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Abstract
Graphs offer a natural way to formulate Multiple Object Tracking (MOT) and Multiple Object Tracking and Segmentation
(MOTS) within the tracking-by-detection paradigm. However, they also introduce a major challenge for learning methods, as
defining a model that can operate on such structured domain is not trivial. In this work, we exploit the classical network flow
formulation of MOT to define a fully differentiable framework based on Message Passing Networks. By operating directly
on the graph domain, our method can reason globally over an entire set of detections and exploit contextual features. It then
jointly predicts both final solutions for the data association problem and segmentation masks for all objects in the scene while
exploiting synergies between the two tasks. We achieve state-of-the-art results for both tracking and segmentation in several
publicly available datasets. Our code is available at https://github.com/ocetintas/MPNTrackSeg

Keywords Multi-object tracking · Segmentation · Neural message passing · Graph neural networks

1 Introduction

Multiple object tracking (MOT) is the task of determining the
bounding box trajectories of all object instances in a video.
Multi-object tracking and segmentation (MOTS) (Voigtlaen-
der et al., 2019) extends this task to pixel-level precision by
forming trajectories with instance segmentation masks. Both
tasks constitute fundamental problems in computer vision,
with applications such as autonomous driving, biology, and
video analysis.

Segmentation and tracking are naturally intertwined tasks.
When occlusions among objects occur during tracking,
masks can disambiguate their relative position in a more
explicit manner than boxes. Even though we can expect
improvedperformance fromexploiting the synergies between
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the tasks, current state-of-the-art barely takes advantage of
their interactions.

In recent years, tracking-by-detection has been the domi-
nant paradigm among state-of-the-art methods in MOT. This
two-step approach consists of first obtaining frame-by-frame
object detections and then linking them to form trajectories.
While the first task can be addressed with learning-based
detectors (Ren et al., 2015; Redmon and Farhadi, 2017), the
latter, data association, is generally formulated as a graph par-
titioning problem (Tang et al., 2017; Yu et al., 2007; Zhang et
al., 2008; Leal-Taixé et al., 2011; Berclaz et al., 2011). In this
graph view of MOT, a node represents an object detection,
and an edge represents the connection between twonodes.An
active edge indicates that two detections belong to the same
trajectory. Solving the graph partitioning task, i.e., finding the
set of active edges or trajectories, can also be decomposed
into two stages. First, a cost is assigned to each edge in the
graph encoding the likelihood of two detections belonging
to the same trajectory. After that, these costs are used within
a graph optimization framework to obtain the optimal graph
partition.

Recent MOTS approaches often design a single model
to perform both tasks. A common approach is to employ
an additional segmentation module on top of the tracking
pipeline and predict masks together with the trajectories
(Voigtlaender et al., 2019; Porzi et al., 2020; Meinhardt
et al., 2021; Qiao et al., 2021). Despite using a single net-
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work, these approaches use separate modules without any
explicit interaction to perform segmentation and data asso-
ciation, preventing any synergies between these two tasks
from arising. An alternative line of work specifically takes
advantage of the segmentation masks to extract richer scene
information and improve association performance (Luiten
et al., 2020a; Xu et al., 2020b). However, these approaches
require an independent segmentation model; hence, they do
not simultaneously train for both tasks and therefore cannot
adaptively extract segmentation features for data association.
All in all, fusing tracking and segmentation cues with a uni-
fied model is an under-explored research direction.

We propose to jointly solve data association and segmen-
tation with a unified learning-based solver that can extract
and combine relevant appearance, geometry, and segmenta-
tion features and reason over the entire scene. This enables a
framework in which association benefits from refined visual
information provided by segmentation masks.

With this motivation, we exploit the classical network
flow formulation of MOT (Zhang et al., 2008) to define our
model. Instead of learning pairwise costs, using these within
an available solver and independently predicting masks for
every object, our method learns to propagate association and
segmentation features across the graph in order to directly
predict final partitions of the graph together with masks
for every object. We perform learning directly in the graph
domain with a message passing network (MPN) (Gilmer et
al., 2017). We design a neural message passing framework
that allows our model to learn to combine association and
segmentation features into high-order information across the
graph. Therefore, we exploit synergies among all tasks in
a fully learnable manner while relying on a simple graph
formulation.We show that our unified framework yields sub-
stantial improvementswith respect to the state-of-the-art both
in MOT andMOTS domains without requiring heavily engi-
neered features.

