraded by adding Gaussian noise
with two noise levels, including σ=15 and σ=25, following
Zhang et al. (2017). FollowingDong et al. (2015a), we evalu-
ate JPEG image deblocking on the gray-scale images, which
are compressed with the PIL encoder into two quality levels,
including quali t y=10 and quali t y=20. For image inpaint-

ing, the image is degraded by using a central region mask,
and we consider two hole-to-image area ratios, including
ratio=0.1 and ratio=0.25, following Pathak et al. (2016).
Following Ulyanov et al. (2018, 2020), the network input is
given as uniform noise between 0 and 0.1 with a depth of 32
by default.

First, we investigate whether the network of the original
deep image prior exhibits any form of spectral bias in its
optimization. We take the Encoder-Decoder architecture of
Ulyanov et al. (2018, 2020) and show its Frequency Band
Correspondences for five frequency bands in Fig. 3. The
plot highlights, across inverse imaging problems, degrada-
tion levels and degraded images, low frequencies are learned
quickly and with high correspondence to the target image,
while high frequencies are learned slower and with lower
correspondence. We conclude that the network of the deep
image prior during optimization has a spectral bias towards
low frequencies, and this bias helps to obtain a meaningful
performance. The peak PSNR (Peak Signal-to-Noise Ratio)
performance of the deep image prior occurs when the low-
est frequencies are matched nearly perfect, while the highest
frequencies are less used, as marked by the green vertical
lines. However, once the higher frequencies obtain a higher
correspondence, the performance starts to drop.

Next, we show that such a spectral bias is not specific to
the Encoder-Decoder architecture. We take two other archi-
tectures as examples, as shown in Fig. 2. We remove the
Encoder from the Encoder-Decoder architecture of Ulyanov
et al. (2018, 2020) to obtain the Decoder. We additionally
remove the upsampling layers from the Decoder to get the
ConvNet. Figure 4a and b show that both Decoder and Con-
vNet learn low-frequency components of the target image
faster than learning the high-frequency components, reaf-
firming the spectral bias.We also observe thatConvNet learns
high-frequency components faster than Decoder by remov-

... ... ......

Encoder-Decoder ConvNetDecoder

... ...

convolutionstrided convolution upsampling

...

Fig. 2 Network architectures used in the experiments of Sect. 3. The
Encoder-Decoder is the same as the one used in Ulyanov et al. (2020).
Specifically, the encoder contains five convolution blocks. Each block
contains two convolution layers with the kernel size of 3 × 3 and the
channel number of 128. The stride of the first convolution layer is set
to 2 to achieve the downsampling. The decoder contains five bilinear
upsampling layers, where each upsampling layer is followed by a con-

volution layer with the kernel size of 3 × 3 and the channel number of
128. Each convolution layer is followed by a batch normalization layer
and a leaky ReLU layer with a negative slope of 0.01. The Decoder is
obtained by removing the encoder from the Encoder-Decoder. Remov-
ing the upsampling layers from theDecoder finally leads to theConvNet
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Fig. 3 Spectral measurement of the deep image prior on image
denoising, JPEG image deblocking and image inpainting. The network
of the deep image prior (Ulyanov et al. 2020) exhibits a spectral bias
during optimization across inverse inaging problems, degradation lev-

els and degraded images, where lower frequencies are learned faster
and better than high-frequencies. The degraded images can be restored
well when optimizations are stopped at the right time, as marked by the
green vertical lines (Color figure online)
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Fig. 4 Spectral measurement of the deep image prior with different
architectures on image denoising. The spectral bias is not specific to
the Encoder-Decoder architecture of Ulyanov et al. (2020). Alternative
architectures, such as a Decoder and a ConvNet, also exhibit a bias

towards specific image frequencies during optimization. Also, the Con-
vNet learns higher frequencies faster than theDecoder by removing the
upsampling layers, but at the expense of reduced peak performance

ing the upsampling layers, but at the expense of reduced
peak performance. Having established the architecture is not
critical for the deep image prior, we use from now on the
Decoder as the default network architecture to benefit from
a good trade-off between performance and run-time.

Our study provides a clear implication: untrained solu-
tions for inverse imaging problems work by a latent ability
to learn low frequencies faster than learning high frequencies.
As natural images are well approximated by low-frequency
components, degraded images can be restored well when
optimizations are stopped at the right time. The network is
optimized to fit the degraded image, in which higher fre-
quencies consist of both structured high-frequency image
details and random high-frequency noise. The structured
high-frequency image details, that have self-similarity across
the image, are fitted better and faster. However, once the ran-
dom high-frequency noise is fitted over a certain level, which
could affect the structured high-frequency image details, the
output quality degrades. This behavior explains why the per-
formance in the deep image prior degrades when training
longer. Hence, a key enabler for improving the deep image
prior is to control the spectral bias by restricting the fitting of
random high-frequency noise in the output. Our study also
finds that the upsampling layer is beneficial for obtaining
good peak performance, butmay introduce toomuch spectral
bias towards the low frequencies, slowing down the learning
of desired high frequencies. Hence, it’s a feasible way to bal-
ance peak performance and convergence by controlling the
spectral bias in upsampling.

