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Abstract Weakly-Supervised Semantic Segmentation

(WSSS) methods with image-level labels generally train

a classification network to generate the Class Activa-

tion Maps (CAMs) as the initial coarse segmentation la-

bels. However, current WSSS methods still perform far

from satisfactorily because their adopted CAMs 1) typi-

cally focus on partial discriminative object regions and

2) usually contain useless background regions. These

two problems are attributed to the sole image-level su-

pervision and aggregation of global information when

training the classification networks. In this work, we

propose the visual words learning module and hybrid

pooling approach, and incorporate them in the clas-

sification network to mitigate the above problems. In

the visual words learning module, we counter the first

problem by enforcing the classification network to learn
fine-grained visual word labels so that more object ex-

tents could be discovered. Specifically, the visual words

are learned with a codebook, which could be updated

via two proposed strategies, i.e. learning-based strat-

egy and memory-bank strategy. The second drawback

of CAMs is alleviated with the proposed hybrid pool-

ing, which incorporates the global average and local

discriminative information to simultaneously ensure ob-

ject completeness and reduce background regions. We
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evaluated our methods on PASCAL VOC 2012 and MS

COCO 2014 datasets. Without any extra saliency prior,

our method achieved 70.6% and 70.7% mIoU on the val

and test set of PASCAL VOC dataset, respectively, and

36.2% mIoU on the val set of MS COCO dataset, which

significantly surpassed the performance of state-of-the-

art WSSS methods.

Keywords Weakly-Supervised Semantic Segmen-

tation · Visual Words Learning · Hybrid Pooling ·
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1 Introduction

Semantic segmentation, aiming at assigning a specific

label for each pixel in an image, is a fundamental and
hot topic in computer vision. With the rapid develop-

ment of deep learning, semantic segmentation based on

deep neural networks has dominated the past decades

(Long et al., 2015; Chen et al., 2015; Badrinarayanan

et al., 2017; Chen et al., 2017). However, the data-

hungry nature of deep models determines that to obtain

a segmentation model with fancy performance, a large

number of images with well-annotated pixel-level labels

are indispensable. Unfortunately, pixel-level labels are

usually very costly in both time and money. The empir-

ical statistics in (Lin et al., 2019) show that annotating

the pixel-level label of an image in the PASCAL VOC

dataset (Everingham et al., 2010) needs about 4 min-

utes on average, meanwhile annotating the Cityscapes

dataset (Cordts et al., 2016) takes an even longer time,

about 90 minutes per image.

To address the above problem, many researchers

have dedicated to devising image segmentation models

with weaker and cheaper labels, such as image-level la-

bels (Papandreou et al., 2015; Pinheiro and Collobert,
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unexpected backgrounddiscriminative regions

Image OursCAMs

Fig. 1: Illustration of the drawbacks of CAMs. Typically,
CAMs only discover partial discriminative object regions and
adjacent background regions. We argue that these drawbacks
are attributed to the sole image-level supervision and aggre-
gation of global information. To mitigate them, in this work,
we proposed the visual words learning and hybrid pooling
module.

2015; Ahn and Kwak, 2018; Lee et al., 2021a). Pre-

vailing WSSS methods with image-level labels usually

adopt a multi-step framework. Specifically, these WSSS

methods firstly train classification networks with only

image-level labels and use the trained classification net-

works to generate initial coarse pixel-level labels by

class activation mapping (Zhou et al., 2016). Then, the

coarse pixel-level labels will be further refined by meth-

ods like dense CRF (Krähenbühl and Koltun, 2011) and

other pixel affinity-based approaches (Ahn and Kwak,

2018; Ahn et al., 2019) to obtain the refined pseudo

labels. Finally, the refined pseudo labels are used to

train a regular semantic segmentation model to predict

pixel-level labels of test images.

Prior works have demonstrated that the first step,

i.e. generating initial coarse labels, is crucial to the

training of segmentation models and the final segmen-

tation performance (Wang et al., 2020b; Chang et al.,

2020b; Lee et al., 2021a). As aforementioned, most meth-

ods train classification networks to produce Class Acti-

vation Maps (CAMs) (Zhou et al., 2016) as the initial

coarse labels. However, as illustrated in Fig. 1, there

are two typical drawbacks of previous CAMs. Firstly,

CAMs usually only discover partial discriminative re-

gions of visual objects. The reason is that CAMs are

derived from classification networks, whose purpose is

to differentiate different semantic categories. Therefore,

to attain discriminability, the classification network will

shift attention to the most discriminative regions of vi-

sual objects instead of the integral object. Secondly,

the activated regions of CAMs often include some un-
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Fig. 2: Illustration of the motivation of our visual words learn-
ing module.

desired background. This is attributed to that classi-

fication networks commonly use global average pool-

ing (GAP) (Lin et al., 2013) for feature aggregation,

which averages information from both foreground ob-

jects and background, thus overestimating the size of

objects (Zhou et al., 2016).

To tackle the first problem, as illustrated in Fig. 2,

we argue that if the network could be supervised by

more fine-grained labels, more object regions will be

activated to provide sufficient information for differ-

entiating different classes. Therefore, in this work, we

propose the Visual Words Learning (VWL) module for

WSSS task with image-level labels. The VWL mod-

ule generates the visual word labels by using a code-

book to encode the feature maps extracted by the CNN

backbone. In the training process of the classification
network, the network will be forced to jointly learn

the image-level labels and visual word labels so that

more object regions could be activated. To learn an

effective codebook, based on the definition and solu-

tion of Bag of Visual Word models (BoVW) (Arand-

jelović et al., 2017; Passalis and Tefas, 2017), we de-

vised two strategies for updating the codebook, i.e.

learning-based strategy and memory-bank strategy. For

the learning-based strategy, the codebook is set as a

learnable parameter. By enforcing the encoded visual

word features to learn image-level labels, the codebook

could learn the latent visual word representations. In

practice, we also notice that the learned representa-

tions in the codebook are often redundant, which af-

fects the network training and the quality of CAMs. We

tackle this problem by regularizing the codebook with

DeCov loss (Cogswell et al., 2017), which reduces the

redundancy of a matrix by minimizing its off-diagonal

co-variance values. For the memory-bank strategy, we

follow the classic BoVW models (Liu et al., 2019; Gi-
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daris et al., 2020), which take the clustering centroids

of features as the codebook. Specifically, we decom-

pose the clustering on the whole training set to each

mini-batch iteration and leverage memory-bank strat-

egy (Wu et al., 2018; Zhuang et al., 2019) to gradually

update the codebook. Our experimental results show

that, after sufficient updates, the learning-based and

memory-bank strategy could both learn codebooks with

effective representations of visual words and achieve

analogous performance.

To alleviate the second drawback, inspired by global

max-pooling (GMP), which takes the maximum value

in each feature map as outputs and tends to underesti-

mate the object sizes (Kolesnikov and Lampert, 2016),

we proposed a simple yet empirically effective pool-

ing approach, named Hybrid Pooling (HP). Our major

motivation of HP is to aggregate the local maximum

values so that less background information is involved.

