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Abstract
Although deep learning-based methods have dominated stereo matching leaderboards by yielding unprecedented disparity
accuracy, their inference time is typically slow, i.e., less than 4 FPS for a pair of 540p images. The main reason is that the
leading methods employ time-consuming 3D convolutions applied to a 4D feature volume. A common way to speed up the
computation is to downsample the feature volume, but this loses high-frequency details. To overcome these challenges, we
propose a displacement-invariant cost computation module to compute the matching costs without needing a 4D feature
volume. Rather, costs are computed by applying the same 2D convolution network on each disparity-shifted feature map
pair independently. Unlike previous 2D convolution-based methods that simply perform context mapping between inputs and
disparity maps, our proposed approach learns to match features between the two images. We also propose an entropy-based
refinement strategy to refine the computed disparity map, which further improves the speed by avoiding the need to compute
a second disparity map on the right image. Extensive experiments on standard datasets (SceneFlow, KITTI, ETH3D, and
Middlebury) demonstrate that our method achieves competitive accuracy with much less inference time. On typical image
sizes (e.g., 540 × 960), our method processes over 100 FPS on a desktop GPU, making our method suitable for time-critical
applications such as autonomous driving. We also show that our approach generalizes well to unseen datasets, outperforming
4D-volumetric methods. We will release the source code to ensure the reproducibility.

Keywords Stereo matching · Feature volume · Autonomous driving · Displacement-invariant cost computation

1 Introduction

Deep learning-based methods have achieved state-of-the-art
on most of the standard stereo matching benchmarks (i.e.,
KITTI Menze and Geiger 2015, ETH3D Schöps et al., 2017,
and Middlebury Scharstein et al., 2014). This success is
achieved by aggregating information in a 4D feature volume
(height × width × disparity levels × feature dimension),
which is formed by concatenating each feature in one image
with its corresponding feature in the other image, across all
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pixels and disparity levels. To process such a 4D volume,
expensive 3D convolutions are utilized, thus making these
methods significantly more time- and space-intensive than
traditional approaches like semi-global matching (SGM)
Hirschmuller (2008) and its variants Hernandez-Juarez et
al. (2016). For example, the traditional method known as
embedded SGM Hernandez-Juarez et al. (2016) achieves
100 FPS (frames per second) for a pair of 540p images,
whereas most deep learning-based methods only manage
about 2 FPS. Moreover, since this 4D feature volume grows
with the cube of resolution, high-resolution depth estimation
is prohibitively expensive.

In this paper, we propose to overcome these limitations
with a displacement-invariant cost computation module that
learns to match features of stereo images using only 2D con-
volutions. Unlike previous 2D convolution-based methods
(Mayer et al., 2016; Liang et al., 2018; Pang et al., 2017),
however, ours does not rely upon context matching between
pixels and disparities; rather, due to its unique design, our
network learns to match pixels between the two images. The
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Fig. 1 Our method achieves stereo matching accuracy comparable to
state-of-the-art on the KITTI 2015 test dataset, while operating at 100
FPS. (All GPU methods are timed on an NVIDIA RTX Titan GPU.
For the methods that do not release their source code, we use our own
implementation instead. Best viewed on screen.)

key insight behind our approach is to compute the cost of each
disparity shift independently using the same 2D convolution-
based network. This vastly reduces the number of parameters
and memory requirements for training and it also reduces
time and memory costs during inference, as it does not need
to explicitly store a 4D feature volume before cost computa-
tion. Also, we leverage entropymaps that are computed from
3D cost volumes as confidence maps to guide the refinement
of disparities. As a result (cf., Fig. 1), our proposed method is
not only significantly faster than 3D convolution-based vol-
umetric methods, e.g., GA-Net Zhang et al. (2019), but it
also achieves better cross-dataset generalization ability. The
entire system is trained end-to-end.

Our paper makes the following contributions:

• A displacement-invariant cost computation module for
stereo matching that uses 2D convolutions on disparity-
shifted feature map pairs, which achieves significant
speedup over standard volumetric methods with much
lower memory requirements.

• Anewentropybased refinement scheme that bypasses the
need for estimating disparity for the right view, which
further reduces the processing time and memory con-
sumption.

• State-of-the-art performance on all three benchmarks
compared with existing real-time methods, and better
generalization performance than existing methods.

2 RelatedWork

Given a pair of rectified stereo images, stereo matching
attempts to find a matching point for each pixel on the corre-
sponding epipolar line. Stereomatching has been extensively
studied for decades in computer vision. Here we discuss a
few popular and recent methods that are closely related to

our approach. Interested readers are referred to recent survey
papers such as Scharstein and Szeliski (2002) and Janai et al.
(2017).

2.1 Traditional StereoMatching

Traditional stereo matching methods can be roughly divided
into two classes: local methods and global methods. The typ-
ical pipeline for a local method has four consecutive steps:
(1) compute costs at a given disparity for each pixel; (2)
sum up the costs over a window; 3) select the disparity that
has the minimal cost; (4) perform a series of post-processing
steps to refine the final results. Local methods (Scharstein
and Szeliski 2002; Weber et al., 2009) have the advantage of
speed. Since each cost within awindow can be independently
computed, these methods are highly parallelizable. The dis-
advantage of such methods is that they can only achieve
sub-optimal results because they only consider local infor-
mation. Global methods (Zhang et al., 2015; Taniai et al.,
2018) have been proposed to address this issue. They treat the
disparity assignment task as a maximum flow / minimum cut
problem and try tominimize a global cost function. However,
such algorithms are typically too slow for real-time appli-
cations. Semi-global matching (SGM) Hirschmuller (2008)
is a compromise between these two extremes, which could
achieve more accurate results than local methods without
sacrificing speed significantly.