4 Controlling Spectral Bias

We exploit the measured spectral bias to avoid the degra-
dation of performance over iterations and to balance peak
performance and convergence.We do so by controlling spec-
tral biases in the two core layer types of inverse imaging
networks: the convolution layer and the upsampling layer.
We present a Lipschitz-controlled approach for the convolu-
tion and a Gaussian-controlled approach for the upsampling
layer. The approaches are general in their setup,making them
applicable to any network form and scale. Besides these two
methods for controlling spectral bias, we further introduce a
simple stopping criterion to avoid superfluous computation.

4.1 Lipschitz-Controlled Spectral Bias

From the point of view of the frequency domain, the Fourier
spectrum of the network indicates its ability to learn higher
frequencies. Lower frequencies are learned first, while higher
frequencies are learned later in the optimization process. This
implies that the ability of the network to learn higher fre-
quencies is gradually enhanced by optimizing the learnable
layers. Improving the Fourier spectrumof the network is only
achievable through adjusting the spectrum of the learnable
layers. Based on this observation, we aim to upper bound the
Fourier coefficients of the convolutional layers, for the sake
of constraining the Fourier spectrum of the network. We are
able to impose an upper bound on the Fourier coefficients of a
convolution layer by enforcing Lipschitz continuity, accord-
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Fig. 5 Lipschitz-controlled spectral bias for image denoising. Set-
ting the right Lipschitz constant (λ=2) avoids performance decay while
maintaining a high PSNR. Different constants result in different lev-
els of spectral bias. A high constant (λ=3) still incorporates a lot

of high-frequency noise signals, while a low constant (λ=1) fails to
incorporate the important low frequency image signals. With the right
balance (λ=2), we maintain the low frequencies while avoiding the
high-frequency noise signals

ing to Katznelson (2004). Specifically, if a convolution layer
f is Lipschitz continuous, there exists a constant L for any
inputs x, y satisfying ‖ f (x)− f (y)‖ ≤ L‖x − y‖. The min-
imum over all such values satisfying this condition is called
the Lipschitz constant of f , denoted by C . Then the Fourier
coefficients of f , i.e., | f̂ (k)|, is bounded by,

| f̂ (k)| ≤ C

|k|2 . (2)

Further, the Lipschitz constant of a convolution layer is
bounded by the spectral norm of its parameters. Then we
obtain,

| f̂ (k)| ≤ C

|k|2 ≤ ‖w‖sn
|k|2 , (3)

where w is the weight of a convolution layer f , and ‖·‖sn
denotes the spectral norm, which can be approximated rela-

tively quickly using a few iterations of the power method
(Miyato et al. 2018). The power law |k|−2 indicates that
the spectral decay is stronger towards higher frequencies,
which means that learning higher frequencies requires a
higher spectral norm. Thus, we are able to manipulate the
ability of a convolution layer in learning higher frequencies
by upper bounding its spectral norm to a specific value λ

with w
max(1,‖w‖sn/λ)

. Where we leave the weight matrix w

untouched if its spectral norm is lower than λ. Otherwise, we
normalize w by ‖w‖sn/λ.

To accelerate and stabilize the optimization, batch nor-
malization (Ioffe and Szegedy 2015) is often used after
convolution layers. However, we find it is not compatible
with our Lipschitz constraining as its output is invariant to
the channel weight vector norm ‖w‖p, i.e.,

BN (wx/‖w‖p) = BN (wx), (4)
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Fig. 6 Gaussian-controlled spectral bias for image denoising. Vary-
ing the Gaussian kernel by σ controls convergence and performance.
Too small values (σ=0) results in worse performance, while too big
values (σ=1) introduce too much smoothing, slowing down the con-

vergence. With a suitable value (σ=0.5), our upsampling introduces an
appropriate spectral bias, leading to fast convergence and good denois-
ing performance

where x denotes the channel input. We therefore propose a
Lipschitz normalization by exploring the idea of combining
Lipschitz constraining with a special version of batch nor-
malization:mean-only batch normalization.Weonly subtract
out the minibatch means, without dividing by the minibatch
standard deviations. The Lipschitz normalization is defined
as:

LN(w, x) = wx
max(1, ‖w‖sn/λ)

− μ + b, (5)

where μ denotes the channel mean of the pre-activation wx
and b is a scalar bias term. The Lipschitz normalization layer
is inserted between a convolutional layer and a ReLU acti-
vation. With this normalization, the Lipschitz constant of a
convolution layer is bounded by the hyperparameter λ. As a
result, we can manipulate the ability of the network in learn-
ing high frequencies by tuning λ, leading to a controlled
spectral bias of the deep image prior.

4.2 Gaussian-Controlled Spectral Bias

Upsampling is an important operation in network architec-
tures for inverse imaging problems, as it produces high-
resolution outputs from low-resolution inputs. Well-known
approaches such as the bilinear and nearest neighbor upsam-
plinghave a constant smoothing effect (Chakrabarty andMaji
2019;Heckel andSoltanolkotabi 2020).Different tasks, how-
ever, might operate best under different levels of smoothing.
Too strong a smoothing introduces too much spectral bias
towards lower frequencies. This slows down the learning
of the desired higher frequencies, delaying convergence of
optimization (as shown in Fig. 4). Therefore, we propose
an upsampling method which allows controlling the amount
of smoothing and is capable of balancing performance and
convergence.