In specific, the feature maps are partitioned into mul-

tiple bins from coarse to fine levels. For bins in the

same level, we pool them separately via max pooling

and average the aggregated features so that only lo-

cal maximums are involved. The features from differ-

ent levels and the output feature of GAP (to ensure

the object completeness) are then averaged as the final

outputs. On this account, more discriminative object

extents and fewer background regions are preserved in

feature maps, which could improve the accuracy of the

generated CAMs.

We conducted extensive experiments to verify the

effectiveness of our proposed methods. The experimen-

tal results showed that our method significantly im-

proved the quality of generated CAMs. We refined the

generated CAMs with IRNet (Ahn et al., 2019) and

trained a DeepLabV2 segmentation network (Chen et al.,

2017) with the refined pseudo labels. Semantic segmen-

tation results on two datasets, PASCAL VOC 2012 (Ev-

eringham et al., 2010) and MS COCO 2014 (Lin et al.,

2014), showed that our proposed method could outper-

form the state-of-the-art methods.

Overall, our contributions in this work are summa-

rized as follows.

– We propose the Visual Words Learning (VWL) mod-

ule. By jointly learning the visual word labels and

image-level labels, the network is enforced to dis-

cover integral object extents. To encode the visual

words, we devise two learning strategies to learn the

codebook and empirically verify their efficacy.

– We propose Hybrid Pooling (HP), a simple yet ef-

fective pooling approach, which incorporates local

discriminative information and global information

to aggregated less background and more object re-

gions.

– By incorporating the proposed VWL and HP, we

present a new classification network to generate CAMs

with higher quality for the WSSS task. Our method

achieves new state-of-the-art performance, i.e. 70.6%

mIoU on PASCAL VOC 2012 val set and 36.2%

mIoU on MS COCO 2014 val set.

This paper is an improved version of our preliminary

work (Ru et al., 2021). Compared with the conference

version, this work further improves the learning-based

strategy and proposes the memory-bank strategy which

could learn visual words better. The performance is re-

markably improved with these improvements and sur-

passes the latest state-of-the-art methods. We also con-

duct further experiments on more datasets to verify the

efficacy of our approach.

The rest of this paper is structured as follows. In

Section 2, we briefly introduce some related works on

WSSS with image-level labels and improvements on

CAMs. The detailed methods are presented in Section 3.

We present the experimental settings and results in Sec-

tion 4. Section 5 concludes our work.

2 Related Work

2.1 WSSS with Image-level Labels

Weakly-Supervised Semantic Segmentation (WSSS) aims

to develop semantic segmentation models with weak an-

notations, such as image-level labels (Papandreou et al.,

2015; Pinheiro and Collobert, 2015; Ahn and Kwak,

2018; Lee et al., 2021a), points (Bearman et al., 2016),

bounding boxes(Song et al., 2019; Oh et al., 2021; Lee
et al., 2021b), and scribbles (Lin et al., 2016). In this

work, we focus on WSSS with only image-level labels. In

the subsections below, we will introduce WSSS methods

with image-level labels based on their motivations.

Growing Seed Regions with Constraints. (Kolesnikov

and Lampert, 2016) proposed SEC principle to ex-

pand the initial seed cues and coincide with the ob-

ject shapes. This principle was adopted by subsequent

works. For example, (Roy and Todorovic, 2017) used

CRF-CNN (Zheng et al., 2015) to refine the initial la-

bels with low-level pixel information to generate pseudo

labels fitting object boundaries. (Huang et al., 2018)

integrated seeded region growing (Adams and Bischof,

1994) to expand the initial seed cues generated from

classification networks and also adopted dense CRF

(Krähenbühl and Koltun, 2011) to refine pseudo labels.

Erasing. Based on the common observation that CAMs

usually only captured the most discriminative regions,
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Wei et al . proposed to adversarially erase the discrimi-

native regions and progressively localize the integral ob-

ject regions (Wei et al., 2017). Similarly, ACoL (Zhang

et al., 2018) used two parallel CNN to erase the fea-

ture maps in one branch with the discriminative regions

derived from the other branch and fused the localized

regions from both branches as outputs. To prevent the

attention regions from shifting to non-object regions

during erasing, SeeNet (Hou et al., 2018) used saliency

prior (Hou et al., 2017) to suppress the attention in

background regions.

Accumulating Attention. Another interesting obser-

vation is that classification networks tend to shift at-

tention to the different regions of the object across the

training process (Jiang et al., 2019). Motivated by this,

Jiang et al . proposed OAA, which accumulated the ac-

tivated regions during the different training stage. In

(Yao et al., 2021), Yao et al . proposed a graph reason-

ing and non-salient region mining module to capture

more object extents from non-salient regions, since the

saliency prior used in OAA did not always correspond

to the foreground objects. Kim et al . in (Kim et al.,

2021) combined the idea of erasing and accumulating

to suppress the discriminative regions in training, which

could assist in finding less discriminative object regions.

Mining Objects from Multiple Images. The works

above mainly focused on mining semantic objects from

single image. Some recent works also tried to leverage

the semantic co-occurrence in two or more images (Fan

et al., 2020; Li et al., 2021a; Sun et al., 2020). In (Fan

et al., 2020), CIAN designed a cross image attention

module to model the pixel-level affinity from different

images with common semantics. In (Sun et al., 2020),

in addition to the co-attention from image pairs, Sun

et al . further proposed a contrastive attention module

that could mine the unique semantic objects. (Li et al.,

2021a) used a graph neural network (GNN) (Scarselli

et al., 2008) based approach to reason and capture the

integral object information from a group of input im-

ages.

Refining Seed Regions. Since CAMs only yield very

coarse pixel labels, some pixel affinity based methods

are proposed to refine CAMs and proved to work bril-

liantly. (Wang et al., 2020a) proposed an EM frame-

work, in which a unary network was used to predict

the class score maps and a pairwise network was used

to learn the pixel affinities. The learned pixel affin-

ity would be used to refine the score maps and then

supervise the training of the framework. PSA (Ahn

and Kwak, 2018) derived foreground and background

regions with high confidence from coarse labels and

utilized the reliable regions to learn an affinity net-

work. For each input image, their coarse labels were re-

fined via random walk propagation (Vernaza and Chan-

draker, 2017) with the learned affinity matrix from the

trained network. In further, IRNet (Ahn et al., 2019)

proposed to derive instance labels from instance-agnostic

CAMs via additionally learning semantic instance bound-

aries and propagating the initial CAMs with the learned

pixel affinities and instance boundaries.

End-to-End Solutions. Though the majority of meth-

ods adopted a multi-step framework, some works also

tried to devise elegant end-to-end models for WSSS

with image-level labels. In (Papandreou et al., 2015),

Papandreou et al . proposed an EM framework that es-

timated the pseudo labels with a probabilistic model

and utilized the pseudo labels to train the network at

the maximization step. (Zhang et al., 2020a) followed

a similar framework of (Papandreou et al., 2015) but

leveraged CRF to refine CAMs and jointly minimized

the cross-entropy loss and low-level energy loss with the

highly-confident pseudo labels. (Araslanov and Roth,

2020) devised normalized global weighted pooling to ag-

gregate classification scores from predicted score maps,

which could improve the completeness of objects. The

predicted score maps were then refined with a pixel

affinity-based module to supervise the training process.