2.2 Deep StereoMatching

Unlike traditional methods, deep stereo matching methods
can learn to deal with difficult scenarios, such as repetitive
textures or textureless regions, from ground truth data. A
deep stereo method is often trained to benefit from one of
the following aspects: (1) learning better features or metrics
(Žbontar and LeCun 2016; Cai et al., 2020); (2) learning
better regularization terms (Seki and Pollefeys 2017); (3)
learning better refinement Khamis et al. (2018); (4) learning
better cost aggregation (Zhang et al., 2019; Cai andMordohai
2020); (5) learning direct disparity regression Mayer et al.
(2016). Based on the network structure, we divided these
methods into two classes:

Direct Regression methods often use an encoder-decoder
to directly regress disparity maps from input images (Mayer
et al., 2016; Liang et al., 2018; Tonioni et al., 2019; Yin et
al., 2019). Such methods learn in a brute force manner, dis-
carding decades of acquired knowledge obtained by classical
stereo matching research. When there are enough training
data, and the train and test distributions are similar, such
methods can work well. For example, iResNet Liang et al.
(2018) won first place in the 2018 Robust Vision Challenge.
Also, since suchmethods only employ 2D convolutions, they
can easily achieve real-time or near real-time processing and
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have low GPU memory consumption. However, these meth-
ods lack the ability to generalize effectively, e.g., DispNet
Mayer et al. (2016) fails random dot stereo tests Zhong et al.
(2018).

Volumetric Methods (Kendall et al., 2017; Zhang et al.,
2019; Zhong et al., 2017; Smolyanskiy et al., 2018; Chang
et al., 2020; Zhang et al., 2020; Cai and Mordohai 2020;
Cai et al., 2020; Badki et al., 2021) build a 4D feature vol-
ume using features extracted from stereo pairs, which is then
processed with multiple 3D convolutions. These methods
leverage the concept of semi-global matching while replac-
ing hand-crafted cost computation and cost aggregation steps
with 3D convolutions. Since this type of network is forced
to learn matching, volumetric methods easily pass random
dot stereo tests Zhong et al. (2018). However, they suffer
fromhigh processing times and highGPUmemory consump-
tion Zhang et al. (2019). To overcome these issues, some
researchers build the feature volume at a lower image res-
olution to reduce memory footprint (Khamis et al., 2018;
Yang et al., 2019), or prune the feature volume by generat-
ing a confidence range for each pixel and aggregating costs
within it (Duggal et al., 2019; Zhou et al., 2018). However,
lowering the resolution of the feature volume makes it diffi-
cult to recover high-frequency information. To restore these
lost details, volumetric networks typically use color-guided
refinement layers as a final processing stage.

2.3 Real-time StereoMatching

Several real-time deep stereo matching networks have been
proposed recently. Khamis et al. (2018) achieves real-time
performance at the cost of losing high frequency details due
to a low resolution 4D cost volume, i.e., 1/8 or 1/16 of the
input images. (Mayer et al., 2016; Tonioni et al., 2019) dis-
card the general pipeline of stereo matching and design a
context regression network that directly regresses disparity
maps from the input images; these approaches suffer general-
ization problems as shown in Zhong et al., (2018). Recently,
Bi3D Badki et al. (2020) proposes a trade-off strategy to bal-
ance the processing latency and depth quality. By regressing
a binary mask from a stereo image pair and their matching
costs for each disparity level, it can classify objects as being
closer or farther than a given distance or provide quantized
depth with different quantization. Note that in this case, they
cannot generate disparity maps with sub-pixel accuracy. To
alleviate this drawback and predict disparity maps with a full
continuous range, they move back to a 3D encoder-decoder
architecture to aggregate information from the neighboring
disparity planes and thus loss the real-time processing capa-
bility. To overcome the limitations of previous methods, our
proposed approach uses a displacement-invariant cost com-
putation module to achieve super real-time inference with
full range continuous disparity estimation while, at the same

time, preservingmost high-frequency details by constructing
a 3D cost volume on 1/3 of the input resolution. Moreover,
experiments in Sect. 4.2 show that ourmethod achieves better
generalization ability than 4D volumetric methods.

3 Method

In this section, we start with the overall pipeline of our
framework and then provide a detailed analysis of our pro-
posed displacement-invariant cost computationmodule. The
details of our network design is also included in this section.

3.1 Framework Overview

As shown in Fig.2, our stereo framework consists of four
major components i.e., Feature Net, Matching Net, Projec-
tionLayer andRefineNet. The informationflow is as follows.
Given a pair of stereo images, the Feature Net first embeds
them into feature maps. Then the Matching Net takes left
features and disparity-shifted right features at each disparity
level to generate a 3D cost volume. The Projection Layer
projects the cost volume to obtain a disparity map while also
computing an entropy map. Finally, the Refine Net takes the
left image and the output of the Projection Layer to generate
the final disparity map.

The key difference between our framework and previ-
ous volumetric methods is the cost computation part. In the
existing volumetric methods, they often need to construct
a 4D feature volume and use 3D convolutions to compute
the matching cost, which are the main barriers for applying
volumetric methods to high-resolution images. However, in
our solution, we need neither 4D feature volumes nor 3D
convolutions to learn the matching cost. By processing each
disparity shift independently, our network only needs 2D
convolutions to perform cost computation. We also propose
a new refinement scheme using entropy, which bypasses the
need to estimate disparity for the right view.

