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Abstract

With the growing popularity of smartphones, capturing high-quality images is of vital importance to smart-
phones. The cameras of smartphones have small apertures and small sensor cells, which lead to the noisy
images in low light environment. Denoising based on a burst of multiple frames generally outperforms sin-
gle frame denoising but with the larger compututional cost. In this paper, we propose an efficient yet effective
burst denoising system. We adopt a three-stage design: noise prior integration, multi-frame alignment and multi-
frame denoising. First, we integrate noise prior by pre-processing raw signals into a variance-stabilization space,
which allows using a small-scale network to achieve competitive performance. Second, we observe that it is
essential to adopt an explicit alignment for burst denoising, but it is not necessary to integrate an learning-
based method to perform multi-frame alignment. Instead, we resort to a conventional and efficient alignment
method and combine it with our multi-frame denoising network. At last, we propose a denoising strategy that
processes multiple frames sequentially. Sequential denoising avoids filtering a large number of frames by decom-
posing multiple frames denoising into several efficient sub-network denoising. As for each sub-network, we
propose an efficient multi-frequency denoising network to remove noise of different frequencies. Our three-
stage design is efficient and shows strong performance on burst denoising. Experiments on synthetic and real
raw datasets demonstrate that our method outperforms state-of-the-art methods, with less computational cost.
Furthermore, the low complexity and high-quality performance make deployment on smartphones possible.

Keywords: Burst Denoising; Poisson-Gaussian Distribution; Variance Stabilization; Sequential Denoising; Multi-frequency
Denoising

1 Introduction

Mobile photography becomes increasingly popular
because of the surging number of smartphones world-
wide. However, the raw images captured by low-cost
sensors of mobile devices usually show heavy noise,

especially in low-light environments. The noise aug-
mented in the imaging processing pipeline would
dramatically deteriorate the visual quality. To improve
the imaging quality, capturing and denoising a burst
of multiple raw frames becomes a common choice to
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remove unpleasant noise. Therefore, burst raw denois-
ing becomes an essential task in mobile photography.

Burst raw denoising aims at reproducing the
underlying scene from a burst of noisy raw image
frames. Classical efficient burst denoising methods
[19, 25] generally consist of some or all of the fol-
lowing three processing steps, including noise prior
integration, multi-frame alignment, and multi-frame
denoising. Raw images can be captured with differ-
ent shooting parameters, such as exposure time and
sensor gain, which lead to a wide range of noise
levels with unstable variances. Integrating the noise
prior helps the methods to be aware of the noise
level of the input image so that they can handle dif-
ferent noise levels with different denoising strengths.
The multi-frame alignment stage tries to align mul-
tiple neighboring frames to the reference frame. The
representative methods include block matching [19]
and optical flow-based [27] methods. The final multi-
frame denoising stage aggregates spatial and temporal
information to reproduce the clean frame from the
multiple frames with consideration of possible align-
ment failures. Classical fusion operations include col-
laborative filtering [13] and frequency domain fusion
[19].

Recently deep learning-based methods outperform
traditional methods by improving the different pro-
cessing stages. Kernel Prediction Network (KPN) and
its variants [34, 36, 51] have been exploited to conduct
multi-frame alignment and denoising jointly. RVi-
DeNet [53] and BDNet [24] improve the performance
of multi-frame denoising by adopting Deformable
Convolution [14, 57] to achieve explicit alignment.
However, less effects are paid to noise prior integra-
tion, which hampers the performance of burst raw
denoising. Moreover, most learning-based methods
[24, 36] generally require large memory consumption
and high computational cost.

In this paper, we improve the efficiency and effec-
tiveness of burst denoising by improving all three
steps:

Noise Prior Integration. In traditional methods [19,
25], the variations of different noise levels of the
input image make no difference to the computational
complexity as the estimated noise variance is used
as the coefficients of Wiener filter [19, 25] to mod-
ulate the denoising strength. For deep learning-based
methods [36, 54], they need to tackle a wide range
of noise levels with a single network. The denoising
strengths need to be adaptively adjusted by explicitly

or implicitly estimating noise variances [36]. The net-
work capacity needs to be large enough to handle the
varying noise levels.

We first analyze the key factors causing unstable
variances of raw images by modeling CMOS signals.
Then we introduce a variance-stabilizing transfor-
mation to stabilize the varying variances caused by
these factors. The follow-up denoising can be then
performed in the variance-stabilization space. The
proposed strategy allows using a single lightweight
network to handle different noise levels.

Multi-frame Alignment. The mainstreaming burst
denoising methods utilize kernel prediction to achieve
multi-frame alignment and multi-frame denoising
jointly. Learning-based alignment [24, 47] with
Deformable Convolution [14, 57] also show improved
performance in burst denoising [24] or video denois-
ing [53]. In our experiments, it is shown that explicit
alignment is essential to handle the global misalign-
ment among multiple frames. Furthermore, we find
that learning-based alignment do not show competi-
tive performance against conventional alignment but
brings much more computational cost. Therefore, we
adopt a conventional alignment and combine it with
learning-based multi-frame denoising.

Specifically, we adopt a coarse-to-fine alignment
algorithm and process coarse and fine scales hierarchi-
cally. At the coarse scales, we use homography flow
to achieve global alignment. At the fine scales, we
adopt block-matching to refine the alignment results.
To make our denoising network adaptive to alignment
results, our follow-up multi-frame denoising network
is trained on multiple frames aligned by our align-
ment. The proposed alignment strategy achieves com-
petitive performance compared with learning-based
alignment but has less computational cost.

Multi-frame Denoising. Processing a burst of frames
simultaneously requires a large network, which
increases the computational cost and memory sig-
nificantly. Therefore, it is difficult to deploy deep
learning-based multi-frame denoising [36, 47] algo-
rithms on mobile devices. We propose a sequen-
tial denoising strategy to process multiple frames in
sequential manners. The proposed denoising network
first performs spatial denoising on the reference frame
to produce an intermediate denoising result. Then,
each neighboring frame is sequentially input into the
network to gradually refine the intermediate result to
integrate the multiple neighboring frames’ temporal
information. The denoising system adopts a novel and
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efficient multi-frequency network architecture to take
advantages of the neural network’s capability on elim-
inating high-frequency noise and to perform denoise
at different frequencies.

We evaluate our proposed method on the KPN
dataset [36] and CRVD raw dataset [53]. Extensive
experiments demonstrate the effectiveness of our pro-
posed burst denoising approach. In summary, our
proposed method has the following contributions:

* We propose an efficient burst denoising system by
improving the three stages of the burst denois-
ing framework, noise prior integration, multi-frame
alignment, and multi-frame denoising.

* We analyze the variation of CMOS raw images
and propose a comprehensive variance stabiliza-
tion technique for learning-based denoising, which
demonstrates its superior performance on raw burst
denoising.

* We propose a multi-frame framework to integrate
multiple frames’ temporal information sequentially
and a multi-frequency denoising network to handle
noise of different frequencies effectively.

2 Related Work

Burst raw denoising involves a complex processing
pipeline that aggregates spatial and temporal infor-
mation from multiple frames and should be capable
of handling a wide range of noise levels. The related
work about noise prior integration, multi-frame align-
ment, and multi-frame denoising are discussed as
follows.