This work builds upon our previous CVPR paper (Braso
and Leal-Taixe, 2020) and extends it by 1) integrating an
attentive module to our neural message passing scheme to
yield a unifiedmodel formulti-object tracking and segmenta-
tion and 2) providing an extensive evaluation of our tracking
model over three challenging datasets, including MOT20
(Dendorfer et al., 2020), KITTI Geiger et al. (2012a) and
the recently proposed Human in Events dataset (Lin et al.,
2020).

To summarize, we make the following contributions:

• We propose a multi-object tracking and segmentation
solver based on message passing networks, which can
exploit the natural graph structure of the tracking problem
to perform both feature learning as well as final solution
prediction.

• We propose a novel time-aware neural message pass-
ing update step inspired by classic graph formulations
of MOT.

• We present a unified framework capable of performing
joint tracking and segmentation by combining cues from
both domains to improve the association performance. To
this end, we propose an attentive message passing update
that aggregates inferred temporal and spatial information.

• We achieve state-of-the-art results in eight public MOT
and MOTS benchmarks.

2 RelatedWork

Most state-of-the-art MOT works follow the tracking-by-
detection paradigm which divides the problem into two
steps: (i) detecting pedestrian locations independently in each
frame, for which neural networks are currently the state-of-
the-art (Ren et al., 2015; Redmon and Farhadi, 2017; Yang
et al., 2016), and (ii) linking corresponding detections across
time to form trajectories.
Tracking as a Graph Problem. Data association can be
done on a frame-by-frame basis for online applications (Bre-
itenstein et al., 2009; Ess et al., 2008; Pellegrini et al., 2009)
or track-by-track (Berclaz et al., 2006). For video analysis
tasks that can be done offline, batch methods are preferred
since they aremore robust to occlusions. The standard way to
model data association is by using a graph, where each detec-
tion is a node, and edges indicate possible links among them.
The data association can then be formulated as a maximum
flow (Berclaz et al., 2011) or, equivalently, a minimum cost
problem with either fixed costs based on distance (Jiang et
al., 2007; Pirsiavash et al., 2011; Zhang et al., 2008), includ-
ing motion models (Leal-Taixé et al., 2011), or learned costs
(Leal-Taixé et al., 2014). Both formulations can be solved
optimally and efficiently. Alternative formulations typically
lead to more involved optimization problems, includingmin-
imum cliques (Zamir et al., 2012) and lifted disjoint paths
(Hornakova et al., 2020, 2021), general-purpose solvers, e.g.,
multi-cuts (Tang et al., 2017). A recent trend is to design ever
more complex models which include other vision input such
as reconstruction for multi-camera sequences (Leal-Taixé et
al., 2012; Wu et al., 2011), activity recognition (Choi and
Savarese, 2012), segmentation (Milan et al., 2015), keypoint
trajectories (Choi, 2015) or joint detection (Tang et al., 2017).
Learning inGraph-basedTracking. It is no secret that neu-
ral networks are now dominating the state-of-the-art in many
vision tasks since (Krizhevsky et al., 2012) showed their
potential for image classification. The trend has also arrived
in the tracking community, where learning has been used pri-
marily to learn a mapping from image to optimal costs for
the aforementioned graph algorithms. The authors of (Leal-
Taixé et al., 2016) use a siamese network to directly learn the
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costs between a pair of detections, while a mixture of CNNs
and recurrent neural networks (RNN) is used for the same
purpose in Sadeghian et al. (2017); Zhang et al. (2020). The
authors of Ristani and Tommasi (2018) show the importance
of learned ReIdentification (ReID) features for multi-object
tracking. More recently, JDE and FairMOT (Wang et al.,
2020; Zhang et al., 2021) explore the potential of jointly
learning appearance features data association and detection,
therefore, improving efficiency. All aforementionedmethods
learn the costs independently from the optimization method
that actually computes the final trajectories. In contrast, (Kim
et al., 2013; Wang and Fowlkes, 2015; Schulter et al., 2017)
incorporate the optimization solvers into learning. The main
idea behind these methods is that costs also need to be opti-
mized for the solver in which they will be used. (Kim et
al., 2013; Wang and Fowlkes, 2015; Frossard and Urtasun,
2018) rely on structured learning losseswhile (Schulter et al.,
2017) proposes a more general bi-level optimization frame-
work. These works can be seen as similar to ours in spirit,
given our common goal of incorporating the full inference
model into learning for MOT. However, we follow a differ-
ent approach towards this end: we propose to directly learn a
solver and treat data association as a classification task, while
their goal is to adapt their methods to perform well with non-
learnable solvers. Moreover, all these works are limited to
learning either pairwise costs (Frossard and Urtasun, 2018;
Schulter et al., 2017) or additional quadratic terms (Wang
and Fowlkes, 2015; Kim et al., 2013) but cannot incorporate
higher-order information as our method. Instead, we pro-
pose to leverage the common graph formulation of MOT as
a domain inwhich to perform learning. Concurrent work also
explores the potential of learning in the graph domain (Liu
et al., 2020; Li et al., 2020); however, they do sowithin frame-
by-frame settings, while we focus on a more general graph
formulation. Moreover, our proposed approach has inspired
recent graph neural network-based work to tackle proposal
classification for Multiple Hypothesis Tracking (Dai et al.,
2021) and graph-matching-based tracking (He et al., 2021).
Regression-Based Tracking. While graph-based methods
are still actively used by several state-of-the-art trackers, sev-
eral recent works achieve remarkable performance with a
simpler formulation. The first of such works was Tracktor
Bergmann et al. (2019) which performs tracking by exploit-
ing the regressor head of a Faster R-CNN to sequentially
predict the location objects in consecutive frames. TMOH
Stadler andBeyerer (2021) improves Tracktor’s performance
under occlusion, and CTracker Peng et al. (2020) builds upon
its idea with a framework that performs chained regression
over consecutive pairs of frames and uses attention. In a sim-
ilar fashion to these works, CenterTrack Zhou et al. (2020)
uses center-points instead of bounding boxes and predicts