3.2 Displacement-Invariant Cost Computation

Existing volumetric methods construct a 4D feature volume,
which is processed with 3D convolutions to learn the match-
ing cost, as shown in Fig. 3a. With such an approach, the
matching cost for pixel p at disparity level d is calculated as:

c3D(p, d) = g3D(φ4D( f (I L(p)) ‖ f (I R(p − d)))), (1)

where f (·) is a feature network to convert images to fea-
ture maps, φ4D(·‖·) denotes the concatenation of disparity-
shifted feature map pairs on every possible disparity shift,
and g3D(·) is a 3D convolution-based matching network that
computes and aggregates the matching cost based on feature
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Fig. 2 Overall Architecture of our Stereo Network, consisting of
four components: Feature Net, Matching Net, Projection Layer and
Refine Net. Given a pair of stereo images, the Feature Net produces
feature maps which are processed by the Matching Net to generate a

3D cost volume (see Sect. 3.2). The Projection Layer projects the vol-
ume to obtain a disparity map while also computing an entropy map.
The Refine Net takes the left image and the output of the Projection
Layer to generate the final disparity map.
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Fig. 3 Volumetric method and our Proposed method. Our method
runs share-weighted Matching Net on disparity shifted feature maps
using 2D convolutions before 3D cost volume formation. In contrast,

previous volumetric methods perform matching using 3D convolutions
after constructing a 4D feature volume.

maps and neighboring disparity shifts. Therefore, the cost
will be different if we shuffle the concatenated feature maps
along the disparity dimension.1

In contrast, our proposed Displacement-Invariant Cost
Computation (DICC) only requires 2D convolutions. As
shown in Fig. 3b, the exact same matching net is applied
to each disparity-shifted feature map pair, thus ensuring that
cost computation is only dependent on the current disparity
shift. Unlike 3D convolution-based methods, our matching
cost will be identical if we shuffle the concatenated feature
maps along the disparity dimension.

Specifically, let us consider a matching cost computation
for pixel p at disparity level d. In our method, we compute

1 In our DICC, the total Operations for constructing a cost volume
should be 5.4 × 64 = 345.6 Gflops. However, since the 64 Matching
Nets can process in parallel, we only put theOperations in oneMatching
Net in the table.

the matching cost as follows:

c2D(p, d) = g2D( f (I L(p)), f (I R(p − d))), (2)

where f (·) is a feature net, and g2D(·) is a matching net
that computes the matching cost at each disparity level inde-
pendently. Similar to MC-CNN Abontar and LeCun (2016),
our proposed approach learns a cost from a deep network.
However, MC-CNN computes the matching cost based on
patches and then uses traditional semi-global cost aggrega-
tion steps to generate the disparity map. Our approach, on the
other hand, is an end-to-end method that uses a network to
perform cost computation and aggregation simultaneously.

To better understand and compare the matching cost com-
putation, we implement Baseline3D using Eq. (1) for cost
computation, and we implement Ours using Eq. (2) to com-
pute the matching cost. Baseline3D and Ours networks share
the same feature net and projection layer, but Baseline3D
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Table 1 Computational resource comparison betweenOurMatchingNet and Baseline3DMatchingNet. Runtime ismeasured on 540(H)×960(W )

resolution stereo pairs with 192(D) disparity levels. Note that the Operations are computed on one Matching Net2 .

Methods Runtime(s) Params Memory Operations

3D Matching Net 0.150 3.84M 1
3 H × 1

3W × 1
3 D × 2F 733.8 Gflops

Our Matching Net 0.01 1.16M 1
3 H × 1

3W × 2F 5.4 Gflops

constructs a 4D feature volume as in Fig. 3a and replaces the
2D convolutions in our Matching Net with 3D convolutions.
A detailed comparison can be found in Sect. 4.2.

In Table 1, we compare the computational resources
needed for Baseline3D and our proposedMatchingNet. Note
that in order to build a cost volume,we need to run ourMatch-
ing Net 1

3D times (the cost volume is built on 1
3D of the

image size.). Since all disparity levels are processed inde-
pendently, we are allowed to run our Matching Net either in
parallel or sequentially. To construct a cost volume of size
1
3H × 1

3W × 1
3D, the former one will need a memory of

1
3H × 1

3W × 1
3D × 2F but can finish in 0.010s (including

memory allocation time). The latter one just needs a memory
of 1

3H × 1
3W × 2F as all Matching Nets can share the same

memory space and can finish in 0.07s.We ignore thememory
cost of convolution layers here as they may vary on different
architectures. It is worth noting that the main obstacle for
training a volumetric network on high resolution stereo pairs
is that it requires the network to initialize a giant 4D fea-
ture volume in GPU memory before cost computation and
the size of the feature volume increases as the cube of the
inputs. However, since the 4D feature volume is not required
for our method, we can handle high resolution inputs and
large disparity ranges, i.e., our method can process a pair of
1500×1000 images with 400 disparity levels in Middlebury
benchmark without further downsampling the feature size to
1/64 as in HSM Yang et al.(2019).

Another advantage of our method is its better generaliza-
tion capability. Unlike volumetric methods that utilize 3D
convolutions to regularize H ,W , D dimensions simultane-
ously, we force our method to learn matching costs only
from H ,W dimensions. We argue that connections between
H × W plane and D dimension is a double-edged sword in
computing the matching costs. While such connections do
improve results on a single dataset, in practice we find that
they lead to higher cross-dataset errors as verified in Sect. 4.2.