We first decompose the upsampler into an expansion and
a filtering step. Let xi be the i-th channel of input x . For
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Fig. 7 Automatic stopping
criterion evaluated on image
denoising, JPEG image
deblocking and image
inpainting. The vertical green
line shows the selected iteration
by the proposed stopping
criterion. Across inverse
imaging problems, degradation
levels and degraded images, we
observe the optimization can be
stopped earlier, with a minimal
performance loss compared to a
fixed stop at 10,000 iterations
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Fig. 8 Image denoising. PSNR scores of various methods over multi-
ple iterations for removing additive Gaussian white noise with σ=25.
Compared to (Ulyanov et al. 2020), our method doesn’t suffer from per-
formance degradation, and we can stop the optimization automatically

at an appropriate moment for each image (marked by the green vertical
lines), leading to good PSNR scores. Compared to Heckel and Hand
(2019) and Cheng et al. (2019), we either achieve a faster convergence
or obtain a higher PSNR score

expansion, xi is padded with a “bed of nails” scheme, i.e.,
inserting s − 1 zeros between the pixels of xi along its rows
and columns. Such a “bed of nails” expansion creates a high-
frequency replica of the original signal. To smooth out the
noisy high-frequencies, we perform filtering by convolving
the upsampled signal with an interpolating filter. We use a
Gaussian filter sampled by N (0, σ 2). Hence, we define our
Gaussian upsampling by:

Up(xi ) =↑s (xi ) ∗ Gσ , (6)

where ↑s (xi ) denotes expanding xi with factor s, ∗ is the
convolution operation, Gσ denotes the Gaussian filter. In the
frequency domain, we obtain the Fourier spectrum of our
upsampling by,

F(Up(xi )) = F(↑s (xi )) � F(Gσ ), (7)

where F denotes the Fourier transform, � is the Hadamard
product and F(Gσ )[k]=1/e2π

2σ 2k2 . We manipulate the
Fourier spectrum of our upsampling by choosing different
σ , allowing us to control the spectral bias in the upsampling.
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Fig. 9 JPEG image deblocking. PSNR scores of various methods
when reducing artifacts of a compressed JPEG imagewith quali t y=10.
We again observe that the performance of the deep image prior (Ulyanov
et al. 2020) degrades. Cheng et al. (2019) and Heckel and Hand (2019)

do not suffer from degradation, at the expense of either reduced per-
formance or slow convergence. Our method achieves a good trade-off
between PSNR score and convergence (marked by the green vertical
lines)

4.3 Automatic Stopping Criterion

With the ability to control the spectral bias, we can fix the
number of iterations for network optimization without fear
of performance degradation. As different tasks have differ-
ent levels of convergence, however, using a fixed number of
iterations still leads to redundant optimization. To improve
efficiency, we introduce a simple criterion to automatically
perform early stopping.

It is well known that an image looks blurry when there
is a high amount of low frequencies in its Fourier spectrum.
We exploit this property by computing the blurriness and
sharpness for an output image and use their ratio as the
metric to stop the optimization. In case of a spectral bias,
low frequencies will be learned first, while high-frequencies
will be learned later. Our Lipschitz normalization limits the
ability of the network in learning high frequencies to an
upper bound. Hence, when this upper bound is reached,
the ratio of blurriness to sharpness of the output image will
converge as well. To that end, we design the following mea-
sure:

r( fθ ) =B( fθ )/S( fθ ),

Δr( fθ
t ) =

∣
∣
∣
∣

1

n

n
∑

i=1

r
(

fθ
(t−i)

)

− 1

n

n
∑

i=1

r
(

fθ
(t−n−i)

)
∣
∣
∣
∣
,

(8)

where fθ denotes the output image and fθ (t) denotes an
instance in iteration t . B( fθ ) denotes the blurriness of the
output image y computed using Crete et al. (2007). S( fθ )
denotes the sharpness of the output image y computed
using Bahrami and Kot (2014). r( fθ ) denotes the ratio
of blurriness to sharpness of the output image fθ . Then,
1
n

∑n
i=1 r

(

fθ (t−i)
)

computes themean ratio of output images
from iteration (t − 1) to (t − n), and 1

n

∑n
i=1 r

(

fθ (t−n−i)
)

computes the mean ratio of output images from iteration
(t − n− 1) to (t − 2n). If their absolute difference is smaller
than a constant value ε, the optimization is stopped.

Compared to the ratio r itself, the ratio difference Δr
between optimization iterations is independent of the images.
Since the deep image prior no longer suffers from perfor-
mance degradation with the controlled spectral bias, the ratio
r barely changes when the performance is stable. Thus, we
can set the ratio difference threshold ε to a small value, like
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Fig. 10 Image inpainting. PSNR scores of various methods for pixel
inpainting. We again observe the degradation of performance over iter-
ations for the deep image prior (Ulyanov et al. 2020). Cheng et al.
(2019) and Heckel and Hand (2019) do not suffer from the degradation

problem, at the expense of either reduced performance or slow conver-
gence. Our method achieves a good trade-off between PSNR score and
convergence (marked by the green vertical lines) (Color figure online)
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(a) (b) (c) (d)

Fig. 11 Image denoising. The goal is to remove the additive Gaus-
sian white noise with σ=25. From the top regions masked by the green
rectangles, we observe the method of Cheng et al. (2019) still overfits
some high-frequency noise, while our method does not. From the bot-

tom regions masked by the green rectangles, we observe the method
of Heckel and Hand (2019) has difficulty preserving high-frequency
edges, while our method performs better

0.01. As the main benefit of the auto-stopping is to avoid
redundant computation, it does not directly affect the inverse
imaging performance. Note that the stopping criterion fails
for the original deep image prior (Ulyanov et al. 2018, 2020)
because the high-frequency components of its output image
keeps increasing until the degraded target image is fully fit-
ted.