2.1 Noise Prior

Given an observed intensity x and its underlying clean
intensity z*, we have the following relation:

r=z"+n, ey

where n is the noise. Additive white Gaussian noise
is widely used in previous works [10, 13]. However,
Gaussian distribution cannot represent the signal-
dependent photon noise in CMOS sensors. To approx-
imate real noise of CMOS sensors, multiple types
of noise are explored for noise modeling, such as
Poisson-Gaussian distribution [16, 26], heteroscedas-
tic Gaussian distribution [21] and more complicated
modelings [49, 56].

Prior-based Traditional Methods. Representative
traditional denoising methods usually are based on

different priors. This category of methods include
anisotropic diffusion, total variation denoising [43],
wavelet domain denoising [40], sparse coding [32],
image self-similarity [10, 13] and etc. Total varia-
tion denoising [43] uses the statistical characteris-
tics of images to remove noise. Sparsity coding [32]
enforces sparsity in dictionary learning methods to
learn over-complete dictionaries from clean images.
As an important prior, image self-similarity shows the
excellent performance against other methods. NLM
[10] and BM3d [13] explore the presence of similiar
features or patterns in a non-local manner. Although
above models are limited due to the assumptions on
the prior of spatially invariant noisy or clean images,
they can be applied to real raw data when a generalized
anscombe transformation [44] is applied.

Learning-based Noise Prior Integration. With the
development of convolution neural networks, end-
to-end CNNs have achieve great success in han-
dling real-world image denoising. DnCNN proposes
residual learning for Gaussian denoising. A series
of methods [36, 48, 55] proposed to integrate the
noise prior of raw image into deep neural networks.
Based on Poisson-Gaussian distribution or Gaussian
Mixture distribution, [36, 55] approximate pixel-wise
noise variance to deal with the different noise levels.
PMRID [48] proposes a linear transform to handle
different noise variances in different sensor gains. In
this work, we propose a novel variance stabilization
technique and perform learning-based denoising in the
space transformed with stable variance.

2.2 Multi-frame Alignment

The most long-standing method for multi-frame align-
ment is based on optical flow [6, 22, 28, 35, 50]. Hier-
archical structures [19, 27] are explored to improve the
efficiency of conventional alignment. Many learning-
based alignment methods have been proposed in
video-related tasks as the substitute for the conven-
tional alignment. Learning-based optical flow [52] and
deformable convolution [47] have been exploited for
video interpolation, video super-resolution and video
denoising. RViDeNet [53] proposed pre-denoising
modules to denoise each frame before the deformable
convolution alignment, which, however, increases the
computational burden significantly.
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2.3 Multi-frame Denoising

The multi-frame denoising aims at merging multi-
ple frames with alignment errors to reproduce clean
image. Collaborative filtering[30, 31] and frequency
domain fusion[19, 25] are representative approaches.
The mainstreaming learning-based methods imple-
ment multi-frame denoising without explicit align-
ment. KPN [36] proposes kernel prediction network
to jointly conduct multi-frame alignment and denois-
ing. MPKN [34] extends single kernel prediction to
multiple kernels prediction. BPN [51] proposes basis
prediction networks for larger kernels. FastDVDNet
[45] proposes two-step cascaded methods for efficient
video denoising without alignment modules.

3 Methodology

Our raw burst denoising system adopts a three-stage
design, which includes noise prior integration, multi-
frame alignment, and multi-frame denoising. To pro-
duce a clean frame, N raw frames in a burst are
first transformed into the noise variance stabilized
space via noise prior integration and then aligned by
multi-frame alignment. The transformed and aligned
multiple frames are input into the multi-frame denois-
ing network to produce the clean frame corresponding
to the key frame.

3.1 Noise Prior Integration

Burst denoising in real-world scenarios needs to han-
dle a wide range of noise levels. Most previous
methods [36, 55] integrate noise prior by using esti-
mated per-pixel variance as the extra input. However,
these networks still need to remove the noise with
varying variance. To improve both performance and
efficiency, we would like to reduce the learning com-
plexity of the network by eliminating the unstable
variances. We first discuss the key factors causing
unstable noise variances of raw intensity values via
formulating the noise of raw CMOS signals. To elim-
inate the unstable variances of different noise levels,
we use the variance-stabilizing techniques to eliminate
the unstable noise variance caused by these factors.
Further analysis is provided to reveal that stabilizing
noise variances allows using lightweight networks to
achieve effective denoising.

3.1.1 Noise Modeling of CMOS Signals

The raw data of CMOS signals contains two pri-
mary sources of noise: shot noise and read noise.
Shot noise is produced as a Poisson process with
a variance equal to signal level. The read noise, an
approximately Gaussian process, is caused by the sen-
sor readout effects. The raw data is usually modeled
as Poisson-Gaussian distribution [16, 26]:

:I:*

a:waﬂ’( ) + N(0,03), 2)

S

where z is noisy measurement of the true intensity
xz*. Two noise parameters o5 and o, change across
different images as the sensor gain (ISO) changes.

The variance of the noisy measurement x is for-
mulated as

Var[z] = g,2* + o2 3)

For a fixed sensor, the sensor gain (ISO) is the only
factor affecting o5 and o,. The connection between
the sensor gain and noise parameters o, 0, are shown
in Appendix A. Therefore the variance is affected by
the sensor gain and underlying intensity *. When the
sensor gain increases, the variance of each pixel at
one image increases. When the sensor gain is fixed,
different brightness shows different variances in the
image.

3.1.2 Variance Stabilization

We propose to transform the pixel values into a new
space to eliminate the varying variances.

Firstly, we eliminate the unstable variance caused
by the sensor gain. The observed intensity x and the
underlying true intensity & are scaled by 0—15,

d= =" (4)

With the above transformation, % becomes a Pois-
son variable corrupted by additive Gaussian noise of

N

variance §2 = Z:
U.S

=P (&) +N(0,6%). (%)
The variance of & thus becomes

Var[t] = #* + 2. (6)
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Then we need to eliminate the unstable variance
caused by the signal-dependent property of the Pois-
son distribution, which indicates that different intensi-
ties within the same image have varying variances.

We generalize the Freeman-Tukey transformation
[17] to transform the Poisson-Gaussian distribution
(Eq. 5)) to

y=i+62+Vi+1462 ©)

which is a Gaussian distribution with a constant vari-
ance at different intensities, i.e.,

the transformed intensity values is contaminated
by Gaussian noise with unit variance. For details of the
interpretation in the transformed space, please refer
to [17, 37]. Then the following denoising network
perform denoising on this space.

Inverse Transformation. We perform the algebraic
inverse of Eq. (4) and Eq. (7) to map the denoising
output back into the raw linear space,

-2+l
Inv(y) = <y4yy2 - 02> 0. (8)

This pixel transformation facilitates the training
and generality of the follow-up denoising network
as the signal-dependent components of the noise are
eliminated in the transformed intensity space. The
follow-up denoising network can be more effectively
trained based on the transformed intensities with
signal-independent Gaussian noise.