3.3 Network Architecture Details

Our framework consists of four major parts: (1) Feature Net,
(2)Matching Net, (3) Projection Layer, and (4) Refine Net as
shown in Fig. 2. Our architecture design follows the general
pipeline in deep stereo matching but with significant differ-
ences as explained below.

Table 2 Feature Net architecture. Conv_f8 does not have batch nor-
malization or ReLU

Feature Net
layer k, s, d chns input

conv_f1 3×3, 1, 1 3/32 image

conv_f2 3×3, 3, 1 32/64 conv_f1

conv_f3 3×3, 1, 4 64/128 conv_f2

conv_f4 3×3, 1, 8 128/128 conv_f3

branch_1 64 × 64 avg. pool
1 × 1, 1, 1, 128/32
bilinear
interpolation

conv_f4

branch_2 16 × 16 avg. pool
1 × 1, 1, 1, 128/32
bilinear
interpolation

conv_f4

conv_f7 3×3, 1, 1 192/96 conv_f4+branch1+branch2

conv_f8 1×1, 1, 1 96/32 conv_f7

Feature Net. A deeper feature net has a larger recep-
tive field and can extract richer information. Therefore,
researchers often use more than 15 layers for feature extrac-
tion (Kendall et al., 2017; Khamis et al., 2018; Zhang et
al., 2019). In practice, we find that increasing the number
of layers in the feature net does not help much for the final
accuracy, e.g., MC-CNN Abontar and LeCun (2016). There-
fore, in our feature net design, we use a shallow structure
that only contains 8 convolutional layers. We first downsam-
ple the input images using a convolution layer with a stride
of 3. Three dilated convolutions are then applied to enlarge
the receptive field. We also adopt a reduced spatial pyramid
pooling (SPP) module He et al. (2014) to combine features
from different scales to relieve the fixed-size constraint of a
CNN. Our SPP module contains two average pooling layers.
Each of them follows a convolution and a bilinear upsam-
pling layer. We concatenate feature maps that feed into our
SPP module, then pass them to a convolution with output
channel size of 96. The final feature map is generated by a
convolutionwithout batch normalization and activation func-
tions. Following previouswork (Kendall et al., 2017; Khamis
et al., 2018; Zhang et al., 2019), we use 32-channel feature
maps. A detailed description is shown in Table 2.

Matching Net. Our Matching Net computes a cost map
on each disparity level. We adopt a skip-connected U-Net
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Table 3 Matching Net architecture. Conv_m14 does not have batch
normalization or ReLU.

Matching Net
layer k, s, d chns input

conv_m1 3×3, 1, 1 64/32 concat features

conv_m2 3×3, 2, 1 32/48 conv_m1

conv_m3 3×3, 1, 1 48/48 conv_m2

conv_m4 3×3, 2, 1 48/64 conv_m3

conv_m5 3×3, 1, 1 64/64 conv_m4

conv_m6 3×3, 2, 1 64/96 conv_m5

conv_m7 3×3, 1, 1 96/96 conv_m6

conv_m8 3×3, 2, 1 96/128 conv_m7

conv_m9 3×3, 1, 1 128/128 conv_m8

deconv_m1 4×4, 2, 1 128/96 conv_m9

conv_m10 3×3, 1, 1 192/96 deconv_m1+conv_m7

deconv_m2 4×4, 2, 1 96/64 conv_m10

conv_m11 3×3, 1, 1 128/64 deconv_m2+conv_m5

deconv_m3 4×4, 2, 1 64/48 conv_m11

conv_m12 3×3, 1, 1 96/48 deconv_m3+conv_m3

deconv_m4 4×4, 2, 1 48/24 conv_m12

conv_m14 3×3, 1, 1 24/1 deconv_m4

Ronneberger et al. (2015) with some modifications. In par-
ticular, we downsample each concatenated feature map four
times using 3 × 3 convolutions with a stride of 2. For each
scale, we filter the feature maps with one 3 × 3 convolu-
tion followed by a batch normalization layer and a ReLU
activation layer. We set the feature size of each scale at 48,
64, 96 and 128 respectively. For upsampling layers, we use
bi-linear upsampling and a 3 × 3 convolution layers with a
stride of 1 and reduce the feature dimension accordingly. A
3×3 convolutional layer with feature size of 1, with no batch
normalization nor activation is applied to generate the final
cost map. Our Matching Net detailed structure is shown in
Table 3.

Projection layer.After building a 3Dcost volume,we use a
projection layer to select the disparity with the lowest match-
ing cost. Similar to previous volumetric methods (Kendall et
al., 2017; Zhong et al., 2018; Zhang et al., 2019), we use
the soft-argmin operation to generate a disparity. The soft-
argmin operation is defined as:

d̂ :=
D∑

d=0

[d × σ(−cd)], (3)

where cd is the matching cost at disparity d, D is the
preset maximum disparity level and σ(·) denotes the softmax
operator.

With little additional computation, the projection layer
also generates an entropy map to estimate the confidence of

Fig. 4 Entropy Map Analysis. In the entropy map, red color corre-
sponds to high entropy value. Best viewed in color.

each pixel. The entropy of each pixel is defined as:

h = −
D∑

d=0

σ(−cd) log(σ (−cd)). (4)

We apply a softmax operation on the cost to convert it to a
probability distribution before computing the entropy. Fig. 4
shows the resulting entropy map: pixels on textureless areas
(e.g., red dot in the carpet) have high entropy,whereas the pix-
els on the texture-rich areas (e.g., blue dot in the shelf) have
low entropy. The bottom of the figure shows the post-softmax
probability distribution curves of two selected pixels. A uni-
modal curve indicates low entropy (high confidence) for the
pixel’s estimated disparity, whereas a multimodal curve indi-
cates high entropy (low confidence).