4.4 Performance Analysis

We empirically analyze the deep image prior with the
Lipschitz-controlled spectral bias, the Gaussian-controlled
spectral bias and the automatic stopping criterion.

Lipschitz-controlled spectral bias. Following the work
ofUlyanov et al. (2018, 2020), we use bilinear upsampling in
this experiment. InEq. (5),λ is the only parameterwhich con-
trols the ability of the network in learning high frequencies.
Finding the best λ for each image is still an open question.
Here we just empirically study three settings, i.e., λ=1,λ=2,
and λ=3. The spectral norm ‖w‖sn is estimated with the
power iteration method (Miyato et al. 2018). The results are
shown in Fig. 5. Setting a suitable constraint (e.g., λ=2)
results in a PSNR curve without performance decay. The
FBC graphs show this is because setting a low Lipschitz con-
stant amplifies the spectral bias. High frequencies are hardly
incorporated at all, while low frequencies still obtain a high

Table 1 Image denoising on CBSD68 for varying σ

15 25 50

Ulyanov et al. (2020)†∗ 30.58 27.84 24.59

Heckel and Hand (2019)† 28.66 26.60 24.06

Cheng et al. (2019)† 30.77 28.08 24.71

Ours 30.80 28.15 24.83

CBM3D (Dabov et al. 2007)†† 33.52 30.71 27.38

CDnCNN (Zhang et al. 2017)†† 33.89 31.23 27.92

FFDNet (Zhang et al. 2018) 33.87 31.21 27.96

Supervised approaches and CBM3D prevail, but our unsupervised
method obtains better PSNR than the deep image prior and its vari-
ants across three noise levels
†Results based on author-provided code
∗Results obtained with oracle stopping
††Results provided by Zhang et al. (2018)

correspondence to the target image. Using a too high con-
straint (e.g., λ=3) results in a similar performance peak and
decay as the original deep image prior. When using a too low
constraint (e.g.,λ=1),we not only suppress high frequencies,
but also the low frequencies, which generally corresponds to
the structure of the image, hampering the performance. We
conclude, utilizing Lipschitz normalization with a suitable
value of λ addresses the problem of performance degrada-
tion.
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Gaussian-controlled spectral bias. Next, we study the
effect of the Gaussian-controlled spectral bias to balance
performance and convergence. We replace the bilinear
upsampling with our Gaussian upsampling and use λ=2 to
maintain the effect of the Lipschitz-controlled spectral bias
on avoiding performance degradation.We consider Gaussian
upsampling with three settings in Eq. (6), σ=0, σ=0.5, σ=1
where the kernel size is fixed to 5× 5. We show the effect of
different settings on the denoising performance and amount
of spectral bias inFig. 6. The smaller the value forσ , the faster
the convergence is reached. However, a too small value e.g.,
σ=0 results in worse performance, because the upsampling
reduces to the “bed of nails” expansion.Avalue ofσ=1 intro-
duces too much smoothing, slowing down the convergence.
With a suitable value, e.g.,σ=0.5, our upsampling introduces
an appropriate spectral bias, leading to fast convergence and
good denoising performance. Furthermore, compared to the
widely used upsampling, like bilinear upsampling (refer to
its performance in Fig. 5), our upsampling achieves a better
trade-off between performance and convergence. We con-
clude our upsampling allows to control the spectral bias,
enabling us to improve the performance of deep image prior
for inverse imaging problems like image denoising.

Table 2 JPEG image deblocking on LIVE1 for varying quality levels

10 20 30

Ulyanov et al. (2020)†∗ 27.52 29.75 31.08

Heckel and Hand (2019)† 26.63 27.65 28.99

Cheng et al. (2019)† 27.59 29.81 31.12

Ours 27.70 29.86 31.14

AR-CNN (Dong et al. 2015a)†† 28.96 31.29 32.67

TNRD (Chen and Pock 2016)†† 29.15 31.46 32.84

DnCNN (Zhang et al. 2017) 29.19 31.59 32.98

Supervised approached prevail, but compared to the unsupervised deep
image prior and its variants, our method obtains better performance in
terms of PSNR
†Results based on author-provided code
∗Results obtained with oracle stopping
††Results provided by Zhang et al. (2017)

Stopping criterion. Finally, we analyze the effect of the
proposed stopping criterion on image denoising, JPEG image
deblocking and image inpainting. For each problem,we eval-
uate on different degradation levels, as specified before in
Sect. 3.2. We use n=100 and ε=0.01 throughout the experi-
ment. We set the fixed stopping iteration to 10,000. We show

(a) (b) (c) (d)