To avoid the network degrading to trivial solutions,

(Araslanov and Roth, 2020) additionally proposed a

stochastic gate that randomly transferred low-level fea-

tures to high-level semantics.

2.2 Improvements on CAMs

A prevailing series of WSSS with image-level labels

is to derive better CAMs from the classification net-

work. Many works have been proposed to produce bet-

ter CAMs by encouraging more object extents to be dis-

covered. In (Wang et al., 2020b), Wang et al . observed

that CAMs of the same image with different scaling ra-

tio usually differed largely in shape, while they were

supposed to be the same since they consisted of the

same objects. They proposed to regularize the classi-

fication network by minimizing the difference between

the CAMs of different scales and achieved remarkable

performance. In (Chang et al., 2020b), Chang et al .

proposed to cluster the original semantic categories to

sub-categories and further leveraged the sub-category

labels to supervise the training of the network, which

could enforce the network to discover more object re-

gions to distinguish sub-categories. (Lee et al., 2021a)
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proposed an anti-adversarial attack approach to grad-

ually pull image away from decision boundaries which

helped to discover more object regions. (Zhang et al.,

2020b) firstly introduced causal inference (Rubin, 2019)

to alleviate the confounding bias attributed by ambigu-

ous boundaries. Some recent works showed that data

augmentation techniques (Chang et al., 2020a) and aux-

iliary self-supervised tasks (Jo and Yu, 2021) could help

to discover more object regions and thus improve the

quality of CAMs. In this work, we also focus on deriving

better CAMs from classification networks but from two

aspects. Specifically, we propose the visual words learn-

ing module and hybrid pooling approach to counter the

problem of partial discriminative object regions unex-

pected background regions in CAMs.

3 Methods

This section expatiates our proposed methods, includ-

ing the Visual Words Learning (VWL) module, Hybrid

Pooling (HP) approach, and training process of our net-

work.

3.1 Method Overview

The overall architecture of our method is presented in

Fig. 3. For an input image, we firstly use a CNN back-

bone to extract the convolutional feature maps. In the

visual words learning module, a predefined codebook

is employed to encode the feature maps to visual word

score maps, in which each element denotes the prob-

ability of a pixel belonging to each visual word. The

visual word label of a given image is derived from the

score maps and further used to supervise the network

training to activate more object regions. To alleviate

the problem of unexpected background regions, we use

the proposed hybrid pooling, which aggregates local

discriminative information and global average informa-

tion, so that less background is preserved in the gener-

ated CAMs.

3.2 Preliminaries

Currently, the majority of WSSS methods with image-

level labels infer CAMs (Zhou et al., 2016) from a trained

classification network as the initial coarse labels. In this

work, we follow the original way in (Zhou et al., 2016)

to directly produce CAMs with the feature maps of the

last conv layer and the weight matrix Wimg in predic-

tion layer. Specifically, CAMs for class c are given by

C
N

N

feature maps

codebook

Loss

image
score maps

Loss

cosine

Hybrid
Pooling

Visual Words Learning

class label

visual word labelGAP feature

HP feature

visual word 
label map

argmax

Fig. 3: Overview of the proposed method. To encourage more
object extents to be discovered, we propose the Visual Words
Learning (VWL) module, which utilizes a codebook to encode
the feature maps extracted by CNN. The encoded visual word
labels are then used to supervise the training process of the
classification network. We also propose a novel feature aggre-
gation method, i.e. Hybrid Pooling (HP), which incorporates
GMP to reduce background information and GAP to ensure
the object completeness in the generated CAMs.

weighting each feature map in F with its contribution

to class c

Mc =

d∑
i=1

(Wimg
i,c F:,:,i). (1)

Mc is further passed through a relu layer to elimi-

nate the negative values, denoted as M̂c. The generated

M̂c will be used to produce pseudo segmentation labels

with a background score threshold.

3.3 Visual Words Learning

As aforementioned, classification networks guided by

image-level labels usually only discover partial discrim-

inative extents of objects. The reason is that focusing on

partial discriminative extents of objects is more benefi-

cial to recognize different semantic categories. To solve

this problem, our motivation is that if the network could

be supervised with more fine-grained labels in the train-

ing procedure, it will be enforced to activate more se-

mantic regions so that the generated CAMs would be

more accurate. To this end, we propose to jointly learn

the visual words and image-level labels in the training

process of classification networks.

Since only image-level labels are available in our

task, in order to leverage visual word labels to guide

the training of classification networks, we design an un-

supervised visual words learning module. As shown in

Fig. 3, in the visual words learning module, a matrix

C ∈ Rk×d is defined as the codebook, where k is the

number of words and d denotes the feature dimension.

C is utilized to encode the extracted convolutional fea-

ture map F ∈ Rh×w×d to specific visual words. Here,
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we use cos distance to measure the similarity between

the pixel at position i in F and the j-th word in C. The

similarity matrix S is given as:

Sij =
F>i Cj

||Fi||2||Cj ||2
, 1 ≤ i ≤ hw, 1 ≤ j ≤ k. (2)

The obtained S will be normalized row-wisely using

softmax to compute the probability of the i-th pixel in

F belonging to j-th word in codebook C. The process

is given as

Pij =
exp(τ · Sij)∑k

n=1 exp(τ · Sin)
, (3)

where τ>0 is a temperature parameter to control the

smoothness of P.

The visual word label Yi for Fi is then given as

the word with the maximum probability, i.e., the index

of the maximum value in the i-th row of Pij , which is

denoted as

Yi = arg max
j

Pij . (4)

For an input image X, its visual word labels are

computed as a k-dimensional vector yword, where yword
j =

1 if the j-th word exists in Y, and yword
j = 0, otherwise.

yword will be used to guide the training procedure of

the classification network to enforce it to discover more

discriminative extents.

Another problem is to ascertain the codebook for

encoding visual word labels reasonably. In a classic BoVW

model, the codebook is usually identified as the cluster-

ing centroids of the feature representations extracted
from all local visual words (Liu et al., 2019; Gidaris

et al., 2020). However, in our model, the feature rep-

resentations for visual words are updated online as the

training procedure. Therefore, the codebook C should

also be updated online. To this end, as shown in Fig. 4,

we devised two strategies to learn C, namely the Learning-

based strategy and Memory-bank strategy.

Learning-based strategy. In the learning-based strat-

egy, following (Passalis and Tefas, 2017; Arandjelović

et al., 2017), we set the codebook as a trainable pa-

rameter to learn it from back-propagated gradients. In

a BoVW model, the frequencies of visual words are

collected as the feature descriptor to predict the im-

age classes so as to learn the relations between visual

words and semantic classes (Liu et al., 2019). However,

this hard quantization approach will introduce non-

continuities and is proved to make the training process

intractable (Passalis and Tefas, 2017). In this work, we

compute the frequency of each word by accumulating

the probabilities in P. Therefore, the soft frequency as-

signment of the j-th word is

fword
j =

1

hw

hw∑
i=1

Pij , (5)

where fword
j denotes the frequency of the j-th word in

F. As shown in Fig. 4 (a), fword will be used to pre-

dict the image-level labels, i.e., modeling the relations

between visual words and image-level labels, which en-

courages the codebook to learn latent visual word rep-

resentations via gradients.