offset heatmaps to regress consecutive object locations, and
PermaTrack Tokmakov et al. (2021) improves its robust-
ness to occlusions by predicting offsets over multiple future
frames. In our approach, we leverage Tracktor as an initial
preprocessing step to improve object detections before apply-
ing our neural solver over the result.
DeepLearningonGraphs.GraphNeuralNetworks (GNNs)
were first introduced in Scarselli et al. (2009) as a generaliza-
tion of neural networks that can operate on graph-structured
domains. Since then, several works have focused on further
developing and extending them by developing convolutional
variants (Bruna et al., 2013; Defferrard et al., 2016; Kipf &
Welling, 2016). More recently, most methods were encom-
passed within a more general framework termed neural
message passing (Gilmer et al., 2017) and further extended in
Battaglia et al. (2018) as graph networks. Given a graph with
some initial features for nodes and optionally edges, themain
idea behind these models is to embed nodes (and edges) into
representations that take into account not only the node’s fea-
tures but also those of its neighbors in the graph, aswell as the
overall graph topology. Thesemethods show remarkable per-
formance in a wide variety of areas, ranging from chemistry
(Gilmer et al., 2017) to combinatorial optimization (Li et al.,
2018). Within vision, they have been successfully applied
to problems such as human action recognition (Guo et al.,
2018), visual question answering (Narasimhan et al., 2018)
or single object tracking (Gao et al., 2019).
Multi-Object Tracking and Segmentation.MOTS (Voigt-
laender et al., 2019) was recently introduced as an extension
of MOT to overcome the limitations of bounding boxes
while also opening up the possibility to incorporate a richer
visual cue for the association step. Prior works often solve
both tasks by modifying strong segmentation models and
extending themwith an association head (Voigtlaender et al.,
2019; Porzi et al., 2020; Qiao et al., 2021; Wu et al., 2021).
TrackR-CNN (Voigtlaender et al., 2019) integrates tempo-
ral information into the MaskR-CNN framework with 3D
convolutions, while MOTSNet (Porzi et al., 2020) employs
a mask-pooling layer for filtering out the background infor-
mation from the instance feature maps. Alternatively, recent
works attempt to condition the association step on masks
by first performing segmentation and then reconstructing
objects in the 3D space (Luiten et al., 2020a) or denoting
objects with 2D point clouds (Xu et al., 2020b). The moti-
vation of this line of work is to utilize the strong visual cues
provided bymasks to improve the association performance of
the model. However, these approaches disentangle the mask
prediction step from the association. Thus, simultaneously
solving both tasks by fusing tracking and segmentation cues
remains an open question.
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3 Tracking as a Graph Problem