Fig. 12 JPEG image deblocking. The goal is to reduce the artifacts of the compressed JPEG image with quali t y=20. From the regions masked
by the green rectangles, we observe our method performs well, especially when reducing the artifacts and recovering high-frequency image details
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(a) (b) (c) (d)

Fig. 13 Image inpainting. The goal is to reconstruct the 50% missing pixels resulting from a binary Bernoulli mask. From the regions masked by
the green rectangles, we observe our method performs well, especially when recovering high-frequency details

the dynamics of the Peak Signal-to-Noise score and ratio val-
ues in Fig. 7.We observe the stopping criterion is effective, it
reduces the number of required iterations considerably with
only a minimal loss in performance, across inverse imaging
problems, degradation levels, and degraded images. For the
worst performing “F16” image for denoising with σ=25, the
PSNRdrops from31.04 to 30.98when reducing the iterations
from 10,000 to 3,896. We also found that the performance in
terms of PSNR changes less than 0.1 when the ratio differ-
ence threshold ε ranges from 0.001 to 0.1. A bigger threshold
means the optimization stopped earlier.

5 Applications

With the gained ability to control the spectral bias in the deep
image prior, we consider four inverse imaging applications
and one image enhancement application for comparative
evaluation: image denoising, JPEG image deblocking, image
inpainting, image super-resolution and image detail enhance-

Table 3 Image inpainting on CBSD68 for varying ratio

0.1 0.25 0.5

Ulyanov et al. (2020) †∗ 22.78 19.42 17.26

Heckel and Hand (2019)† 21.52 18.67 16.81

Cheng et al. (2019)† 22.83 19.49 17.28

Ours 22.87 19.58 17.36

In terms of PSNR, our method outperforms the deep image prior and
its variants on region-based inpainting, across three hole-to-image area
ratios
†Results based on author-provided code
∗Results obtained with oracle stopping

ment. On all tasks, we compare to the deep image priors of
Ulyanov et al. (2018, 2020), Heckel and Hand (2019) and
Cheng et al. (2019). For reference, we also report the results
obtained by classical methods like (Dabov et al. 2007), and
supervised-learning based methods like (Zhang et al. 2017).

We report our results with the Decoder, introduced in
Sect. 3.2, as our network architecture. Lipschitz normaliza-
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(a) (b) (c) (d)

Fig. 14 Image inpainting. The goal is to reconstruct the missing pixels resulting from a binary region mask. From the regions masked by the green
rectangles, we observe our method performs better than Heckel and Hand (2019) and as good as Cheng et al. (2019)

tion with λ=2 and Gaussian upsampling with σ=0.5 are
combined into the Decoder to achieve a controllable deep
image prior. Network parameters are initialized with He
initialization (He et al. 2015). Our approach works with pop-
ular optimizers such as standard gradient descent and Adam
(Kingma and Ba 2015). Following Ulyanov et al. (2018,
2020), we use Adam with a mini-batch of 1 to optimize our
networks.We setβ1 to 0.9,β2 to 0.999 and the initial learning
rate to 0.001. The network input is a uniform noise between
0 and 0.1 with a depth of 32 by default. Our code will be
released.

5.1 Image Denoising

For the denoising comparison we use two datasets, i.e., the
standard dataset by Dabov et al. (2007) consisting of 9 RGB
images, and CBSD68 by Roth and Black (2009) consist-
ing of 68 RGB images. Each noisy image is generated by
adding an additive Gaussian white noise with three noise
levels, including σ=15, σ=25 and σ=50. The goal is to dis-
till the original image without Gaussian noise. Results on the
dataset of Dabov et al. (2007) are shown in Fig. 8, where
PSNR scores of various methods are shown over multiple
iterations. The performance of the deep image prior (Ulyanov
et al. 2018, 2020) gradually degrades after reaching a peak.

For each image, the peak is reached at a different number of
iterations, so simply using a fixed number of iterations will
be suboptimal for most images.

Our method provides two advantages: (1) The perfor-
mance does not decay over iterations with controlled spectral
bias; (2) The optimization can be automatically stopped at
an appropriate moment using the proposed stopping crite-
rion, leading to good PSNR scores for all images (marked
by the green vertical lines). Heckel and Hand (2019) achieve
fast convergence without performance degradation, but at the
expense of reduced performance. Cheng et al. (2019) obtain
comparable PSNR scores, but they require 2 to 4 times as
many iterations to converge.

So far,we have shown the performance of variousmethods
per image over a varying number of optimization itera-
tions. Next, we compare their overall PSNR performance
on the 68 images in CBSD68, as shown in Table 1. While
our unsupervised method is outperformed by supervised-
learning alternatives (Zhang et al. 2017, 2018) and CBM3D
(Dabov et al. 2007), it does better than the deep image prior
(Ulyanov et al. 2018, 2020), and its variants (Heckel and
Hand 2019; Cheng et al. 2019) across three noise levels. We
also provide qualitative results for denoising in Fig. 11,where
we observe our method preserves the high-frequency edges
without overfitting to high-frequency noise.

123



902 International Journal of Computer Vision (2022) 130:885–908

Ta
bl
e
4

Su
pe
r-
re
so
lu
ti
on

on
Se
t1
4.