Refine Net. There are several choices in designing our
refine net. StereoNet Khamis et al. (2018) proposes a refine
net that takes the raw disparity map and the left image as
inputs. StereoDRNetChabra et al. (2019) uses a similar refine
net but takes the disparitymap, the left image, imagewarping
error map and disparity warping error map as inputs. The
main drawback of such a design is that computing these error
maps requires both left and right disparity maps, which costs
extra time and memory. As shown in Fig. 4, the entropy map
can provide similar information with less computation and
memory. Therefore, we use a similar refine net architecture
as StereoDRNet Chabra et al. (2019) (Table 4) but use the
disparity map, left image and entropy map as inputs.

There is a long history of leveraging entropy as a certainty
measurement in conventional stereo matching algorithms.
Scharstein and Szeliski (1998) takes the negative entropy
of the probability distribution in the disparity hypotheses to
form an explicit local distribution model. This allows the
algorithm to control the amount of diffusion based on the
disparity confidence. In this paper, we introduce the entropy
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Table 4 Refine Net architecture

Refine Net
layer k, s, d chns input

conv_r1 3×3, 1, 1 1/16 disparity

conv_r2 3×3, 1, 1 20/32 conv_r1+entropy+left image

ResBlock_1 3×3, 1, 1 32/32 conv_r2

ResBlock_2 3×3, 1, 2 32/32 ResBlock_1

ResBlock_3 3×3, 1, 4 32/32 ResBlock_2

ResBlock_4 3×3, 1, 8 32/32 ResBlock_3

ResBlock_5 3×3, 1, 1 32/32 ResBlock_4

ResBlock_6 3×3, 1, 1 32/32 ResBlock_5

conv_r3 3×3, 1, 1 32/1 ResBlock_6

output ReLU(conv_r3 + disparity)

map to a supervised deep framework and serve it as an atten-
tion mechanism for disparity refinement.

It is also worth noting that our entropy map is different
from the uncertainty map that has been widely used in depth
estimation algorithms Poggi et al. (2020). The uncertainty
map is often estimated by a networkKim et al. (2019) or from
a Bayesian model Poggi et al. (2020). In our framework, we
only need a guidance for the Refine Net to indicate the areas
that may not be accurately estimated. Both the uncertainty
and the entropy map can serve this purpose but the later one
has much lower computational complexities.

3.4 Loss Function

Following GA-Net Zhang et al. (2019), we use the smooth �1
loss as our training loss function, which is robust at disparity
discontinuities and has low sensitivity to outliers or noise.
Our network outputs two disparity maps: a coarse prediction
dcoarse from the soft-argminoperation and a refinedonedrefine
from our refine net. We apply supervision on both of them.
Given the ground truth disparity dgt , the total loss function
is defined as:

Ltotal = �(dcoarse − dgt) + λ�(drefine − dgt), (5)

where λ = 1.25, and

�(x) =
{
0.5x2, |x | < 1
|x | − 0.5, otherwise.

(6)

4 Experimental Results

We implemented our stereo matching network in PyTorch.
We used the same training strategy and data argumentation
as described in GA-Net Zhang et al. (2019) for easy compar-
ison. Our network was trained in an end-to-end manner with

the Adam optimizer (β1 = 0.9, β2 = 0.999). We randomly
cropped the input images to 240× 576 and used a batch size
of 104 on 8 Nvidia Tesla V100 GPUs. We pre-trained our
network from random initialization and a constant learning
rate of 1e-3 on the SceneFlow dataset for 60 epochs. Each
epoch took around 15 minutes and the total pre-training pro-
cess took around 15 hours. For inference, our network can
run 100 FPS on NVIDIA Titan RTX and occupies less than
2 GB memory for a pair of 384×1280 stereo images. We
add different disparity levels as a batch and run the Match-
ing Net over it to achieve parallelism. We comprehensively
studied the characteristics of our network in ablation stud-
ies and evaluated our network on leading stereo benchmarks.
For each benchmark results, we follow the training protocol
of GANet Zhang et al. (2019) and finetune our SceneFlow
pretrained model on each benchmark separately.

4.1 Datasets

Our method was evaluated on the following datasets:
SceneFlow dataset. SceneFlow Mayer et al. (2016) is a

large synthetic dataset containing 35454 training and 4370
testing images with a typical image dimension of 540×960.
This dataset provides both left and right disparity maps, but
we only use the left ones for training. Note that for some
sequences, the maximum disparity level is larger than a pre-
set limit (192 for this dataset), so we exclude these pixels
in our training and evaluation. We use this dataset for pre-
training and ablation studies.

KITTI 2015 dataset. KITTI 2015 contains 200 real-world
drive scene stereo pairs for training and 200 for testing. They
have a fixed baseline but the focal lengths could vary. The
typical resolution of KITTI images is 376×1240. The semi-
dense ground truth disparitymaps are generated byVelodyne
HDL64E LiDARs with manually inserted 3D CAD models
for cars Menze and Geiger (2015). From the training set,
we randomly select 160 frames for training and 40 frames
for validation. We use a maximum disparity level of 192 in
this dataset. We report our results on the test set benchmark,
whose ground truth is withheld.