3.1.3 Analysis

We here discuss related methods on handling the
problem of varying noise levels in denoising for com-
parison. First, most learning-based denoising methods
[36, 55] estimate per-pixel variance map as

Var[z] = o, max(z,0) 4 o2. )

However, the ideal noise estimation should be
Var[z] = o,a2* + o2 (10)
Since the true intensity «* cannot be observed, using
observed intensity x to replace x* introduces the errors
in noise estimation. Furthermore, these denoising net-

works still need to handle varying noise levels. In
contrast, applying variance stabilization would avoid

the errors of noise estimation and allows the denoising
network to handle stable variance.

To stabilize the variance from sensor gain, PMRID
[48] proposed a k-sigma transform

T 0'2

fr(z) = —+ — (11)

os 02

to transform the images into an ISO-invariant space.
This transformation only eliminates the unstable vari-
ance caused by the sensor gain but neglects unstable
variance of the Poisson-Gaussian distribution. PMRID
[48] can be considered as only the first step of our
proposed stabilization.

For stabilization of the Poisson-Gaussian distri-
bution, Generalized Anscombe Transformation (GAT)
[44] extended Anscombe transformation [5] to sta-
bilize the variance of Poisson-Gaussian distribution.
In contrast, our proposed method extends Tukey-
Freeman Transformation [17] for stabilization of
the Poisson-Gaussian distribution with simple first-
order approximation [44] provided in Appendix A.
It is observed in our experiments that our variance-
stabilization technique for learning-based denoising
shows better performance than GAT [44].

3.2 Multi-frame Alignment

Given the multiple frames for denoising reference
frame, it is natural to utilize frame alignment meth-
ods [19, 25, 27] to align the frames before multi-frame
denoising to optimally utilize neighboring frames’
contextual information. In video reconstruction tasks,
learning-based optical flow [52] and Deformable Con-
volution [47] have been explored to perform multi-
frame alignment as a substitute for the conventional
alignment methods. However, it is not practical to
deploy learning-based alignment on mobile proces-
sors because of its large amount of computational cost
and running time. We decide to buck the trend and
resort to conventional alignment methods, to achieve
multi-frame alignment in an efficient manner. It is
observed in our experiments (Section 4.5) that conven-
tional alignment and learning-based alignment actu-
ally show comparable denoising performance with
learning-based denoising networks.

Coarse-to-fine Alignment. Our alignment is based on
the combination of block-matching [19] and homog-
raphy flow [27]. We build a four-scale alignment pyra-
mid to estimate the motions between pairs of frames
in a coarse-to-fine manner. We use homography flow
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Fig.1 The overview of the proposed sequential denoising network. We propose a sequential denoising strategy to process the multiple frames.
N frames of a burst are considered as a reference frame and N — 1 alternate frames. We adopt multi-frequency denoising network S; as the
backbone for efficient denoising. At the first stage, we perform spatial denoising So on the reference frame to obtain intermediate results 0. Then
we refine the intermediate result via integrating the information from N — 1 alternate frames. At each refinement stage, the multi-frequency
denoising network .S; takes intermediate result and an alternate frame as inputs and refines the intermediate result.

at the top two levels and use block-matching for the
bottom pyramid levels. The homgraphy flow [27] is
used to model accurate camera motions. The two-layer
homography flow acts as cascaded global alignment,
while the block matching acts as refining local align-
ment. The cascade design makes our alignment both
robust and fast under extreme low light environments.

The detailed steps of pyramid alignment is con-
ducted as follows:

* At the top pyramid level, we estimate global
homography between the reference frame and other
frames. All pixels share the same flow vector.
The homography is calculated based on corner
keypoints detected by FAST [41, 42] and feature
matching with BRIEF descriptors [11].

* At the second level, the whole plane is split into 4
blocks. Then we estimate the homography flow for
each block separately. The BRIEF descriptors are
extracted again from each block. When a block has
insufficient matched features, the estimated homog-
raphy would be substituted by the homography
estimated from the previous level.

¢ Atthe two bottom levels, we use tile-based search to
align frames. The pre-aligned images are split into
16 x 16 tiles. We perform L1-distance search for
each tile within 2 pixels neighborhood. In extreme
low light case, tile size would be set to 32 x 32 to
reduce the impact of noises. We accelerate the L1
search on ARM Neon Intrinsics [1].

After the above alignment, there still remains some
misalignments caused by the following reasons. 1)

The large displacements would cause inevitable mis-
alignments. 2) Pixels in one tile are required to share
the same motion vector, which causes the unsmoothed
translations between neighboring tiles. 3) We remove
the operation of sub-pixel translation in [19] to avoid
interpolation. To handle these misalignments, we
train our follow-up multi-frame denoising network on
images aligned by our proposed alignment method.

3.3 Multi-frame Denoising

After the multiple frames in a burst are aligned with
the above stage, the multi-frame denoising stage needs
to aggregate temporal information from the multi-
ple frames to produce one clean frame. However,
processing a large number of frames [36, 45, 53]
simultaneously needs to adopt heavy networks as
the relations between the too many frames might
be challenging to model. To mitigate the need of
heavy networks, we process multiple frames sequen-
tially by a series of efficient networks. All networks
shares the multi-frequency denoising architecture with
different parameters. The overview of our proposed
multi-frame denoising network is shown in Fig. 2. In
Section 3.3.1, we introduce our sequential denoising
strategy. In Section 3.3.2, we present the proposed
multi-frequency denoising network.

3.3.1 Sequential denoising

For the input IV frames, one of them is selected as the
reference frame and the others N-1 are the alternate
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frames. The denoising network S consists of N sub-
networks Sy, S1, ..., Sn_1 that process these frames
sequentially.

Stage-1: Single-frame denoising of the reference
frame. The multi-frame denoising network is trained
to produce one clean image with the same content of
the reference frame. Intuitively, the reference frame
generally makes more contributions than alternate
frames in the input clip for multi-frame denoising.
We process the reference frame separately as the first
stage of denoising. Our first sub-network Sy performs
single-frame denoising on the reference frame to pro-
duce an intermediate result Iy, which contains the
same content with the noisy reference frame but has
sharper edges and less noise. Performing the single-
frame pre-denoising on the reference frame as the first
step offers the following benefits: 1) Processing the
reference frame separately emphasizes the priority of
reference frame over other alternate frames and gen-
erates an intermediate result. It is observed in our
experiments that refining the intermediate result I
shows better performance than directly refining noisy
reference frame with alternate frames directly. 2) The
first stage only performs single-frame denoising on the
reference frame and does not need consider the tempo-
ral relations between frames. Hence only a lightweight
network can be adopted for efficiency. This strategy
improves the following multi-frame denoising signifi-
cantly but with less computational cost.

Stage-2: Multi-frame denoising of the reference
frame. Even with the alignment, the alternate frames
might still show various degrees of misalignment to
the reference frame caused by occlusions, blurring and
sub-pixel translations. Therefore, different alternate
frames should have different contributions for denois-
ing the reference frame. To avoid too much extra com-
putational cost, our system processes /N — 1 alternate
frames sequentially. The intermediate result Iy, pro-
duced by the single-frame denoising of the reference
frame, is refined sequentially by the N — 1 sepa-
rate sub-networks, S, Sa, ..., Sy_1. Specifically, S;
takes the intermediate result I;_; from the previous
sub-network and the i-th group of alternate frames as
inputs, and generate the refined intermediate result I;.
The intermediate result [y _; of the last sub-network
Sn—1 generates the final denoising output.