Memory-bank strategy. As aforementioned, a clas-

sic BoVW model usually takes the clustering centroids

of image features as the codebook. However, cluster-

ing on the whole dataset with the network training is

extremely time-consuming. Inspired by mini-batch K-

Means (Sculley, 2010), which decomposes clustering on

a large-scale dataset to mini-batch iterations, we pro-

pose the memory-bank strategy to gradually update the

codebook with reconstructed codebook in each training

step.

In Eq. (4), the visual word label Y for each pixel

in F is computed. We firstly transform Y ∈ Rhw to

W ∈ Rhw×k via one-hot encoding. The reconstructed

codebook C′ is hereby given as averaging the repre-

sentations that are encoded to the same visual word

category.

C′ = D−1W>F, (6)

where D is a degree matrix with Dii = 1/
∑

j,k=i Wjk

and Dij = 0 for off-diagonal elements. Here, we also

assume F is unfolded to Rhw×d for simplicity. As shown

in Fig. 4 (b), the reconstructed codebook C′ is then

used to update codebook with a momentum parameter

ρ. This process is given as

Ct+1 ← ρC′ + (1− ρ)Ct, (7)

where t denotes the training iterations.

3.4 Hybrid Pooling

To mitigate the aforementioned disadvantages of GAP

and GMP, in this work, we present a simple yet em-

pirically effective pooling method which aggregates lo-

cal maximum and global average values of the feature

maps.

Considering the output feature map F with size of

h×w×d of the last convolutional layer, we firstly parti-

tion F to multi-scale divisions. As illustrated in Fig. 5,
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score maps

Loss

gradients

class label
visual word

feature

quantization

(a) Learning-based strategy
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Fig. 4: Illustration of strategies for visual word codebook. For the learning-based strategy, we follow the original intention
of BoVW models (Liu et al., 2019; Gidaris et al., 2020), i.e. using visual word frequencies to predict the image-level labels,
which could enforce to learn the codebook from the back-propagated gradients. For the memory-bank strategy, inspired by
mini-batch K-means (Sculley, 2010), we decompose the clustering on the whole dataset to each training step and update the
codebook from reconstruction in the memory-bank mechanism.

feature maps

max avg

max

max

avg

avg   

avg

HP 
feature

GAP feature

GMP feature

Fig. 5: Illustration of the proposed hybrid pooling. avg: aver-
age pooling, max: max pooling.

each division with size of h
r ×

w
r × d is pooled to a d-

dimensional vector via max pooling, where r ∈ {1, 2, 4}
denotes the split size. F is thus aggregated to Fmax with

size of r × r × d. It is conspicuous that Fmax only in-

volves local maximum pixels so that less background is

considered. We then pool Fmax for subsequent classifi-

cation task. The pooled feature fmax
r with split size r

is given by

fmax
r =

1

r2

r∑
i=1

r∑
j=1

Fmax
i,j,: . (8)

Note that fmax
r only preserves the maximum re-

sponses of local objects, which may corrupt the com-

pleteness of objects. To tackle this problem, in HP mod-

ule, we also incorporate the results of GAP. Given the

pooled feature of GAP layer, which is computed as

fgap =
1

hw

h∑
i=1

w∑
j=1

Fi,j,:, (9)

the final output of hybrid pooling module is calculated

by weighting the outputs in Eq. (8) and Eq. (9), com-

puted as

fhp =
1

γ + 3
(

∑
r∈{1,2,4}

fmax
r + γfgap), (10)

where γ is a weight factor. Leveraging Eq. (10), more

regions of foreground objects and less background are

captured for classification, so that the generated CAMs

could coincide better with object shapes.

3.5 Network Training

Since only image-level labels are available, the classi-

fication loss is indispensable to train the network. Af-

ter calculating fhp via Eq. (10), the classification score

for image label is computed with a classification layer

(an 1 × 1 conv layer in practice), denoted as pimg =
conv(fhp,Wimg), where Wimg is the weight matrix of

this layer. As a common practice (Wang et al., 2020b;

Chang et al., 2020b; Araslanov and Roth, 2020), the

multi-label soft margin loss (Paszke et al., 2019) is em-

ployed to compute the classification loss

Lcls(p
img,yimg) =

1

L

L∑
i=1

[yimg
i log

exp(pimg
i )

1 + exp(pimg
i )

+ (1− yimg
i ) log

1

1 + exp(pimg
i )

],

(11)

where yimg denotes the ground-truth image label and

L is the number of image classes.

To capture more semantic regions, the pooled fea-

ture is also used to predict the visual word label yword

generated in previous steps. It is noted that yword is

generated based on all pixels in feature map F. There-

fore, we use GAP here instead of our HP to perform fea-

ture aggregation for predicting yword. The predicted vi-

sual word score is thus denoted as pword = conv(fgap,Wword),
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where Wword is the weight matrix of the prediction

layer. The classification loss for visual words is then de-

noted as Lcls(p
word,yword), which is in the same form

as Eq. (11). The overall loss function is the sum of

Lcls(p
img,yimg) and Lcls(p

word,yword), namely

Lall = Lcls(p
img,yimg) + Lcls(p

word,yword). (12)

Auxiliary Loss for Learning-based Strategy. Re-

call that in the learning-based strategy, to learn the

codebook from gradients, we set the codebook as a

trainable parameter and leverage the visual word rep-

resentations to learn the image-level labels. Specifically,

the visual word frequency fword acquired in Eq. (5)

is projected into the class probability space with an

1×1 conv layer. The predicted score is denoted by pw2i

so that the loss function is given as Lcls(p
w2i,yimg).

We empirically found that learning with the loss

Lcls(p
w2i,yimg) solely tended to make the learned vi-

sual word representations in codebook C redundant.

To tackle this problem, we add a regularization term

to minimize the correlation between different latent vi-

sual word representations. Here, we use the DeCov loss

(Cogswell et al., 2017), which reduces the correlations

between rows in a matrix by minimizing their covari-

ance, i.e.

Ldecov =
1

2
(‖Ĉ‖2F − ‖diag(Ĉ)‖22), (13)

where Ĉ is the covariance matrix of C, ‖·‖F denotes the

Frobenius norm, and diag(·) extracts the main diagonal

elements of a matrix to a vector.

The auxiliary loss for the learning-based strategy is
then given as the sum of aforementioned two losses

Laux = Lcls(p
w2i,yimg) + Ldecov. (14)

By regularizing Eq. (12) with Eq. (14), we present

the overall loss function to optimize the network under

the learning-based strategy

Lall = Lcls(p
img,yimg) + Lcls(p

word,yword) + Laux.

(15)

The overall training process with learning or memory-

bank strategy is summarized in Alg. 1.