ETH3D stereo dataset.ETH3D is a small dataset that con-
tains 27 images for training and 20 for testing, for both indoor
and outdoor scenes. It is a challenging dataset in that most
stereo pairs have different lighting conditions. In otherwords,
the Lambertian assumption for stereomatchingmay not hold
in some areas. Moreover, unlike all the other datasets which
have color inputs, ETH3D is grayscale. It requires the net-
work tohandle different channel statistics and extract features
that are robust to lighting conditions. The maximum input
resolution is 576×960. Since the maximum disparity of this
dataset is very small, we reduce the maximum disparity level
to 48 for this dataset.
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Middlebury 2014 stereo dataset. Middlebury 2014 is
another small dataset. It contains 15 images for training and
15 for testing. This dataset is challenging for deep stereo
methods not only because of the small size of the train-
ing set, but also due to the high resolution imagery with
many thin objects. The full resolution of Middlebury is up
to 3000 × 2000 with 800 disparity levels. To fit in GPU
memory, most deep stereo methods can only operate on
quarter-resolution images. As a consequence, many details
are missed at that resolution which leads to a reduced accu-
racy. We use half resolution and 432 disparity levels.

4.2 Model Design Analysis

In this section, we analyze the components of our net-
work structure and justify the design choices, including
the performance differences between our proposed method,
hand-crafted cost computation andBaseline3D, the effective-
ness of entropy map and the robustness and generalizability
of our network. All experiments are conducted on the Scene-
Flow dataset except the robustness experiment.

To fairly analyze the benefits and disadvantages of our
method and volumetric method (Baseline3D), we compare
them using exactly the same training strategy, and set-
tings. For the sake of completeness, we also compare the
performance with hand-crafted cost using cSSD(p, d) =∑

q∈Np

∥∥ f (I L(p)) − f (I R(p − d))
∥∥2
2 , whereNp is a local

patch around p.

A detailed comparison is shown in Table 5. As expected,
using hand-crafted costs fails to generate meaningful qre-
sults. Baseline3D achieves the best performance in accuracy
but is 15× slower thanOurs. Comparedwith Baseline3D, the
performance of proposed method increases from 0.78 pixels
EPE to 1.09 pixels. In fact, our method achieves the top accu-
racy among all real-time algorithms as shown in Table 6.

A qualitative comparison of Ours and Baseline3D is pro-
vided in Fig. 5, where both approaches generate high-quality
disparity maps. Baseline3D has better occlusion handling
ability: By jointly regularizing spatial and disparity domain,
the network can better pre-scale the matching costs to han-
dle the multi-modal situation. However, Baseline3D has a
drawback that we will address in the next section. We fur-
ther analyze the contribution of each component of proposed
network, including the use of refine net and the entropy of
the cost volume as input to the refine net. In Table 5, we can
see that by adding the refine net, the EPE drops from 1.20
to 1.14 and the bad-1.0 drops from 10.31 to 10.16. We also
compare our approach with a left-right consistency check
strategy (using the color difference between the left image
and its corresponding warped right image) and find that it
further boosts the accuracy more than 5% but significantly
increases the processing time, whereas adding the entropy
map can have similar performance without sacrificing the
efficiency. We posit that the entropy map provides evidence
for the Refine Net as to which parts of the disparity map are
unreliable and need to be smoothed using priors.

Table 5 Contributions of each
component. The first 3 rows
compare the performance (both
speed and accuracy) between
hand-crafted cost (Dot),
Baseline3D and our method.
The last 4 rows show the
contribution of each components
of our method. We also include
a comparison between our
strategy and a left-right
consistency check strategy (L-R
Check) for the RefineNet.

Architecture Variant Inference SceneFlow
Dot 3D 2D RefineNet Entropy L-R Check time(s) EPE bad-1.0

� 0.001 6.05 59.13

� 0.150 0.78 8.11

� 0.007 1.20 10.31

� � 0.010 1.14 10.16

� � � 0.020 1.08 9.84

� � � 0.010 1.09 9.67

Table 6 Quantitative results on
SceneFlow dataset. Our model is
the fastest and the most accurate
among real-time algorithms.

Methods EPE (pix) bad-1.0 Params Runtime(s)

Non-real time GC-Net Kendall et al. (2017) 1.84 15.60 3.50M 0.65

CRL Pang et al. (2017) 1.32 - 78.77M 0.26

PSMNet Chang et al. (2018) 1.09 12.10 5.22M 0.31

GA-Net Zhang et al. (2019) 0.78 8.70 6.58M 1.80

DPruner Duggal et al. (2019) 0.86 - - 0.13

Baseline3D 0.78 8.11 4.26M 0.15

Realtime DispNetC Mayer et al. (2016) 1.68 - - 0.04

StereoNet Khamis et al. (2018) 1.10 - - 0.02

Ours 1.09 9.67 1.70M 0.01
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Fig. 5 Qualitative comparison on the SceneFlow dataset.

In Table 6, we compare our methods with SOTA deep
stereo methods on the SceneFlow dataset. Baseline3D
achieves top performance (in terms of both accuracy and
speed) among non-real timemethods, while our method with
refinement achieves the top performance among real-time
methods. It is worth noting that previous 2D convolution
based methods (Pang et al., 2017; Liang et al., 2018) need
a large number of parameters to learn the context mapping
between inputs and disparity maps, i.e., directly regressing
disparity from color images. By using the proposed cost
computation, our network achieves better accuracy, is sig-
nificantly faster, and requires a fraction of the parameters as
previous 2D convolution based methods.

4.3 Evaluation on Benchmarks

In this section, we provide results on three well-known stereo
matching benchmarks: KITTI 2015, ETH3D, and Middle-
bury.Wefine-tuned theSceneFlowpre-trainedmodel on each

benchmark. The algorithms are divided into two categories
based on runtime: below 10 FPS and above 10 FPS.