T
he

PS
N
R
sc
or
es

ar
e
re
po
rt
ed

fo
r
a
st
op
pi
ng

ite
ra
tio

n
of

20
00

fo
r
th
e
sc
al
in
g
of

4,
an
d
40
00

fo
r
th
e
sc
al
in
g
of

8,
fo
llo

w
in
g
U
ly
an
ov

et
al
.(
20
18
,
20
20
)

B
ab
oo
n

B
ar
ba
ra

B
ri
dg
e

C
oa
st
gu
ar
d

C
om

ic
Fa
ce

Fl
ow

er
s

Fo
re
m
an

L
en
na

M
an

M
on
ar
ch

Pe
pp
er

Pp
t3

Z
eb
ra

A
ve
ra
ge

4×
re
so
lu
ti
on

U
ly
an
ov

et
al
.(
20
20
)∗

22
.2
9

25
.5
3

24
.3
8

25
.8
1

22
.1
8

31
.0
2

26
.1
4

31
.6
6

30
.8
3

26
.0
9

29
.9
8

32
.0
8

24
.3
8

25
.7
1

27
.0
0

H
ec
ke
la
nd

H
an
d
(2
01
9)

†
20
.5
4

21
.5
1

20
.9
7

23
.5
2

18
.8
6

28
.1
5

20
.8
8

24
.4
4

24
.0
7

21
.1
8

21
.2
1

23
.8
9

17
.2
8

18
.5
9

21
.7
9

C
he
ng

et
al
.(
20
19
)†

21
.5
1

24
.8
4

23
.7
4

25
.0
2

21
.9
4

30
.1
1

25
.4
1

30
.5
7

28
.6
2

25
.3
7

28
.4
1

30
.2
5

23
.6
9

24
.4
8

26
.0
7

O
ur
s

22
.8
1

25
.7
4

25
.0
2

25
.8
6

22
.3
1

32
.0
9

26
.7
4

32
.7
7

31
.2
9

26
.4
2

30
.7
7

32
.6
2

24
.7
3

25
.8
7

27
.5
0

B
ic
ub

ic
††

22
.4
4

25
.1
5

24
.4
7

25
.5
3

21
.5
9

31
.3
4

25
.3
3

29
.4
5

29
.8
4

25
.7
0

27
.4
5

30
.6
3

21
.7
8

24
.0
1

26
.0
5

T
V
pr
io
r†
†

22
.3
4

24
.7
8

24
.4
6

25
.7
8

21
.9
5

31
.3
4

25
.9
1

30
.6
3

29
.7
6

25
.9
4

28
.4
6

31
.3
2

22
.7
5

24
.5
2

26
.4
2

L
ap
SR

N
(L
ai
et
al
.2
01
8)

††
22
.8
3

25
.6
9

25
.3
6

26
.2
1

22
.9
0

32
.6
2

27
.5
4

33
.5
9

31
.9
8

27
.2
7

31
.6
2

33
.8
8

25
.3
6

26
.9
8

28
.1
3

8×
re
so
lu
ti
on

U
ly
an
ov

et
al
.(
20
20
)∗

21
.3
8

23
.9
4

22
.2
0

24
.2
1

19
.8
6

29
.5
2

22
.8
6

27
.8
7

27
.9
3

23
.5
7

24
.8
6

29
.1
8

20
.1
2

20
.6
2

24
.1
5

H
ec
ke
la
nd

H
an
d
(2
01
9)

†
20
.0
7

19
.8
6

19
.6
7

22
.3
0

18
.0
1

26
.5
3

19
.5
7

22
.7
6

22
.0
6

19
.5
4

19
.7
1

21
.4
4

15
.6
4

17
.2
0

20
.3
1

C
he
ng

et
al
.(
20
19
)†

19
.8
1

23
.6
9

22
.1
9

19
.2
2

19
.7
2

28
.8
8

22
.8
1

27
.3
4

19
.6
9

23
.3
6

24
.4
3

28
.7
2

26
.1
4

19
.8
9

20
.6
7

O
ur
s

21
.5
7

24
.4
8

22
.6
4

24
.1
8

19
.7
1

29
.9
4

22
.9
2

27
.9
5

27
.6
7

23
.8
6

24
.4
6

28
.9
1

23
.2
8

19
.9
3

24
.1
7

B
ic
ub

ic
††

21
.2
8

23
.4
4

22
.2
4

23
.6
5

19
.2
5

28
.7
9

22
.0
6

25
.3
7

26
.2
7

23
.0
6

23
.1
8

26
.5
5

18
.6
2

19
.5
9

23
.0
9

T
V
pr
io
r†
†

21
.3
0

23
.7
2

22
.3
0

23
.8
2

19
.5
0

28
.8
4

22
.5
0

26
.0
7

26
.7
4

23
.5
3

23
.7
1

27
.5
6

19
.3
4

19
.8
9

23
.4
8

L
ap
SR

N
(L
ai
et
al
.2
01
8)