4 Experiments

4.1 Implementation Details

Dataset. We evaluated our method on the PASCAL

VOC 2012 dataset (Everingham et al., 2010) and MS

Algorithm 1: Training procedure of the pro-

posed network.

Input: Image I, label yimg;
Params: Backbone network E(·, θ), codebook C,

hyper-parameters {k, γ, τ, ρ};
Initialize E(·, θ) and C;
while training do

Extract feature maps F = E(I, θ);

Compute visual word label yword via Eq. (2) to
Eq. (4);

Compute pooling features via Eq. (9) and
Eq. (10);

if Learning-based strategy then
Compute visual word feature via Eq. (5);
Compute loss via Eq. (15);
Optimize E(·, θ) and C;

else Memory-bank strategy
Compute loss via Eq. (12);
Optimize E(·, θ);
Reconstructing C′ via Eq. (6);
Update C← ρC′ + (1− ρ)C;

end

end

COCO 2014 dataset (Lin et al., 2014). For all experi-

ments, the mean Intersection-over-Union (mIoU) ratio

was used as the evaluation criteria.

PASCAL VOC 2012 dataset (Everingham et al.,

2010) consists of 21 semantic categories, including 20

foreground object classes and the background class. Fol-

lowing the common practice(Chen et al., 2017; Wang

et al., 2020b; Chang et al., 2020b), this dataset is aug-

mented with SBD dataset (Hariharan et al., 2011). The

train, val, and test set of the augmented dataset consist

of 10,582, 1449, and 1456 images, respectively.

MS COCO 2014 dataset (Lin et al., 2014) is a large-
scale dataset with 81 semantic categories, including the

background class. After excluding the images without

annotations (Lee et al., 2021c), the MS COCO dataset

consists of 82,081 and 40,137 images in train and val

set, respectively.

Classification Network. For the network to produce

CAMs, we used ResNet101 (He et al., 2016) pre-trained

on ImageNet (Krizhevsky et al., 2012) as the backbone

to extract convolutional feature maps. For PASCAL

VOC and MS COCO datasets, the classification net-

work was trained for 6 epochs, with a batch size of 16.

To optimize the network, we used the SGD optimizer

with momentum mechanism and set the momentum co-

efficient as 0.9. The learning rate was initially set to

0.01 for the backbone parameters and 0.1 for the other

parameters. All learning rates were decayed every iter-

ation with a polynomial decay scheduler. Specifically,

in each iteration, the learning rate was multiplied by

(1− iter
max iter )power, with power = 0.9.
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Table 1: Evaluation and comparison of the generated CAMs
and pseudo labels in mIoU. The best results are highlighted
in bold.

Method CAMs +CRF +Ref.

CAMs refined with PSA (Ahn and Kwak, 2018).
PSA CVPR’2018 48.0 – 61.0
Mixup CAM BMVC’2020 50.1 – 61.9
SC-CAM CVPR’2020 50.9 55.3 63.4
SEAM CVPR’2020 55.4 56.8 63.6
PuzzleCAM arXiv’2021 51.5 – 64.7
AdvCAM CVPR’2021 55.6 62.1 68.0

CAMs refined with IRNet (Ahn et al., 2019).
IRNet CVPR’2019 48.8 54.3 66.3
MBMNet ACM MM’2020 50.2 – 66.8
CDA arXiv’2021 50.8 – 67.7
VWE IJCAI’2021 55.1 60.9 69.5
CONTA NeurIPS’2020 56.2 – 67.9
AdvCAM CVPR’2021 55.6 62.1 69.9
Ours-M 56.9 62.6 71.1
Ours-L 57.3 63.0 71.4

As for the hyper-parameters, the number of visual

words k and the weight factor γ in Eq. (10) were set

to 256 and 2, respectively. The temperature parameter

τ in Eq. (3) was empirically set to 1. For the memory-

bank strategy, we had an extra momentum coefficient

ρ in Eq. (7), which was set to 0.001. More details and

the impacts of these hyper-parameters are reported in

Section 4.5. Our code is available at https://github.

com/rulixiang/vwe/tree/master/v2.

CAMs Refinement. The generated initial labels by

directly segmenting CAMs with thresholds are usually

very coarse (Ahn and Kwak, 2018; Ahn et al., 2019).

To improve the quality of pseudo labels and the seman-
tic segmentation performance, we adopted IRNet (Ahn

et al., 2019) as the refinement approach for processing

the initial coarse labels generated from the classification

network. In practice, we used the official implementa-

tion1 without changing their settings.

Segmentation Network. For the semantic segmen-

tation network, we used the DeepLabV2 (Chen et al.,

2017) system with ResNet101 (He et al., 2016) as back-

bone, which is a prevailing choice for WSSS task (Ke

et al., 2021; Lee et al., 2021a; Chang et al., 2020b). For

experiments on PASCAL VOC 2012 dataset (Evering-

ham et al., 2010), we followed the default settings of

DeepLabV2 (Chen et al., 2017), i.e., the learning rate

was initially set to 0.001 and decayed with a polynomial

scheduler. The batch size and number of iterations were

10 and 20,000, respectively. We used a momentum opti-

mizer with the momentum parameter of 0.9 and weights

1 https://github.com/jiwoon-ahn/irn

Table 2: Semantic segmentation results on PASCAL VOC
2012 dataset. The best results are highlighted in bold. Sup.
denotes supervision type. Seg. denotes segmentation network.

Method Sup. Seg. val test

Full Supervision.
(1)† DeepLabV1† ICLR’2015

F

– 75.5 –
(2) DeepLabV2 TPAMI’2017 – 76.3∗ –
(2)† DeepLabV2† TPAMI’2017 – 77.6 79.7
(3) WideResNet38 PR’2019 – 80.8 82.5
(4) Res2Net101 TPAMI’2021 – 80.2 –

Image-level Supervision + Saliency Maps.
OAA+ ICCV’2019

I + S

(1)† 65.2 66.4
Li et al . AAAI’2021 (2) 68.2 68.5
NSROM CVPR’2021 (2) 68.3 68.5
NSROM CVPR’2021 (2)† 70.4 70.2
DRS AAAI’2021 (2)† 70.4 70.7
EPS CVPR’2021 (2)† 70.9 70.8
AuxSegNet ICCV’2021 (3) 69.0 68.6
EDAM CVPR’2021 (2)† 70.9 70.6

Image-level Supervision Only.
IAL IJCV’2020

I

(2) 64.3 65.4
SEAM CVPR’2020 (3) 64.5 65.7
A2GNN TPAMI’2021 (2) 66.8 67.4
VWE IJCAI’2021 (2)† 69.6 69.3
AdvCAM CVPR’2021 (2) 68.1 68.0
OC-CSE ICCV’2021 (3) 68.4 68.2
ESCNet ICCV’2021 (3) 66.6 67.6
CDA ICCV’2021 (3) 66.1 66.8
CPN ICCV’2021 (3) 67.8 68.5
PMM ICCV’2021 (4) 70.0 70.5

(2) 68.7 69.22

Ours-M
(2)† 70.6 70.43

(2) 69.2 69.24

Ours-L
(2)† 70.6 70.75

∗ Accuracy obtained with our re-implementation.
† Backbone pre-trained on MS COCO dataset.

decay rate of 0.0005. For a fair comparison with other

WSSS works, we evaluated the DeepLabV2 initialized

with ImageNet (Krizhevsky et al., 2012) and MS COCO

dataset (Lin et al., 2014) pre-trained weights. For ex-

periments on the MS COCO dataset (Lin et al., 2014),

we followed the same settings as the experiments on the

PASCAL VOC dataset. The only difference was that we

trained the segmentation network for 60,000 iterations

since MS COCO consisted of much more samples.