KITTI 2015. Table 7 shows the accuracy and runtime
of leading algorithms on the KITTI 2015 benchmark. Our
method is the fastest andmost accurate among real-time algo-
rithms. Fig. 6 visualizes several results on the test set.

ETH3D. Table 8 shows quantitative results of our method
on the ETH3Dbenchmark. Ourmethod achieves competitive
performancewhile being significantly faster than all the other
methods. A qualitative comparison of our method with other
SOTA algorithms is shown in Fig. 7.

Middlebury 2014. Our method is the only deep learning-
based method that can achieve real-time performance on the
Middlebury dataset. By accuracy, it is the second best among
all competitors, as shown in Table 9. Compared to the most
accurate approach (HSM), our method is 12× faster while
has comparable accuracy. Qualitative results are shown in
Fig. 8.

Table 7 Results on KITTI 2015 test set. Bold indicates the best, while underline indicates the second best. All GPU methods are timed on an
NVIDIA RTX Titan GPU. For the methods that do not release their source code, we use our own implementation instead.

Non-occ (%) All (%)
Method Runtime(s) bg fg all bg fg all

Non-real time MC-CNN Abontar and LeCun (2016) 16.00 2.48 7.64 3.33 2.89 8.88 3.89

CRL Pang et al. (2017) 0.26 2.32 3.68 2.36 2.48 3.59 2.67

PSMnet Chang et al. (2018) 0.31 1.71 4.31 2.14 1.86 4.62 2.32

GC-Net Kendall et al. (2017) 0.65 2.02 3.12 2.45 2.21 6.16 2.87

iResNet Liang et al. (2018) 0.08 2.15 2.55 2.22 2.35 3.23 2.50

HSM Yang et al. (2019) 0.12 1.63 3.40 1.92 1.80 3.85 2.14

GA-Net-15 Zhang et al. (2019) 0.36 1.40 3.37 1.73 1.55 3.82 1.93

DPruner_Best Duggal et al. (2019) 0.13 1.71 3.18 1.95 1.87 3.56 2.15

Real-time StereoNet Khamis et al. (2018) 0.02 - - - 4.30 7.45 4.83

MAD-Net Tonioni et al. (2019) 0.02 3.45 8.41 4.27 3.75 9.20 4.66

DispNetC Mayer et al. (2016) 0.04 4.11 3.72 4.05 4.32 4.41 4.34

DeepCostAggr Kuzmin et al. (2017) 0.03 4.82 10.11 5.69 5.34 11.35 6.34

RTSNet Lee and Shin (2019) 0.02 2.67 5.83 3.19 2.86 6.19 3.41

Ours 0.01 2.12 3.88 2.42 2.51 4.62 2.86
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Fig. 6 Qualitative Results on KITTI 2015 test dataset. Our method achieves comparable performance with 13 times faster speed.

Table 8 Results on ETH3D test dataset. Bold indicates the best, while underline indicates the second best

Methods time(s) EPE rmse bad-4.0 bad-2.0 bad-1.0 A99

HSM Yang et al. (2019) 0.12 0.29 0.67 0.68 1.48 4.25 3.25

SDRNet Chabra et al. (2019) 0.13 0.34 0.71 0.50 1.66 6.02 3.07

iResNet Liang et al. (2018) 0.15 0.25 0.59 0.34 1.20 4.04 2.70

DPruner Duggal et al. (2019) 0.12 0.28 0.58 0.34 1.04 3.82 2.61

PSMnet Chang et al. (Chang et al., (2018)) 0.31 0.36 0.75 0.54 1.31 5.41 3.38

DN-CSS Ilg et al. (Ilg et al., (2018)) 0.05 0.24 0.56 0.38 0.96 3.00 2.89

Ours 0.01 0.32 0.63 0.53 1.25 4.82 2.79

Fig. 7 Qualitative results on ETH3D test dataset. Our method achieves comparable performance with 12 times faster speed.

Table 9 Results on Middlebury
2014 test dataset. Bold indicates
the best, while underline
indicates the second best.

Methods time(s) EPE rmse bad-4.0 bad-2.0 bad-1.0 A99

SGM Hirschmuller (2008) 0.32 5.32 20.0 12.2 18.4 31.1 109

HSM Yang et al. (2019) 0.47 2.07 10.3 4.83 10.2 24.6 39.2

iResNet Liang et al. (2018) 0.28 3.31 11.3 12.6 22.9 38.8 48.6

DPruner Duggal et al. (2019) 0.11 4.80 14.7 15.9 30.1 52.3 67.7

PSMNet chang et al. (2018) 0.45 6.68 19.4 23.5 42.1 63.9 84.5

DN-CSS Ilg et al. (2018) 0.58 4.04 13.9 14.7 22.8 36.0 58.8

Ours 0.04 3.12 13.8 7.22 15.4 35.1 55.6
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Fig. 8 Qualitative results on Middlebury 2014 test dataset. Our method achieves better performance with 3 times faster speed, especially for thin
objects.

Table 10 Results on cross-dataset study. SceneFlowpre-trainedmodels
were tested on Middlebury 2014 and KITTI 2015 training sets directly.
For iResNet Liang et al. (2018), for a fair comparison, we retrained their

model on SceneFlow dataset with exactly the same data augmentation
strategies as other methods, i.e., random crop only. We also add SOTA
cross-domain generalization methods for reference (marked with *).