This proposed sequential denoising strategy is
quite efficient as it avoids handling all frames jointly
and only processes one alternate frame at a time. A
series of lightweight sub-networks can be adopted.

But the proposed method can still incorporate all
information of the neighboring frames to denoise the
reference frame gradually.

3.3.2 Multi-frequency Denoising Network

Each of the denoising sub-network Si,...,Sn_1
takes the intermediate result and one alternate frame
as input and produces the clean frame corresponding
to the reference frame. As observed by [46], denois-
ing neural networks are typically good at removing
high-frequency noise but have more difficulties on
handling low-frequency noise. Therefore, we decom-
pose denoising of whole images into denoising on
multiple frequencies. Our sub-network consists of
a multi-frequency denoising and a multi-frequency
aggregation module.

Multi-frequency Denoising. We first perform bilin-
ear downsampling on the input frames by a factor of
2 for two times to obtain three-scale image pyramids
{m® m!, m?}. Noise of the same pattern would corre-
spond to different frequencies when downsampled to
different scales. For instance, the low-frequency noise
would be of high-frequency if the image is downsam-
pled. Then we perform denoising at the three scales to
remove noise of different frequencies.

At scale ¢, the denoising sub-network F;, contain-
ing a multi-frame encoder E* and a denoising decoder
D¢, predicts the residual noise for the image m’. The
multi-frame encoder E° is implemented by three-layer
Convolution neural network. The denoising decoder
D? utilize four residual blocks [20]. The intermediate
denoised images o' is obtained as

o' = DY(E'(m%)) + m'. (12)

Inspired by previous image restoration networks
[18, 38], we further propagate the intermediate result
o; of lower frequency to the decoder D'~! for
handling higher-frequency noise. The intermediate
denoised images o; are calculated as

0? = D*(E*(m?)) +m?, (13)
ol = DY(E'(m'),0?) + m!, (14)
0" = DY(E°(mP),0') + m". (15)

In our network, D takes the encoder feature E*(m?)
and the intermediate denoising result o°*! from the
lower frequency as inputs and generates the inter-
mediate result at scale 7. Intuitively, D? works on
the smallest-scale image and the low-frequency noise
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Fig. 2 The overview of multi-frequency denoising network. The noises of different frequencies are separately handled by the multi-frequency
denoising network. The network adopts three scales to handle different frequencies. The input of three scales are mo, m1, mg, where mo and
m1 are downsampling versions of mg. The output o2, 01, 0g of three scales contain noises of different structures. At last, Multi-frequency
Aggregation takes and aggregates og, 01, 02 to remove noise of all frequencies and preserve as many details as possible. The input mg, m1, mg
and output 01, 02, 03 are in raw Bayer pattern. For visualization, we utilize the post-process pipeline in RViDeNet [53] to process them into

the sRGB space.

in the original image is mostly removed. D! takes
the intermediate result from D? and further conducts
denoising in a higher range of frequency, and D3
repeats this procedure to work on noise of even higher
frequency. In this way, noise of different frequencies
are efficiently handled by different sub-networks.

Multi-frequency Aggregation. After performing
multi-frequency denoising, we design a lightweight
multi-frequency aggregation module to combine the
denoising results 0", o', 0 of the three scales to gen-
erate the final output. To capture low frequency noise
of 0? and o!, the noise residuals are calculated

n? =] (o*) — 0% (16)

Intuitively, o° has its high-frequency noise at scale 0
removed. To further capture its low-frequency noise,
it is downsampled to scale 0 as | (0°), so that its
remaining low-frequency noise can be converted to
high-frequency noise at scale 1. Since o! has the high-
frequency noise at scale 1 removed, the residual n! =]
(%) — o! highlights the lower-frequency noise in
0°. Similarly, n? captures even lower-frequency noise
of 0 than n'. In Fig 2, we illustrate the gradually
removed noise from high frequency to low frequency.

The captured lower-frequency noise n' and n? can

then be removed at scale 0 to obtain the refined output
image I,

I=0"=1(n")=1 (1 (n?). (17)
Since n' and n? have smaller size than o°, they are
upsampled by a factor of 2 once and twice respectively
to match the size of 0°. The proposed denoising net-
work conducts denoising at different frequencies and
achieves optimal performance in a multi-scale manner.
Loss function. We optimize our denoising network S
in the space of variance stabilization. Based on Eq. (7),
the network input y is in the space of variance stabi-
lization and the denoising output is denoted as § =
S(y). The ground truth y* in this space is obtained as

v =+ 62+ E 1462, (18)

where £* is obtained via Eq. (4). We use the average
L1 distance and gradient loss [36] as the main loss
term. Our loss function can be formulated as

Ly =Li(y",9) +wile(Vy", Vg),  (19)
where V is the finite difference operator that con-

volves its input with [—1,1] and [—1,1]", and w; is
set to 0.5 in our experiments.
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Method Gain < 1 Gain x2  Gainox4  Gainx8  Average
Noisy ref. 28.70 24.19 19.80 15.76 22.11
V-BM4D [30] 34.60 31.89 29.20 26.52 30.55
KPN [36] 36.47 33.93 31.19 27.97 32.39
MKPN [34] 36.88 34.22 31.45 28.52 32.77
BPN [51] 38.18 35.42 32.54 29.45 33.90
Ours 39.39 36.52 33.47 30.20 34.90
Table 1 The PSNR results of different burst denoising methods on KPN dataset.
Noisy Input V-BM4D [13] EMVD [29] FastDVDNet [45] RViDeNet [53] ours
N =3 raw 32.01/0.732 - 44.05/0.989 44.08 /0.988 44.43/0.989
B sRGB 31.79/0.752  35.20/0.9577 39.53/0.978 - 40.03 /0.980 40.49/ 0.982
N =5 raw 32.01/0.732 - 44.05/0.989 44.30/0.989 44.30/0.988 44.70 / 0.990
- sRGB 31.79/0.752 39.53/0.978 40.27/0.981 40.27/0.981 40.88/0.983

Table 2 The PSNR and SSIM results of different burst denoising methods on CRVD dataset.

When we have an ISP to process the raw output to
sRGB domain for assessment, we add the £; distance
in the SRGB domain as [53] does. The loss function
then becomes

Ly =Lai(y",9) + wile(Vy", Vi) +  (20)
wa L1 (ISP(Inv(y*)), ISP(Inv (7)),

where Inv(y*) and Inv(7) follows Eq. (8), and wy is
set to 0.5.

4 Experiments

We first evaluate the overall performance of our pro-
posed method on the KPN dataset [36] and raw video
benchmarks CRVD dataset [53]. We compare our
method against state-of-the-art burst and video denois-
ing methods, including VBM4D [30] FastDVDNet
[45], KPN [36] and RViDeNet [53].

To evaluate specific designs of the three mod-
ules, we conduct ablation study to investigate the
influence of each module. Finally, we present our
methods’s actual deployment and inference speed on
smartphones on a Snapdragon 888 processor [3].

4.1 Evaluation Datasets

Raw videos are captured with different sensors and
different sensor gains, which lead to different noise
strengths and different types of motions. The datasets
we chose contain videos with such rich variations.