4.2 Results on PASCAL VOC dataset

2 http://host.robots.ox.ac.uk:8080/anonymous/

XJDOJG.html
3 http://host.robots.ox.ac.uk:8080/anonymous/

J00QBG.html
4 http://host.robots.ox.ac.uk:8080/anonymous/

Y0XECB.html
5 http://host.robots.ox.ac.uk:8080/anonymous/

0QVYDO.html

https://github.com/rulixiang/vwe/tree/master/v2
https://github.com/rulixiang/vwe/tree/master/v2
https://github.com/jiwoon-ahn/irn
http://host.robots.ox.ac.uk:8080/anonymous/XJDOJG.html
http://host.robots.ox.ac.uk:8080/anonymous/XJDOJG.html
http://host.robots.ox.ac.uk:8080/anonymous/J00QBG.html
http://host.robots.ox.ac.uk:8080/anonymous/J00QBG.html
http://host.robots.ox.ac.uk:8080/anonymous/Y0XECB.html
http://host.robots.ox.ac.uk:8080/anonymous/Y0XECB.html
http://host.robots.ox.ac.uk:8080/anonymous/0QVYDO.html
http://host.robots.ox.ac.uk:8080/anonymous/0QVYDO.html
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Image Ground Truth IRNet SEAM VWE Ours-M Ours-L

Fig. 6: Visualization of the generated CAMs. Different colors denote the activated regions of different semantic categories.

Table 1 reports the quantitative evaluation results of

CAMs on the train set of the PASCAL VOC dataset.

CRF denotes the generated CAMs are refined with

dense CRF (Krähenbühl and Koltun, 2011). Ref. de-

notes the generated CAMs are refined with PSA (Ahn

and Kwak, 2018) or IRNet (Ahn et al., 2019). The best

results are highlighted in bold. We denote our methods

with memory-bank strategy and learning-based strat-

egy as Ours-M and Our-L, respectively. Ours results

are compared with recent related works on improving

the quality of CAMs, including AdvCAM(Lee et al.,

2021a), SC-CAM (Chang et al., 2020b), CONTA (Zhang

et al., 2020b), and SEAM (Wang et al., 2020b) etc.

Table 1 shows that our methods with learning-based

and memory-bank strategy could both remarkably sur-

pass current state-of-the-art works. After further refine-

ment with IRNet (Ahn et al., 2019), Our-M and Ours-L

achieve 71.1% and 71.4% mIoU on the pseudo labels,

respectively, which also outperform the competitors.

In Fig. 6, we visualize the generated CAMs and com-

pare them with the results of recent methods, including

IRNet (Ahn et al., 2019), SEAM (Wang et al., 2020b),

and VWE (our previous work with HP and simple vi-

sual words encoder) (Ru et al., 2021). The results of the

learning-based strategy (Ours-L) and the memory-bank

strategy (Ours-M) are both presented. It is observed

that our results typically activate more object regions

and less mis-activated background, which is owing to

that the proposed visual words learning module encour-

ages to discover more objects, while HP aggregates local

discriminative information and thereby reduces back-

ground regions. It is also noticed that the results of

Ours-L and Ours-M are very close visually (Fig. 6) and

numerically (Table 1), which indicates that both the
learning-based and memory-bank strategy could work

finely.

We use the refined CAMs as the pseudo labels to

train regular semantic segmentation networks and com-

pare the results on the val and test set of PASCAL

VOC dataset. The results are reported in Table 2. For

a fair comparison, we report the performance using

DeepLabV2 with backbone pre-trained on ImageNet

(Chen et al., 2017) and MS COCO (Lin et al., 2014). By

default, the presented results are obtained with dense

CRF post-processing (Krähenbühl and Koltun, 2011).

It is observed that, for the WSSS methods with only

image-level labels, our method obtains the best perfor-

mance. Specifically, Ours-L achieves 69.2% and 70.6%

mIoU on the PASCAL VOC val set with DeepLabV2

initialized with ImageNet and MS COCO pre-trained

weights, respectively, which recover 90.7% and 91.0%

of the upper bound of their fully-supervised counter-

parts. Our methods also achieve comparable perfor-

mance with recent state-of-the-art WSSS methods us-
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ing extra saliency maps, such as NSROM (Yao et al.,

2021), DRS (Kim et al., 2021), EPS (Lee et al., 2021c),

AuxSegNet (Xu et al., 2021), and EDAM (Wu et al.,

2021). Our method also outperforms recent methods

with superior backbone networks, such as PMM (Li

et al., 2021b), which uses Res2Net101 (Gao et al., 2021)

as the backbone for semantic segmentation. Note that

both Ours-M and Ours-L could surpass recent WSSS

methods with only image-level supervision, which demon-

strates the efficacy of our proposed learning-based and

memory-bank strategies.

The qualitative results of our proposed method and

some other methods’ results, including LIID (Liu et al.,

2020) and VWE (Ru et al., 2021), are presented in

Fig. 7. We could observe that our method significantly

outperforms other WSSS methods and coincides better

with the ground-truth labels.

4.3 Results on MS COCO dataset

To further verify the efficacy of the proposed method,

we conduct experiments on the MS COCO dataset (Lin

et al., 2014), which consists of much more images and

semantic categories than PASCAL VOC 2012 dataset.

The quantitative evaluation results on the MS COCO

dataset are presented in Table 3. We observe that Ours-

L and Ours-M achieve 36.2% and 36.1% mIoU on the

MS COCO val dataset, respectively. Both of them could

outperform other WSSS methods with only image-level

labels. Besides, our results are also better than the

results of recent state-of-the-art WSSS methods with

image-level labels and extra saliency cues. The superi-

ority of the performance on the MS COCO dataset also
demonstrates the efficacy of our methods.

We present some predicted example images of MS

COCO val dataset in Fig. 8. It is observed that our

method could produce comparable results with ground-

truth labels, though the MS COCO dataset is much

more challenging. However, when the background is

complex, as presented in the last two columns, the pre-

dicted results are clearly worse than the ground-truth

labels.

4.4 Ablation Study and Analysis

Quantitative Ablation Results. We conducted ab-

lation experiments on the PASCAL VOC dataset to

show the efficacy of the proposed methods. The quanti-

tative evaluation results of the generated CAMs using

baseline with different modules are presented in Table 4.

VWE denotes the visual words learning module with-

out DeCov regularization in our preliminary work (Ru

Table 3: Semantic segmentation results on MS COCO
dataset. The best results are highlighted in bold. Sup. de-
notes supervision type. Seg. denotes segmentation network.