††
21
.5
1

24
.2
1

22
.7
7

24
.1
0

20
.0
6

29
.8
5

23
.3
1

28
.1
3

28
.2
2

24
.2
0

24
.9
7

29
.2
2

20
.1
3

20
.2
8

24
.3
5

O
n
m
os
ti
m
ag
es

w
e
ac
hi
ev
e
be
tte
r
pe
rf
or
m
an
ce

th
an

ex
is
tin

g
m
et
ho
ds
,a
nd

w
e
ob
ta
in

th
e
hi
gh
es
tP

SN
R
on

av
er
ag
e
fo
r
4×

an
d
8×

su
pe
r-
re
so
lu
tio

n
†
R
es
ul
ts
ba
se
d
on

au
th
or
-p
ro
vi
de
d
co
de

∗ R
es
ul
ts
ob

ta
in
ed

w
ith

or
ac
le
st
op

pi
ng

††
R
es
ul
ts
pr
ov
id
ed

by
U
ly
an
ov

et
al
.(
20
20
)

123



International Journal of Computer Vision (2022) 130:885–908 903

Table 5 Super-resolution on
set5. The PSNR scores are
reported for a stopping iteration
of 2000 for the scaling of 4, and
4000 for the scaling of 8,
following Ulyanov et al. (2020)

Baby Bird Butterfly Head Woman Average
4× resolution

Ulyanov et al. (2020) ∗ 31.49 31.80 26.23 31.04 28.93 29.89

Heckel and Hand (2019)† 24.57 24.66 18.46 27.64 22.44 23.55

Cheng et al. (2019)† 27.35 28.37 24.21 27.45 25.48 26.57

Ours 32.76 32.71 26.47 31.79 28.54 30.45

Bicubic †† 31.78 30.20 22.13 31.34 26.75 28.44

TV prior †† 31.21 30.43 24.38 31.34 26.93 28.85

LapSRN (Lai et al. 2018) †† 33.55 33.76 27.28 32.62 30.72 31.58

8× resolution

Ulyanov et al. (2020) ∗ 28.28 27.09 20.02 29.55 24.50 25.88

Heckel and Hand (2019)† 21.95 22.97 16.18 26.56 20.46 21.62

Cheng et al. (2019)† 27.18 26.64 19.64 24.76 23.81 24.41

Ours 28.46 26.79 20.32 30.07 24.76 26.08

Bicubic †† 27.28 25.28 17.74 28.82 22.74 24.37

TV prior †† 27.93 25.82 18.40 28.87 23.36 24.87

LapSRN (Lai et al. 2018) †† 28.88 27.10 19.97 29.76 24.79 26.10

On most images we achieve better performance than existing methods, and we perform best on average for
both 4× and 8× super-resolution
†Results based on author-provided code
∗Results obtained with oracle stopping
††Results provided by Ulyanov et al. (2020)

5.2 JPEG Image Deblocking

JPEG image deblocking is the process of reducing the
compression artifacts in JPEG images. We evaluate on the
Classic5 dataset by Foi et al. (2006) and the LIVE1 dataset
by Sheikh et al. (2006). Classic5 consists of 5 gray-scale
images, and LIVE1 consists of 29 color images. Follow-
ing Dong et al. (2015a), the color images are transformed
to gray-scale using the YCbCr color model by keeping the
Y component only. Then, the gray-scale images are com-
pressed with the PIL encoder into three qualities, 10, 20, and
30. Fig. 9 provides a quantitative comparison on Classic5 for
quali t y=10. Akin to the denoising comparison, we again
observe the degradation of performance over iterations for
the deep image prior (Ulyanov et al. 2018, 2020). Cheng
et al. (2019) and Heckel and Hand (2019) do not suffer from
the degradation problem, at the expense of either reduced
performance or slow convergence. With the controlled spec-
tral bias and automatic stopping criterion, we achieve a good
trade-off between PSNR score and convergence (marked by
the green vertical lines).

We also provide quantitative results for LIVE1 in Table 2.
Naturally, the learning-based methods (Dong et al. 2015a;
Chen and Pock 2016; Zhang et al. 2017) perform best. Across
three quality levels, our unsupervisedmethod performs better
than the deep image prior (Ulyanov et al. 2018, 2020) and
its two variants (Heckel and Hand 2019; Cheng et al. 2019).
We also provide qualitative examples in Fig. 12, which shows

that ourmethod better reduces the artifacts and recovers high-
frequency image details.

5.3 Image Inpainting

In image inpainting, we are given an image with missing pix-
els resulting from a binary mask. The goal is to reconstruct
the missing data. We evaluate on the standard dataset by
Heide et al. (2015), consisting of 11 grayscale images, and
the CBSD68 dataset by (Roth and Black 2009) consisting
of 68 RGB images. Following Ulyanov et al. (2018, 2020);
Cheng et al. (2019), we consider inpainting with masks that
are randomly sampled according to a binary Bernoulli dis-
tribution on the standard dataset. Each mask is sampled to
drop 50% of the pixels at random. For CBSD68, we con-
sider inpainting with central region masks and we evaluate
on three hole-to-image area ratios, ratio=0.1, ratio=0.25
and ratio=0.5, following Pathak et al. (2016). Figure 10
provides a quantitative comparison on the standard dataset.
We also provide quantitative results for CBSD68 in Table 3.
Our observations are the same as for the denoising and
deblocking comparison. We provide qualitative examples
for pixel inpainting in Fig. 13 and region inpainting in
Fig. 14, which shows our ability to recover high-frequency
details.
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(a) (b) (c) (d)