KPN synthetic dataset [36] consists of 73 raw
sequences with four different noise levels. Each
noise level corresponds to a specific sensor gain.
The relation between gains and the correspond-
ing noise parameters (o5, o) is listed as follows:

1 — (2773,6.873), 2 — (6273,1.572), 4 —
(1.472,3.672), 8 — (3.372,8.372). Each sequence
contains 8 grayscale raw frames. The misalignment is
synthesized in the range [2, 16] pixels between 8 burst
frames.

CRYVD Dataset [53] consists of real raw videos of 12
scenes captured by a SONY IMX385 sensor. Videos
in the first 6 scenes are taken as the training set and
videos in the remaining 6 scenes are used as the eval-
uation set. For each scene, five videos of 5 different
ISOs ranging from 1,600 to 25,600 (corresponding
gain from 1 to 16) are captured. The frames of each
video only contain object motions without any camera
motions. The ISOs correspond to the noise param-
eters ((0s,0,)): 1600 — (8.67%,8.47%), 3200 —
(1.773,1.573), 6400 — (3.373,2.873), 12800 —
(6.573,5.473), 25600 — (1.372,1.072). We take
clips of N = 3 and N = 5 frames as inputs to our
method.

HDR-+ Dataset [19] consists of 3,640 bursts stored in
DNG format [2]. The bursts are captured by a variety
of Android mobile cameras (Nexus 5/6/5X/6P, Pixel,
Pixel XL). The maximum number of burst frames is 10
and the maximum exposure time is 100ms. The noise
parameters can also be found in DNG format. Since
the dataset cannot provide ground truth for quantita-
tive evaluation, we perform qualitative evaluation on
the bursts containing 8 frames captured in extreme low
light scenes.

4.2 Training

We train our method on the CRVD dataset and KPN
synthetic dataset.
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Fig. 3 Burst denoising results on a KPN synthetic burst dataset [36]. Our methods achieves better performances at reconstructing details such
as texture and text.

GFLOPs Per-patch CPU runtime (ms) Per-patch GPU runtime (ms) Whole time (ms)

BPN [51] 299 145.4 91.8 2754

Ours 14.3 72.6 44.5 1335+ 120
Table 3 FLOPs and running times on gray-scale 1024 x 768 images (burst number N = 8) on a Snapdragon 888 processor [3]. The images
with 1024 X 768 are spilt into 48 128 x 128 patches. We measure the running times of 128 x 128 patch on CPU and GPU. According to their
actual runing times, we assign different numbers of patches to CPU and GPU. Then we obtain the whole running time of denoising network.
In our implementation, the additional running time for variance stabilization and alignment is 120 ms.

4.2.1 Training for KPN Dataset are averaged to produce a single-channel image. The
single-channel image are transformed into the raw lin-
ear space. Then we synthesize motion [36] on the
single-channel images to simulate a clip of 8 frames.
The mis-alignments between the reference frame and

At first, we perform unprocessing [9] on SRGB images
from the Open Images dataset [23] to obtain synthetic
raw images. The three channels in each sSRGB image
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alternate frames are uniformly sampled in 2 to 16
pixels. When synthesizing raw noise, the sensor gain
for each sequence is randomly sampled from [1,4].
The Poisson-Gaussian noise are added to all frames
according to the corresponding o, o,.. The loss func-
tion for training follows Eq. (19). After adding noise,
we perform multi-frame alignment on 8 frames of one
burst. Then 8 aligned frames are taken as the network
input. All networks are adjusted to adapt the single-
channel input. The patch size is 256 x 256 and the
batch size is set to 16. The learning rate is set as 10~4
for the first 50,000 iterations and 10~ for the last
50000 iterations.

4.2.2 Training for CRVD dataset

Following the training setup of RViDeNet [53], we
train denoising models on SRVD dataset and finetune
them on CRVD dataset (scene 1-6).

Training set creation. Since SRVD dataset is an
sRGB video dataset, we perform the following oper-
ations to create the training pairs for raw video
denoising. To synthesize raw clean videos, three con-
secutive SRGB frames are randomly selected from
SRVD videos and unprocessed into RGBG raw frames
with the camera parameters (white balance, color cor-
rection matrix and Gamma factor provided in CRVD
dataset). To construct training pairs, we add Poisson-
Gaussian noise to synthesize three noisy frames from
clean frames. The sensor gain is randomly sampled
from [1, 16], which corresponds to ISO from 1,600
to 25,600. We can add Poisson-Gaussian noise to the
frames according to the corresponding o, 0.

For finetuning, CRVD dataset (scene 1-6) with raw
videos is used, where we can obtain pairs of noisy
input and clean ground truth. Clips of three consecu-
tive noisy frames are randomly selected as input and
ground truth are the clean frames corresponding to
reference noisy frames.

Training settings. For our proposed method, we sta-
bilize and align the three noisy frames before feeding
them into the proposed denoising network. Then the
multi-frame denoising network produces the clean
outputs in the variance-stabilization space, which are
then transformed back into the raw linear space. The
loss function for training adopts Eq. (19). The loss
function of finetuning adopts Eq. (20). All the net-
works are trained with learning rate 10~# for 85,000
iterations and finetuned with learning rate 10~° for

30,000 iterations. The proposed network is imple-
mented in PyTorch [39] and trained with NVIDIA
1080TI GPUs.

4.3 Evaluation

We evaluate our method and compare it with state-of-
the-art multi-frame denoising methods, including V-
BM4d [30], FastDVDNet [45], RViDeNet [53], KPN
[36] and BPN [51], for evaluation on the two datasets.
The compared methods are adopted from authors’
original implementations.

4.3.1 KPN Synthetic Dataset

Table 1 reports the results on KPN grayscale test set
[36]. The PSNR and SSIM are computed after gamma
correction to reflect perceptual quality. As for BPN
[51], we directly utilize its released pretraind model
for evaluation. Since we cannot access the original
models of KPN [36], we train KPN model based on
the implementation accepted by the original authors.
Their performances are shown on Table 1. As for our
method, we set the group number £ = 3. Then 7 alter-
nate frames are divided into 3 groups. 8 frames will
be processed by 4 efficient multi-frequency networks
sequentially. Our method shows great improvements
about at all levels over KPN [36] and BPN [51]. As
for extreme noisy case (Gain  8), we improve 0.72
PSNR against [51].

4.3.2 CRVD Dataset

We train all the methods in raw linear space. Then
results in the raw domain are further processed into the
sRGB domain by the pretrained-ISP model described
in RViDeNet. Then PSNRs and SSIMs are calculated
in the SRGB domain. For the evaluation of N = 5, we
train RViDeNet [53] and FastDVDNet [45] based on
their implementation with the same settings as ours.
Table 2 lists the average PSNR and SSIM of raw
domain and sSRGB domain for video scenes 6-11.
When we use only N = 3 frames for denoising, it
can be observed that our method outperforms the com-
pared denoising methods. Compared with the state-
of-the-art RViDeNet [53], our improvement is 0.35dB
PSNR in raw domain and 0.46dB PSNR in sRGB
domain. When the network takes N = 5 frames
as inputs, our methods still achieves the best perfor-
mance. We visualize the denoising results of outdoor
scenes in Figure 4. The proposed model generates
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Fig. 4 Burst denoising results of different methods on real-world CRVD outdoor dataset [53]. Our methods recover more details of fine
structures and moving objects.

better pleasing details in both static and dynamic
regions.