Method Sup. Seg. val

Image-level Supervision + Saliency Maps.
DSRG CVPR’2018

I + S

DeepLabV2 26.0
Li et al . AAAI’2020 DeepLabV2 28.4
ADL TPAMI’2020 DeepLabV2 30.8
EPS CVPR’2021 DeepLabV2 35.7
AuxSegNet ICCV’2021 WideResNet38 33.9

Image-level Supervision Only.
SEC ECCV’2016

I

DeepLabV2 22.4
Saleh et al . TPAMI’2017 DeepLabV2 20.4
IAL IJCV’2020 DeepLabV2 27.7
SEAM CVPR’2020 WideResNet38 31.9
CONTA NeurIPS’2020 WideResNet38 32.8
CDA ICCV’2021 WideResNet38 33.2
PMM ICCV’2021 Res2Net101 35.7
Ours-M DeepLabV2 36.1
Ours-L DeepLabV2 36.2

Table 4: Ablation studies of our proposed methods on the
train and val set. The best results are highlighted in bold.

Backbone HP VWE VWL-M VWL-L train val

ResNet50 48.3 47.0
ResNet101 49.5 48.4

ResNet101

X 54.0 +4.5 53.1 +4.7

X X 55.1 +5.6 54.8 +6.4

X X 56.9 +7.4 56.4 +8.0

X X 57.3 +7.8 56.9 +8.5

et al., 2021). VWL-M and VWL-L denote the proposed

visual words learning module with learning-based and

memory-bank strategy, respectively. We observe that

the both proposed HP and VWL module could improve

the quality of the generated CAMs. Besides, our pro-

posed memory-bank and learning-based strategy could

further improve the mIoU on the train set to about

57%, which remarkably outperform recent state-of-the-

art methods presented in Table 1.

Visual Ablation Results. Our intention of the pro-

posed VWL and HP is to encourage the network to

activate more object extents and fewer background re-

gions, respectively. Though Table 4 shows that the pro-

posed methods could improve the quality of CAMs,

we still want to explore their effects on the generated

CAMs. Therefore, we further visualize the CAMs gener-

ated by baseline, baseline with only HP, baseline with

only VWL and our method. The visualization results

are presented in Fig. 9. It is observed that VWL typi-

cally discovers more object extents, while both of them

tend to activate adjacent background around objects.

HP could remarkably alleviate this drawback since it
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Ground Truth LIID VWE Ours-M

val set

Ours-L VWE Ours-M

test set

Ours-L

Fig. 7: Examples of the predicted segmentation from PASCAL VOC val and test set.
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Fig. 8: Examples of the predicted labels from MS COCO val dataset.

aggregates local discriminative information instead of

the whole image. Our method, which combines VWL

and HP, could jointly mine more object regions and re-

duce the unexpected background. Fig. 9 also shows IR-

Net (Ahn et al., 2019) could further dampen the falsely

activated regions and diffuse the object regions, so the

CAMs can align better with the semantic boundaries.

Codebook Analysis. To verify whether the learning-

based and memory-bank strategy could learn a reason-

able codebook, we visualize the learned visual words

represented in the codebook by extracting their corre-

sponding regions in an image. The visualization results

are presented in Fig. 10, where examples in each col-

umn are sampled from the images of a specific visual

word. We show that both the learning-based strategy

and memory-bank strategy could effectively learn visual

word representations from images. For example, on the

MS COCO dataset, our learning-based strategy could

successfully decompose person to face, body, hands

and legs etc., which could be used to supervise the

training of classification network and encourage more

object extents to be discovered. Empirically, we also

observe the learned visual words on MS COCO dataset

typically consist of fewer noisy samples than the PAS-

CAL VOC dataset, which indicates larger-scale dataset

could benefit our visual words learning strategies.
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Fig. 9: Visualization of the generated CAMs.

Codebook Initialization. In this work, the codebook

is simply randomly initialized. We do not use any ex-

tra pre-training or warm-up strategy for the codebook.

To explore the impact of the initialization method, we

present the performance of our method using random

sample initialization (initializing the codebook with ran-

domly sampled image features). The results are reported

in Tab. 5. As shown in Tab. 5, the memory-bank strat-

egy is not sensitive to the initialization method for the

codebook, while the learning-based strategy achieves

worse performance when using the random sample ini-

tialization. Technically, the codebook in the memory-

bank strategy does not straightly affect the optimiza-

tion process. Therefore, the impact of the initializa-

tion method is trivial. However, the codebook in the

learning-based strategy is a trainable parameter and

directly impacts the update process of the network pa-

rameters, thus notably affecting the performance of the

generated CAM.

Table 5: The performance of the generated CAMs with differ-
ent initialization methods. The results are evaluated on the
PASCAL VOC train set.

VWL-L VWL-M

Random initialization 57.3 56.9
Random sample initialization 55.8 56.6

Learning-based versus Memory-bank. The learning-

based strategy (VWL-L) and the memory-bank strat-

egy (VWL-M) are both inspired by the simple Bag of

Visual Words model. Specifically, in VWL-L, the visual

word representation for an input image is automatically

learned with the devised loss functions, while VWL-

M extracts the visual word representations by online

clustering. In other words, VWL-L and VWL-M model

an image implicitly and explicitly, respectively. There-

fore, we empirically find VWL-M could yield better vi-

sual words than VWL-L. Besides, as discussed in Sec-

tion 4.4, compared to VWL-M, VWL-L is slightly sen-

sitive to the initialization of the codebook. However, on

the efficiency side, due to the online reconstruction op-

eration, the training process of VWL-M takes a slightly

longer time than VWL-L.

To better understand the quality of the generated

visual words by the learning-based and memory-bank

strategy, in Fig. 11, we visualize the extracted visual

word features with t-sne (Van Der Maaten, 2014). The

features for visualization are generated by averaging

features of different visual word regions in each input

image. As shown in Fig. 11, the clusters of VWL-L are

more diverse than VWL-M’s, i.e., VWL-M learns bet-

ter visual words than VWL-L, which is attributed to

the explicit modeling of visual words in VWL-M. We

then use the extracted visual word frequencies of each

image to predict the image-level labels. The classifica-

tion accuracies are reported in Tab. 6. VWL-M is still

superior to VWL-L, demonstrating the better visual

words learning capacity.

Table 6: The classification accuracies of the VWL-L and
VWL-M. The performance is evaluated on the PASCAL VOC
train set.