Our method’s tracking formulation is based on the classi-
cal min-cost flow view of MOT (Zhang et al., 2008). In
order to provide somebackground and formally introduceour
approach, we start by providing an overview of the network
flow MOT formulation. We then explain how to leverage
this framework to reformulate the data association task as a
learning problem.

3.1 Problem Statement

In tracking-by-detection, we are given as input a set of object
detections O = {o1, . . . , on}, where n is the total number of
objects for all frames of a video. Each detection is represented
by oi = (ai , pi , ti ), where ai denotes the raw pixels of the
bounding box, pi contains its 2D image coordinates and ti
its timestamp. A trajectory is defined as a set of time-ordered
object detections Ti = {oi1 , . . . , oini }, where ni is the number
of detections that form trajectory i . The goal ofMOT is to find
the set of trajectories T∗ = {T1, . . . , Tm}, that best explains
the observations O. The problem can be modelled with an
undirected graph G = (V , E), where V := {1, . . . , n}, E ⊂
V × V , and each node i ∈ V represents a unique detection
oi ∈ O. The set of edges E is constructed so that every pair
of detections, i.e., nodes, in different frames is connected,
hence allowing to recover trajectorieswithmissed detections.
Now, the task of dividing the set of original detections into
trajectories can be viewed as grouping nodes in this graph
into disconnected components. Thus, each trajectory Ti =
{oi1 , . . . , oini } in the scene can be mapped into a group of
nodes {i1, . . . , ini } in the graph and vice-versa.

3.2 Network Flow Formulation

In order to represent graph partitions, we introduce a binary
variable for each edge in the graph. In the classical mini-
mum cost flow formulation (Zhang et al., 2008), this label
is defined to be 1 between edges connecting nodes that (i)
belong to the same trajectory, and (ii) are temporally consec-
utive inside a trajectory; and 0 for all remaining edges.

A trajectory Ti = {oi1 , . . . , oini } is equivalently denoted
by the set of edges {(i1, i2), . . . , (ini−1, ini )} ⊂ E , corre-
sponding to its time-ordered path in the graph. We will use
this observation to formally define the edge labels. For every
pair of nodes in different timestamps, (i, j) ∈ E , we define
a binary variable y(i, j) as:

y(i, j) :=
{
1 ∃Tk ∈ T∗ s.t. (i, j) ∈ Tk
0 otherwise.

An edge (i, j) is said to be active whenever y(i, j) = 1. We
assume trajectories in T to be node-disjoint, i.e., a node can-
not belong to more than one trajectory. Therefore, y must
satisfy a set of linear constraints. For each node i ∈ V :

∑
( j,i)∈E s.t. ti>t j

y( j,i) ≤ 1 (1)

∑
(i,k)∈E s.t. ti<tk

y(i,k) ≤ 1 (2)

These inequalities are a simplified version of the flow con-
servation constraints (Ahuja et al., 1993). In our setting, they
enforce that every node gets linked via an active edge to, at
most, one node in past frames and one node in upcoming
frames.

3.3 From Learning Costs to Predicting Solutions

In order to obtain a graph partition with the framework we
have described, the standard approach is to first associate a
cost c(i, j) to each binary variable y(i, j). This cost encodes the
likelihood of the edge being active (Leal-Taixé et al., 2014,
2016; Schulter et al., 2017). The final partition is found by
optimizing:

miny
∑

(i, j)∈E
c(i, j)y(i, j)

Subject to: Equation (1)
Equation (2)
y(i, j) ∈ {0, 1}, (i, j) ∈ E

which can be solved with available solvers in polynomial
time (Berclaz et al., 2006; Ahuja et al., 1993).

We propose to, instead, directly learn to predict which
edges in the graph will be active, i.e., predict the final value
of the binary variable y. To do so, we treat the task as a
classification problem over edges, where our labels are the
binary variables y. Overall, we exploit the classical network
flow formulation we have just presented to treat the MOT
problem as a fully learnable task.