Springer Nature 2021 IXTX template

HDR+ [19]

)
=
a4
&)
o

Fig. 5 Burst denoising results on HDR+ dataset [19]. Our method produces better images on extreme low light scenes with more details on

edges and texture regions.
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Fig. 6 Visual comparisons of different noise prior integration on
CRVD dataset [53] (burst number N = 3).
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4.3.3 Qualitative Evaluation on HDR+
Dataset

For evaluation on HDR+ dataset [19], we train the
color version of our denoising network. The train-
ing settings are similar to training for KPN synthetic
dataset as described in Section 4.2.1. We compare our
method with HDR+ [19] and VLL [25] as shown
Fig. 5. These two images (from Nexus 6p) are cap-
tured with ISO 5760 and 100ms exposure time. Since
the post-processing pipeline of HDR+ [19] is not
released to the public, we utilize the post-processing
pipeline in RViDeNet [53] to transform raw outputs
into the SRGB space. Therefore, there exists inevitable
color shift between our method and HDR+. Our

Algorithm raw sRGB

Ours w/o integration ~ 43.99 /0.98839.70/0.979
Ours w/ noise map [36]44.26 /0.98840.16 / 0.980
Ours w/ k—sigma [48] 44.28 / 0.98840.18 / 0.980
Ours w/ VS-gain 44.29/0.98840.19 / 0.980
Ours w/ GAT [44] 44.34/0.98940.44 / 0.981
Ours 44.4370.98940.51/0.982

Table 4 Ablation study of our method on noise prior integration
evaluated on CRVD dataset (burst number N = 3).

method generally produces less noisy than compared
methods. More details on edges and texture regions
are recovered by our methods.

4.4 Computational Expense

We first report the number of floating point opera-
tions (FLOPs) required in our denoising network and
BPN [51] in table 3. It is observed that our denois-
ing network requires fewer FLOPS than BPN. Then
we evaluate our method and BPN [51] on on the
smartphone with the Snapdragon 888 processor [3].
Snapdragon 888 processor contains one Qualcomm
Kryo CPU and one Qualcomm Adreno 660 GPU. We
implement the variance stabilization and alignment on
CPU processor. These two algorithms are accelerated
by ARM Neon Intrinsics [1]. As for 8 images with
resolution 1024 x 768, running time of variance sta-
bilization is 20 ms and running time of alignment
is 100 ms. Then we utilize the PPLNN platform [4]
to measure the running time of denoising networks
on Snapdragon 888 processor. Because of the lim-
ited memory on smartphones, 1024 x 768 images are
divided into 48 128 x 128 non-overlaping patches,
which are processed separately. To accelerate execu-
tion on smartphones, we run our denoising network
and BPN on both CPU and GPU processors. The per-
patch and overall running times on CPU and GPU
are listed in Table 3. We assign different numbers of
patches on CPU and GPU processors according to
their actual running times. Taking our denoising net-
work as an example, we assign 30 patches to GPU
processor and 18 patches to CPU processor, which
leads to the most efficient running time of denoising
network (30 x 44.5ms = 1335ms).

4.5 Ablation Study

We conduct ablation study to demonstrate the effec-
tiveness of noise prior integration, multi-frame align-
ment and multi-frame denoising. These improvements
are evaluated to illustrate that our methods run with
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Algorithm Gain o 1 Gain o 2 Gain 4 Gain < 8 Average
KPN [36] 3647 3393 3119 2797 3239
KPN* [36] 3647 3394 3121 2824 3247
KPN* + alignment 37.14 3462  31.87 28.73 33.09
BPN [51] 38.18 3542 3254 2945 3390
BPN +alignment 3828 3579 3296 29.86 34.22
Ours w/o alignment  37.63 3492 32,13 2889 3339
Ours + alignment 3848 3579 3287 29.62 34.19
Ours 3939 3652 3347 3020 3490

Table 5 Ablation study of influence of alignment on KPN dataset ((burst number N = 8)).

Algorithm CRVD +16 CRVD running time(ms)
Ours w/o alignment  44.36/0.98943.68 / 0.978 -

Ours w/ DCN [47, 53]44.46 /1 0.98944.11/0.981 2957

Ours 44.4370.98944.05 / 0.980 38

Table 6 Ablation study of influence of different alignment methods on CRVD dataset [53] (burst number N = 3). “£16 CRVD” denotes
performing 16 pixels misalignment on CRVD dataset. Running times of the alignment modules is calculated on the Snapdragon 888 mobile

processor.

Algorithm Raw sRGB

Ours-SQ1
Ours-SQ2
Ours-SQ3
Ours

44.37/0.989
44.46/0.989
44.61/0.990 40.76/0.983
44.70/0.990 40.88/0.983

Table 7 Comparison of different sequential denoising strategies
on CRVD dataset (burst number N = 5).

40.52/0.982
40.56/0.982

Algorithm Raw sRGB

Ours w/o aggregation ~ 44.17/0.988 40.10/0.980
Ours w/ pointwise conv  43.71/0.987 39.69/0.979
Ours w/ attention [46] ~ 44.28 /0.988 40.34/0.981
Ours 44.43/0.989 40.51/0.982

Table 8 Ablation study of multi-frequency aggregation on CRVD
dataset (burst number N = 3).

limited computational cost but with competitive per-
formance.

Noise prior integration. Since CRVD dataset [53] is
the only multi-frame raw dataset with ground truth,
we perform ablation study of noise prior integration
on CRVD dataset (burst number N = 3). In Table
4, we evaluate the different methods for implement-
ing noise prior integration on CRVD dataset. We first
remove the noise prior integration stage (denoted as
“Ours w/o prior integration”), to let the network to
handle unstable variances directly. Removing noise
prior integration leads to about 0.43dB drop. Then we
compare our method with the mainstreaming noise
adaption method: noise map [29, 36, 45]. In training
and finetuning, we replace the noisy input of net-
work in our system by concatenation of noise map and

noisy images (denoted as “Ours w/ noise map”). This
method brings a drop of 0.17dB PSNR.

To further analyze the importance of variance
stabilization, we evaluate the effect of stabilizing sen-
sor gains and brightness in Poisson distribution. we
first investigate other techniques of stabilizing sen-
sor gains. We experiment using Eq. (5) (denoted
as “Ours w/ VS-gain”) and k—sigma transform Eq.
(11) proposed in PMRID [48] (denoted as “Ours w/
k—sigma”). Surprisingly, they achieves almost the
same performances and shows a drop of about 0.14dB
PSNR compared with our method. It reveals that
k—sigma transform [48] can also be used to stabilize
sensor gains. Finally, we test stabilizing the variances
of different brightness in Poisson distribution. We
compare our generalized Tukey-Freeman transforma-
tion with well-known generalized anscombe transfor-
mation (GAT) [44] ((denoted as “Ours w/ GAT”)).
Using GAT brings a drop of 0.09dB PSNR. For the
reason that our generalized Tukey-Freeman transfor-
mation surpasses generalized anscombe transforma-
tion in raw denoising, please refer to Appendix B.