Fig. 15 Super-resolution. Results on the ‘baby’ image and the ‘flowers’ image for 4× super-resolution, and on the ‘butterfly’ image for 8×
super-resolution. From the regions masked by the green rectangles, we observe our method is able to better recover details with fewer artifacts (best
viewed digitally)

5.4 Super-resolution

In image super-resolution, a low-resolution image is given;
the goal is to recover its scaled-up version. Following
Ulyanov et al. (2018, 2020), the network generates a
high-resolution image from the random noise input. The
high-resolution image is then downsampled using a differ-
entiable Lanczos filter to compute the loss with the provided
low resolution image for optimizing the network. We report
on the standard Set14 dataset by Zeyde et al. (2010) and
Set5 by Bevilacqua et al. (2012). We evaluate the perfor-
mance for an up-scaling of 4 and 8. For the super-resolution
task, the deep image prior (Ulyanov et al. 2018, 2020) does
not suffer from the performance degradation over iterations

because the optimization objective strives to find the low-
resolution image without high-frequency noise. Following
Ulyanov et al. (2018, 2020), we report the PSNR score at a
stopping iteration of 2,000 for the scaling of 4, and 4,000 for
the scaling of 8. Results on Set 14 are provided in Table 4
and results on Set 5 are summarized in Table 5. On most
images our method achieves better performance, not only for
Ulyanov et al. (2018, 2020) but also compared to Heckel and
Hand (2019) andCheng et al. (2019).Weprovide a qualitative
comparison in Fig. 15. We observe that our method produces
fewer high-frequency artifacts than Ulyanov et al. (2018,
2020) and Cheng et al. (2019). We postulate that our Lip-
schitz normalization contributes to the benefit. Interestingly,
our method also recovers fine details. A likely explanation is
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Fig. 16 Image enhancement. The goal is to enhance the image details.
We obtain the smoothed images (second row) using the controlled deep
image priors with different λ, as defined in Eq. (5). We then subtract

the smoothed version from the original image to get fine details and
enhance them (first row). The smaller the λ, the higher smoothness of
the output images and the more enhancement to the image details

that our Gaussian upsampling is better at learning the desired
higher frequencies. Note that fine details like textures are
high-frequency compared to flat regions, but still relatively
low-frequency compared to most artifacts.

5.5 Image Enhancement

Following Ulyanov et al. (2018, 2020), we also evaluate
our method on image enhancement. The deep image prior
performs sharpness enhancement bymeans of unsharpmask-
ing (Morishita et al. 1988; Shi et al. 2021), which can be
described by xe = (x0 − xs)+ x0, where an enhanced image
is represented by xe, an original image by x0, an unsharp
mask by (x0 − xs) where xs denotes the smoothed version of
the original image. The smoothness of xs controls the size of
the region around the edge pixels that is affected by sharpen-
ing. The higher the smoothness, the wider the regions around
the edges that got sharpened. The deep image prior obtains
the smoothed images by stopping the optimization at differ-
ent iterations. However, the smoothness of the output image
is quite sensitive to the number of optimization iterations,

which is hard to control. By contrast, our method is able to
manipulate the smoothness of the output image by tuningλ in
Eq. (5). Thus, we obtain the smoothed images with different
λ, by optimizing the network in a fixed iteration of 5, 000.
The smaller the λ, the higher the smoothness of the output
images and the more enhancement to the image details, as
shown in Fig. 16.

5.6 Success and Failure Cases

We return to the denoising task to analyze a success and fail-
ure case or our approach in Fig. 17. The goal is to remove
additive Gaussian noise from a natural image. Our method
performs well when the noise level is modest, as shown in
Fig. 17b. However, with higher noise levels, the proposed
method fails to remove the noise, as shown in Fig. 17d. We
attribute this to the fact that in the frequency domain, additive
Gaussian noise has equal intensity at different frequencies.
By contrast, the power spectrum of a natural image decays
rapidly from low frequencies to high frequencies (Ruderman
1994). Consequently, when the noise level is low, noise is
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Fig. 17 Success and failure case of ourmethod for image denoising on
image ‘F16’. Our method performs well when the noise level is modest
(σ=25), while it fails to remove noise when the noise level is too high
(σ=100)

usually dominant at high frequencies and the natural sig-
nal is more dominant at lower frequencies. However, the
noise can also be more dominant at lower frequencies with
higher level. In this case, separating low-frequencies from
high-frequencies through spectral bias fails to remove the
noise.

6 Conclusion

In this paper, we show the spectral bias leads inverse
imaging networks to capture the deep image prior during
optimization, independent of their architectures. We do so
by introducing a metric, the Frequency Band Correspon-
dence,whichoffers a spectralmeasurement of the deep image
prior, revealing the low frequency natural image signals are
learned faster and better than high-frequency noise signals.
We also introduce Lipschitz normalization and Gaussian
upsampling that allow to manipulate and adjust the spectral
bias for inverse imaging problems. Besides thesemethods for
controlling spectral bias, we further introduce a simple auto-
matic stopping criterion to avoid superfluous computation.
The experiments show that our method does not suffer from
the performance degradation over iterations with controlled
spectral bias and enables stopping the optimization automat-
ically at an appropriate moment using the proposed stopping

criterion. Our method also obtains favorable performance
compared to current approaches for denoising, deblocking,
inpainting, super-resolution and detail enhancement.
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