VWL-L VWL-M

Acc (%) 81.3 84.8

DeCov loss. In the loss function (Eq. (14)) for learn-

ing codebook in the learning-based strategy, we intro-

duced the DeCov loss (Cogswell et al., 2017) to re-

duce the redundancy of the learned visual word rep-

resentations. In Table 4, we show that learning visual

words with DeCov loss could improve the mIoU of gen-

erated CAMs on PASCAL VOC train set from 55.1%

to 57.3%. To further verify whether DeCov loss could

eliminate the redundancy of the codebook, we visual-

ized the similarity matrix of learned visual word repre-

sentations. As presented in Fig. 12, when using DeCov

loss regularization, the cosine similarity between two
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Ours-L on VOC Ours-L on COCO Ours-M on VOC Ours-M on COCO

Fig. 10: Visualization of the visual words learned by learning strategy and memory-bank strategy. Each column denotes the
example images sampled from a visual word category.
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Fig. 11: t-sne visualization of the generated visual words. Dif-
ferent colors denote the different visual words

Fig. 12: Visualization of the similarity matrix between each
visual words without (left) and with (right) DeCov loss.

different word representations is very close to 0. Taking

the mIoU improvements in Table 4 into consideration,

we demonstrate our regularization loss in Eq. (14) could

successfully reduce codebook redundancy and improve

CAMs quality.

GAP in HP for Object Completeness. Some pre-

vious works (Kolesnikov and Lampert, 2016; Zhou et al.,

2016) show that GAP tends to overestimate the object

size while GMP tends to underestimate it. In the design

train val

w/o GAP 41.1 39.9
w/ GAP 57.3 56.9

  GAP   GAP

Fig. 13: Quantitative and visual results of hybrid pooling with
(w/ ) and without (w/o) GAP.

of our hybrid pooling, we incorporate GAP to ensure

object completeness. To verify the efficacy of GAP in

HP, we present the quantitative and visual results of

the generated CAMs using HP with and without GAP.

As shown in Fig. 13, using GAP in HP could bring a

large mIoU improvement of about 16%. The qualita-

tive results also show that HP without GAP tends to

discover only incomplete object regions while incorpo-

rating GAP could remarkably alleviate this problem.

Parallel Branches in HP. In the Hybrid Pooling

module (HP), the parallel branches are used to produce

multi-scale local information via max-pooling with dif-

ferent split sizes. Empirically, max-pooling with a small

split size r aggregates less foreground and background

information, leading to more discriminative object ac-

tivation in CAMs. On the contrary, max-pooling with

a large r aggregates more foreground and unexpected

background information. In this work, we balance the

background and foreground information aggregation by

averaging the features with the different split sizes, i.e.,

parallel branches in HP. We present the impact of the

split sizes in Tab. 7. Tab. 7 shows that using max-

pooling with the split size of {1, 2, 4} in HP can activate
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the background and foreground regions in CAMs well,

and achieve the best performance.

Table 7: Impact of the set of split size in HP. The results are
evaluated on the PASCAL VOC train set.

r {1} {1, 2} {1, 2, 4} {1, 2, 4, 8}

train 56.2 56.1 57.3 57.0

Comparison to GWRP and LSE. We compare the

proposed HP with the global weighted rank pooling

(GWRP) (Kolesnikov and Lampert, 2016) and Log-

Sum-Exp pooling (LSE) (Pinheiro and Collobert, 2015).

The experiments are conducted with ResNet101 (He

et al., 2016) as the backbone (without visual word learn-

ing). As shown in Tab. 8, our method clearly outper-

forms GWRP and LSE. Besides, compared to GWRP

and LSE, our HP is easier to implement since it only

incorporates avg-pooling and max-pooling.

Table 8: Comparison of the pooling method on the PASCAL
VOC train set.

GAP GWRP LSE Our HP

train 49.5 50.6 51.6 54.0

GAP in Visual Word Learning. As illustrated in

Section 3.5, we use GAP instead our HP for predict-

ing the visual word labels. We conduct experiments us-

ing HP in visual word learning to explore its impact.

As shown in Tab. 9, using HP in visual word learning

(VWL-HP) also achieves notable improvements, demon-

strating the effectiveness of VWL. Nevertheless, using

GAP in visual word learning (VWL-GAP) could further

outperform VWL-HP. We analyze the reason in Sec-

tion 3.5: The pseudo visual words are generated based

on all pixels of the feature maps. HP mainly consid-

ers partial discriminative information while GAP could

aggregate all information. Therefore, we think GAP is

the better pooling method for predicting visual words,

which is also verified in Tab. 9.

Table 9: Comparison of the pooling method in the visual word
learning process on the PASCAL VOC train set.

without VWL VWL-HP VWL-GAP

train 54.0 55.5 57.3

4.5 Effect of Hyper-parameters

This subsection presents the quantitative evaluation re-

sults of the generated CAMs on the PASCAL VOC

train and val set with different hyper-parameter set-

tings. All the results are evaluated and reported in

mIoU.

Number of visual words k. In Table 10 (a), we present

the impact of the number of visual words k by set-

ting it to {128, 256, 384, 512} and fixing other hyper-

parameters (the classification network to generate CAMs

is trained with the learning-based strategy). As ob-

served in Table 10 (a), our method with different k

could consistently outperform the baseline in Table 4,

which demonstrates the effectiveness of our motivation.

The best result is obtained with k = 256.

Weight factor γ. The effect of the weight factor γ in

HP is presented in Table 10 (b), which is used to trade

off the GAP and GMP features. We observe that γ =

2 works well, while the performance clearly decreases

when γ = 1, 4 since the output feature will degrade to

GMP or GAP when γ is too small or big.

Temperature parameter τ . In Eq. (3), we use a tem-

perature parameter τ to control the smoothness of the

visual word probabilities. As presented in Table 10 (c),

we empirically observe that τ = 1.0, 0.8 are proper val-

ues for generating CAMs with higher quality.

Momentum coefficient ρ. For the memory-bank strat-

egy, a momentum coefficient ρ in Eq. (7) to manipulate

the update rate of the codebook. In Table 10 (d), we

show that ρ = 1e−3 works finely since a large ρ makes

the codebook dependent on the features from the cur-

rent batch, while a smaller ρ means a slower update rate

and may make the codebook not adaptable to training

iterations.

5 Conclusion

Previous CAMs typically only cover partial discrimina-

tive object regions and some unexpected background.

To tackle the first problem, we propose the visual words

learning module. By enforcing the network to learn aux-

iliary visual words, more object regions could be acti-

vated. To perform unsupervised learning of visual words

with only image-level labels, we devise the learning-

based and memory-bank strategies to update the code-

book. To mitigate the second problem, we propose hy-

brid pooling, which aggregates local maximum and global

average features to simultaneously reduce background
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Table 10: Impact of hyper-parameters.

k

128 256 384 512

train 54.8 57.3 55.6 55.4
val 54.5 56.9 55.1 54.9

(a) Number of visual words

γ

1 2 3 4

55.2 57.3 56.6 55.2
54.5 56.9 55.8 54.3

(b) Weight factor.

τ

0.6 0.8 1.0 1.2

56.9 57.1 57.3 56.7
56.3 56.4 56.9 55.9

(c) Temperature parameter.

ρ

1e−4 1e−3 1e−2 1e−1

55.6 56.9 56.3 55.9
55.0 56.4 55.6 55.3

(d) Momentum coefficient.

regions in CAMs and ensure object completeness. We

experimentally demonstrated the superiority of our pro-

posed method by surpassing recent state-of-the-art per-

formance on the PASCAL VOC 2012 and MS COCO

2014 dataset.
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