4 Learning to Track withMessage Passing
Networks

Our main contribution is to exploit the graph formulation
described in the previous section to design a differentiable
framework for joint tracking and segmentation. Given a set of
detections, we design a neural message passing network that
operates on its underlying graph and extracts contextual node
and edge embeddings. We classify each edge embedding to
predict the values of the binary flow variables y directly, and
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(a) Input

Detection CNN

ReID CNN

(b) Graph Construction + Fea-
ture Encoding

(c) Neural Message
Passing

Mask Decoding 
CNN

(d) Edge Classification + Mask
Prediction

(e) Output

Fig. 1 Overview of our method. a We receive as input a set of frames
and detections. bWe construct a graph in which nodes represent detec-
tions, and all nodes at different frames are connected by an edge. c We
initialize node embeddings in the graph with two CNNs that encode
appearance and mask features. Edge embeddings are initialized with an
MLP encoding geometry information (not shown in the figure). c The
information contained in these embeddings is propagated across the
graph for a fixed number of iterations through neural message passing.

d Once this process terminates, the embeddings resulting from neural
message passing are used to predict masks and classify edges into active
(colored with green) and non-active (colored with red). During training,
we compute the cross-entropy loss of our predictions w.r.t. ground truth
labels. e At inference, we follow a simple rounding scheme to bina-
rize our classification scores and obtain final trajectories (Color figure
online)

we exploit node embeddings to obtain a segmentation mask
for every target. Our method is based on a novel message
passing network (MPN) and is able to capture the graph struc-
ture of the MOT and MOTS problems. Within our proposed
MPN framework, appearance, geometry, and segmentation
cues are propagated across the entire set of detections, allow-
ing our model to reason globally about the entire graph.

4.1 Overview

Our method consists of the following four main stages: 1.
Graph Construction: Given a set of object detections in a
video,we construct a graphwhere nodes correspond to detec-
tions and edges correspond to connections between nodes
(Sect. 3.2).
2. Feature Encoding:We initialize the node feature embed-
dings from two convolutional neural networks (CNNs)
applied on every detection’s Region of Interest (RoI), extract-
ing appearance and mask features. For each edge, i.e., for
every pair of detections in different frames, we compute a
vector with features encoding their bounding box relative
size, position, and time distance. We then feed it to a multi-
layer perceptron (MLP) that returns a geometry embedding
(Sect. 4.5).
3. Neural Message Passing: We perform a series of mes-
sage passing steps over the graph. Intuitively, for each round
of message passing, nodes share appearance information
with their connecting edges, and edges share geometric
information with their incident nodes. This yields updated

embeddings for nodes and edges containing higher-order
information that depends on the overall graph structure
(Sects. 4.2, 4.3 and 4.4).
4. Classification: We use the final edge embeddings to per-
form binary classification into active/non-active edges and
node embeddings to classify each pixel of the RoIs into
foreground/background. We train our model using the cross-
entropy loss for both tasks (Sect. 4.6).

At test time, we use our model’s prediction per edge as
a continuous approximation (between 0 and 1) of the target
flow variables.We then follow a simple scheme to round them
and obtain the final trajectories. For a visual overview of our
pipeline, see Fig. 1.

4.2 Message Passing Networks

In this section, we provide a brief introduction to MPNs
based on the work presented in Gilmer et al. (2017); Kipf
et al. (2018); Battaglia et al. (2016); Battaglia et al. (2018).
Let G = (V , E) be a graph. Let h(0)

i be a node embedding

for every i ∈ V , and h(0)
(i, j) an edge embedding for every

(i, j) ∈ E . The goal of MPNs is to learn a function to prop-
agate the information contained in nodes and edge feature
vectors across G. The propagation procedure is organized in
embedding updates for edges and nodes, which are known
as message passing steps (Gilmer et al., 2017). In (Battaglia
et al., 2018; Kipf et al., 2018; Battaglia et al., 2016), each
message passing step is divided, in turn, into two updates:
one from nodes to edges (v → e), and one from edges to
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nodes (e → v). The updates are performed sequentially for
a fixed number of iterations L . For each l ∈ {1, . . . , L}, the
general form of the updates is the following (Battaglia et al.,
2018):