Fig 6 shows the visualization of denoising results
with different types of noise prior integration. Our
method and GAT [44] show more details and textures
than noise map [36, 55] and k—sigma transformation
[48]. Our method also achieves slight improvements
on recovering edges against GAT [44].

Multi-frame alignment. We demonstrate that per-
forming explicit alignment is necessary in our denois-
ing system and state-of-the-art burst denoising meth-
ods. As the mainstream burst denoising methods,
kernel prediction methods [36, 51] do not require
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an explicit alignment module. In contrast, RViDeNet
[53] and BDNet [24] utilize Deformable Convolution
[14, 57] as an explicit alignment module before multi-
frame denoising. To demonstrate the effectiveness of
explicit alignment, we integrate our alignment mod-
ule into two kernel prediction methods: KPN [36] and
BPN [51].

As there is no KPN model [36] released to the
public, we implement KPN and report its result
(denoted as “KPN*” in Table 5). Our implementa-
tion shows similar performance compared with the
original results in [36]. Adding an alignment module
into KPN* (denoted as “KPN* + alignment”) leads
to about 0.7dB at gain o 4. The results in Table 5
also show that adding our alignment module on top of
BPN [51] achieves a increase of about 0.4 dB PSNR
at gain « 2, 4, 8. When we remove the alignment
module ( denoted as “Ours w/o alignment”) in our
method, our denoising network is trained on the syn-
thetic frames with misalignment in [2,16] pixels. It
achieves the approximate performance with “KPN* +
alignment”.Then we perform our alignment (denoted
as “Ours + alignment”) on the above model (trained
in “Ours w/o alignment”). It is shown that directly
applying our alignment brings improvement of 0.84dB
average PSNR. Finally, we train our denoising net-
work on images aligned by our method (denoted as
“Ours”). The result shows that training on aligned
images brings about an increase of 0.72 dB average
PSNR.

In Table 6, we compare our alignment with
learning-based alignment in CRVD dataset. Similar
to KPN synthetic dataset, we synthesize large motion
(up to 16 pixels) on CRVD dataset [53] (denoted
as “+16 CRVD”). The misalignments between the
reference frame and alternate frames are uniformly
sampled in [2,16] pixels. We combine Deformable
Convolution alignment (DCN) in [24, 53] with our
denoising network (denoted as “Ours w/ DCN”). It is
shown in Table 6, deformable convolution alignment
only leads to marginal improvements over our method.
We also evaluate the running times of the alignment
modules on mobile processors. With the help of ARM
Neon Intrinsic [1], our alignment is much faster than
the DCN alignment.

Multi-frame denoising network. We first evaluate
the effectiveness of sequential denoising on CRVD
dataset (burst number N = 5). When we remove
the sequential denoising, the single denoising net-
work would take all frames as inputs simultaneously

(denoted as “Ours-SQ1”). It is shown in Table 7
that the performance suffers from a drop of 0.33 dB
PSNR when removing sequential denoising. When
we use a network for spatial denoising on reference
frame and another network for temporal denoising of
the 4 alternate frames (denoted as “Ours-SQ2”), the
performance also drops by 0.24 dB PSNR. Further-
more, we test using a network for spatial denoising
and two networks for sequential denoising and each
network would handle temporal information of two
neighboring alternate frames at a time (denoted as
“Ours-SQ3”). This design also causes a drop of ~0.09
dB PSNR. In the above variants, we adjust the model
size by changing the channel numbers so that different
setups have similar FLOPs for fair comparison.

To demonstrate the advantages of the proposed
multi-frequency aggregation, we remove the multi-
frequency aggregation and directly use the output og
as the final result (denoted as “Ours w/o aggrega-
tion”). The network would be a little similar to SGN
[18]. It is shown in Table 8 that removing multi-
frequency aggregration causes a drop of about 0.26dB
PSNR. This result demonstrates the advantages of
the multi-frequency denoising. Then we test replacing
the proposed multi-frequency aggragation with point-
wise convolution (denoted as “Ours w/ pointwise conv
) and attention-based fusion [46] (denoted as “Ours
w/ attention”). When we adopt pointwise convolution
for multi-frequency aggregation, it aggregates out-
puts of the three scales after oo, 01 are upsampled to
the same size as og. It suffers a significant degrada-
tion of 0.72dB PSNR. As for attention-based fusion
[46], we utilize an 8-layer convolutional network fol-
lowed by a sigmoid layer to predict per-pixel aggrega-
tion weights between two neighboring frequencies. It
increases computational cost but still shows degraded
performance of 0.15dB PSNR.

5 Conclusions

In this work, we proposed an efficient video denois-
ing method via the improvements of three stages
of the denoising framework noise prior integration,
multi-frame alignment and multi-frame fusion.
Transforming raw images into a variance sta-
bilization space can significantly reduce the model
complexity without impacting its performance. From
the perpective of on-chip running and efficiency,
we combine classical image alignment and learning-
based denoising to achieve comparable denoising
performance with faster speed. As for multi-frame
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Fig. A1 Visualization of different variance stabilization transfor-
mations. z is the mean of the signal in Poisson distribution. Var(y)
is the variance of the transformed signal by different transform
function.

denoising, we introduce sequential denoising strat-
egy and multi-frequency denoising to achieve efficient
multiple-frame denoising.

We have deployed these three stages on a com-
mercial SoC. It demonstrates that our method can
be employed for burst image denoising on mobile
devices.

Appendix A Noise modeling of
CMOS Signals

We provide the detailed noise modeling of CMOS sig-
nals to obtain the relation between sensor gain and
or,0s. We define the observed intensity as x and
underlying true intensity as x*. Following [48], the
raw signal is modeled as

*

X

T ~ gea’P ( ) +N(0,0%08 +02,.), (Al

Qe

where ¢, is quantum efficiency factor, « is the sensor
gain, oy is the variance of read noise caused by sensor
readout effects and o,4. is the variance of amplifier
noise. Then we have:

Os = (e

2
s

) (A2)

adc*

o 0420'8 +o

For one fixed senor, g, 0g, 04qc is unchanged. Then
sensor gain « is the only factor to affect o, o,.

Appendix B Generalized verison
of Freeman-Tukey
Transformation

For For variable z in Poisson distribution of the mean
value z*, the general form of variance stabilization
transformation in root-type is

y=2vVz +c (B3)

The core problem of variance stabilization is to stabi-
lize Poisson distribution to have unit variance. But no
exact stabilization is possible [12]. In practice, approx-
imate transformations are generally used. The main-
streaming transformations include 2+/z, 2v/x + 1,

2/x+ 5 [71, 2y/x + 2 [5] and \/z 4+ V& + 1 [17].
vx + v/z + 1 can be taken as the linear combination

of two general forms with ¢ = 0 and ¢ = 1. We visual-
ize the variance of transformed y in Figure A1. When

the value x is enough large, the variance of 24/ x + %

[7], 2 x+% [5] and \/z + v/ + 1 [17] approach
the unity. However, \/x + v/ + 1 [17] shows bet-
ter approximation than other transformations when the
mean value x* is close to zero. The SNR (signal-to-
noise ratio) in dark areas is usually lower than that of
other areas. Therefore, we seek the generalized ver-
sion of Freeman-Tukey Transformation [17] to handle
Poisson-Gaussian distribution for raw denoising.