Middlebury KITTI 2015
Methods bad-1.0 bad-2.0 bad-4.0 avgerr rms EPE bad-1.0 bad-2.0 bad-3.0

*DSMNet Zhang et al. (2020) – 21.8 – – – – – – 6.50%

*MS-GCNet Cai et al. (2020) - 18.5 – – – – – – 6.21%

iResNet Liang et al. (2018) 60.7 40.3 21.6 7.74 23.3 2.49 48.26% 19.59% 11.23%

GA-Net Zhang et al. 2019) 59.9 38.1 19.8 4.94 13.6 1.70 42.35% 18.29% 10.77%

LEAStereo Chang et al. (2020) 42.6 25.5 15.1 8.10 23.9 1.97 43.36% 19.21% 11.11%

Baseline3D 53.0 33.7 20.1 13.5 34.4 1.92 46.76% 21.02% 12.03%

Ours 51.4 33.1 19.6 6.67 19.2 1.63 37.55% 17.54% 10.88%

4.4 Robustness and Generalizability

In the previous section, we showed that Baseline3D yields
higher accuracy than Ours, while being significantly slower.
In this section, we compared the generalizability of Ours
and Baseline3D methods using the SceneFlow-pretrained
models, by testing them on the Middlebury and KITTI
2015 training sets, without fine-tuning. Table 10 shows the
quantitative results. For better comparison, we use SOTA
volumetric method GA-Net Zhang et al. (2019) and direct
regression method iResNet Liang et al. (2018) as the ref-
erence methods. Note that the generalizability is not only
dependent on the architecture itself; the augmentation strat-
egy also effects the generalizability as well. Therefore, for a
fair comparison, we report the result of our retrained model
of iResNet Liang et al. (2018) with exactly the same data
augmentation strategy, i.e., random crop only. Ours consis-
tently achieves better cross-dataset performance on these two
datasets. The results in Fig. 9 show that Baseline3Dgenerates
false boundaries on the road plane while Ours does not.

4.4.1 Random Dot Stereo

Random Dot Stereograms (RDSs) Julesz (1971) were intro-
duced decades ago to evaluate depth perception in the human
visual system. RDSswere key to establishing the fact that the
human visual system is capable of estimating depth simply
by matching patterns in the left and right images, without
utilizing any monocular cues (lighting, color, texture, shape,
familiar objects, and so forth). Similarly, we argue that arti-
ficial stereo algorithms should be able to process random dot
stereograms, and that this ability provides key evidence to
understand the actual behavior of the networks, i.e., con-text
mapping or matching.

In random dot stereo pairs, there is no semantic context.
Therefore, methods that fail this test, but that otherwise do
well on benchmarks, are mostly likely relying on monocular,
semantic cues for inference. Such methods (including Disp-
Net, and those that build upon DispNet Liang et al., 2018)
will struggle to process images whose distribution varies sig-

123



International Journal of Computer Vision (2022) 130:1196–1209 1207

Fig. 9 Qualitative comparison on cross-dataset study. The SceneFlow pre-trained models were tested onMiddlebury 2014 and KITTI 2015 training
sets without any finetuning. Note that Ours generalizes better across datasets than Baseline3D.

Table 11 Quantitative Results
on RDS dataset

Methods time(s) EPE bad-1.0 bad-2.0 bad-3.0

DispNet Mayer et al. (2016) 0.07 60.42 99.89 99.77 99.69

Baseline3D 0.28 0.75 3.97 2.71 2.33

Ours 0.02 1.02 5.45 3.59 2.93

Fig. 10 Qualitative results on the Random Dot Stereo dataset. Our network is able to recover disparities from RDS images while DispNet Mayer
et al. (2016) can not. The black holes in the left image is due to the occlusion between the left view and the cyclopean view Henkel (1997).

nificantly from the training distribution, because they do not
actually match pixels between images.

To evaluate this claim, we created a Random Dot Stere-
ogram (RDS) dataset. The dataset contains 2000 frames,
1800 for training and 200 for testing. We provide qualita-
tive and quantitative results on the RDS dataset of Ours and
DispNet Mayer et al. (2016). We fine-tuned Ours and Disp-
NetMayer et al. (2016) for 200 epochs with the ground truth.
The quantitative results are shown in Table 11. Unlike Disp-
Net, Ours successfully produces high-quality disparitymaps,
as shown in Fig. 10. This is because these 2D convolution-
based methods rely more on context information while our
method is trying to find corresponding points withmatching.

4.5 Discussion

Ours vs.R-MVSNet Yao et al. (2019) The design philosophy
between our DICC and R-MVSNet Yao et al. (2019) is dif-
ferent, mainly because of the differences between these two
tasks. For a MVS task, since there are multiple frames (> 3),
the displacements are typically smaller than stereomatching.

In this case, with hand-craft costs plus GRU cost aggregation
Teed and Deng (2020), it can still find most matching points.
When it comes to the stereo matching problem, this strategy
does not work well. Also, the primary purpose of R-MVSNet
Yao et al. (2019) is to handle memory consumption problems
in theMVS task, so they can use GRU to do cost aggregation.
On the other hand, ours is focusing on the speed, so we use
CNN to learn how to compute and aggregate the matching
cost.

5 Conclusion

In this paper, we have proposed a highly efficient deep stereo
matching network. Our method is not only on par with the
state-of-the-art deep stereo matching methods in terms of
accuracy, but is also able to run in super real-time, i.e., over
100 FPS on typical image sizes. This makes our method
suitable for time-critical applications such as robotics and
autonomous driving. The key to our success is Displacement-
Invariant Cost Computation, where 2D convolutions based
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cost computation is independently applied to all disparity
levels to construct a 3D cost volume.
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