Firstly, we start from the transform of Poisson dis-
tribution. We define variable x to be a Poisson variable
of mean m. Its variance is Var(z) = m. We define
y to be the transformed x. Then we have Var(y) =
(%)QVar(a:) based on [15] and [8]. The core problem
of variance stabilization is stabilize Poisson distribu-
tion into unity variance. Hence we let Var(y) = 1 and
obtain:

dy Var(y) B L
de ~ \| Var(z) — m’ B4

For the general transform y = 2+/x + ¢, we have

@_ 1
dx  Jxte

From Egs. (B4) and (BS5), we obtain the approxima-
tion:

(B5)

m=zz+c. (B6)
Secondly, we consider the transform of Poisson-
Gaussian distribution. Similar to Eq. (5), we define
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Algorithm Variance Stabilization Training loss  Inverse PSNR
GAT-1 GAT (Anscombe) after inverse  unbiased 44.60
GAT-2 GAT (Anscombe) after inverse  algebraic  44.60
GAT-3 GAT (Anscombe) before inverse unbiased 44.50
GAT-4 GAT (Anscombe)  before inverse algebraic 44.63
Ours-1 Freeman-Tukey after inverse  algebraic  44.68

Ours Freeman-Tukey before inverse algebraic 44.70
Table B1 Ablation study of different inverse and different loss
functions on CRVD dataset (burst number N = 5).

variable z as z = x + -, where x is a Poisson variable
of mean m and ~ is a Gaussian variable of mean g and
standard deviation ¢. The variance of transformed z is
given by Var(y) ~ (%)2Var(z) based on [15] and [8].
Similarly, we let Var(y) = 1 and obtain:

dy  [Var(y) 1
dz  \| Var(z)  m +o2

(B7)

We take the first-order approximation in [44] to
approximate the Gaussian distribution v ~ ¢. From
Eq. (B6), we have m = z 4+ ¢ — g. Thus we have:

vy _ 1 (B8)

da Vz+tc+o?—g

By integral of Eq. (B8), we have the transformation
y(z) for Poisson-Gaussian distribution:

y(x) =2v/z+c+ 0% —g. (B9)

Finally, we move to the generalized version of
Freeman-Tukey Transformation [17]: y = +/z +
vz + 1. From the Eq. (B9), we generalize 2/ and
2+/x + 1 respectively. By using linear combination of
two generalized transformations (¢ = 0 and ¢ = 1),
we obtain the generalized version of Freeman-Tukey
Transformation:

y@)=vz+1+02—g+Vz+o2—g. (BIO)

Appendix C Algebraic Inverse of
transform

It is known that algebraic inverse is usually avoided
due to bias in previous methods [44]. However the bias
is already handled when we calculate the loss in the
space of variance stabilization. Moreover, algebraic
inverse can be used for both Anscombe transformation
[5, 44] and Freeman-Tukey transformation [17] in our
framework.

Input order Reverse Shuffle Keep

PSNR (dB) 44.63 44.67 44.70
Table C2 Ablation study of different input orders of alternate
frames on CRVD dataset (burst number N = 5).

Network weights Sharing Specializing
PSNR (dB) 44.44 44.70
Table C3 Ablation study of using specialized or shared-weights
networks on CRVD dataset (burst number N = 5).

#Scales s=2 s=3 s=4

PSNR (dB) 44.49 44770 44.71

Params. M) 1.06 1.57 2.10
Table C4 Ablation study of using different numbers of frequencies
in the denoising network on CRVD dataset (burst number N = 5).

Let  and z* denote noisy signal and clean sig-
nal, respectively. The transform (Anscombe transform
or Freeman-Tukey transform) is denoted as f and the
algebraic transform is denoted as f~!. The bias is
produced by the nonlinearity of the transformation
f. We calculate the loss in the variance stabiliza-
tion space. The denoising network would learn the
mapping from f(z) to f(«*) directly. Therefore, the
bias is already handled when the denoising output
approximates f(z*).

We further conduct experiments on CRVD dataset
(burst number N = 5) to compare algebraic inverse
and exact unbiased inverse under different training set-
tings. The results are shown in Table B1. We first
training with Generalization Anscombe transforma-
tion (GAT) [44] and calculate the loss function before
the inverse. Then we test the model with algebraic
inverse (denoted as “GAT-4”) and exact unbiased
inverse (denoted as “GAT-3”). It is shown that alge-
braic inverse outperforms the exact unbiased inverse
[33] by 0.13 dB PSNR, which demonstrates that the
bias is handled in calculating loss before inverse. Then
we train with GAT with algebraic inverse (denoted as
“GAT-2”) and optimal inverse (denoted as “GAT-1")
and calculate the loss function after the inverse. In
Table B1, it can be observed that both two inverses
show the same performance (44.60 dB PSNR) but are
0.03 dB PSNR lower than calculating the loss before
inverse. It might be because the bias produced in the
space of variance stabilization becomes more compli-
cated after the non-linear inverse transformation. Han-
dling the bias before inverse is more direct. The same
phenomenon can also observed in the Freeman-Tukey
transformation (“Ours-1" VS “Ours”).
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Appendix D More Ablation of
Denoising Network

Input order of alternate frames We conduct exper-
iments on CRVD dataset [53] (burst number N = 5)
to compare three input orders: a) preserving the tem-
poral order of an input burst (denoted as “Keep”), b)
shuffling the burst order randomly (denoted as “Shuf-
fle”), and c) reversing the burst order (denoted as
“Reverse”). In training and testing, 4 alternate frames
are re-arranged following the same ordering strategies.
It is shown in Table C2 that training with preserving
the temporal order achieve the best performance of
44.70 dB PSNR, which slightly outperforms random
shuffling by 0.03 dB PSNR. Furthermore, reversing
the temporal order achieve the worst performance of
44.63 dB PSNR, which suffers a drop of 0.07dB
PSNR. It can be observed that preserving the temporal
order is helpful in sequential denoising.

Specializing the network weights In our denois-
ing network S, we have a series of sub-networks
for sequential denoising. For burst denoising on
CRVD dataset [53] (burst number N = 5), Sy
is for spatially denoising of reference frame and
S1,55,S53,5, are for sequential denoising of the 4
alternate frames. We conduct experiments on CRVD
dataset (burst number N = 5) to compare S; with
different weights (denoted as “specializing”) and S;
with shared weights (denoted as “sharing”). It shown
in Table C3 that using shared weights of S, .53, S3, Sy
just achieves 44.44 dB PSNR, which has a drop of
0.26 dB PSNR compared with specializing each S;
(44.70 dB PSNR).

Different Scales in denoising backbone We conduct
experiments on CRVD dataset (burst number N = 5)
to explore using different scales (frequencies). We
define the number of scales (frequencies) as s. When
s = 4, we use four frequencies (mg, m1, ms, m3) to
achieve multi-frequency denoising. It can be observed
in Table C4 that using two frequencies achieves 44.49
dB PSNR, which is a drop of 0.21dB compared with
using three frequencies (44.70 dB PSNR). But when
we use four scales (frequencies), the denoising perfor-
mance is 44.71 dB PSNR and just outperform using
three frequencies by only 0.01 dB PSNR but its model
size increases from 1.57M to 2.10M.
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