(v → e) h(l)
(i, j) = Ne

(
[h(l−1)

i , h(l−1)
j , h(l−1)

(i, j) ]
)

(3)

(e → v) m(l)
(i, j) = Nv

(
[h(l−1)

i , h(l)
(i, j)]

)
(4)

h(l)
i = Φ

({
m(l)

(i, j)

}
j∈Ni

)
(5)

Ne and Nv represent learnable functions, e.g., MLPs, that
are shared across the entire graph. [.] denotes concatenation,
Ni ⊂ V is the set of adjacent nodes to i , and Φ denotes
an order-invariant operation, e.g., a summation, maximum,
or an average. Note, after L iterations, each node contains
information about all other nodes at a distance L in the graph.
Hence, L plays an analogous role to the receptive field of
CNNs, allowing embeddings to capture context information.

4.3 Time-Aware Message Passing

The previous message passing framework was designed to
work on arbitrary graphs. However, MOT graphs have a very
specific structure that we propose to exploit. Our goal is to
encode aMOT-specific inductive bias in our network, specifi-
cally in the node update step. Recall the node update depicted
in Eqs. 4 and 5, which allows each node to be compared with
its neighbors and aggregate information from all of them
to update its embedding with further context. Recall also
the structure of our flow conservation constraints (Eqs. 1
and 2), which imply that each node can be connected to,
at most, one node in future frames and another one in past
frames. Arguably, aggregating all neighboring embeddings
at once makes it difficult for the updated node embedding
to capture whether these constraints are being violated or
not (see Sect. 5.4 for constraint satisfaction analysis). More
generally, explicitly encoding the temporal structure ofMOT
graphs into our MPN formulation can be a useful prior for
our learning task. Towards this goal, we modify Eqs. 4 and
5 into time-aware update rules by dissecting the aggregation
into two parts: one over nodes in the past, and another over
nodes in the future. Formally, let us denote the neighboring
nodes of i in future and past frames by N f ut

i and N past
i ,

respectively. Let us also define two different MLPs, namely,
N f ut

v and N past
v . At each message passing step l and for

every node i ∈ V , we start by computing past and future
edge-to-node embeddings for all of its neighbors j ∈ Ni as:

m(l)
(i, j) =

⎧⎨
⎩
N past

v

(
[h(l−1)

i , h(l)
(i, j), h

(0)
(i) ]

)
if j ∈ N past

i

N f ut
v

(
[h(l−1)

i , h(l)
(i, j), h

(0)
(i) ]

)
if j ∈ N f ut

i

(6)

Note, the initial embeddings h(0)
(i) have been added to the com-

putation. This skip connection ensures that our model does
not forget its initial features during message passing, and we
apply it analogously with initial edge features in Eq. 3. After
that, we aggregate these embeddings separately, depending
on whether they were in future or past positions with respect
to i :

h(l)
i,past =

∑
j∈N past

i

m(l)
(i, j) (7)

h(l)
i, f ut =

∑
j∈N f ut

i

m(l)
(i, j) (8)

Now, these operations yield past and future embeddings
h(l)
i,past and h

(l)
i, f ut , respectively.We compute the final updated

node embedding by concatenating them and feeding the
result to one last MLP, denoted as Nv:

h(l)
i = Nv([h(l)

i,past , h
(l)
i, f ut ]) (9)

We summarize our time-aware update in Fig. 2c. As we
demonstrate experimentally (see Sect. 5.4), this simple archi-
tectural design results in a significant performance improve-
ment with respect to the vanilla node update ofMPNs, shown
in Fig. 2c.

4.4 Attentive Message Passing

Our time-aware message passing framework utilizes appear-
ance and geometry feature vectors of dimension d for the
association. Segmentation, on the other hand, is a dense
prediction task that requires pixel-precise outputs. Preserv-
ing spatial information is crucial for this task, therefore we
incorporate contextual mask features with additional spatial
dimensions H and W (i.e., tensors in R

H×W×d ′
) for every

node into ourmessage passing updates. H andW correspond,
respectively, to the height andwidth atwhich each node’s RoI
is resized.

Our goal is to extract rich segmentation features encod-
ing temporal information to be used for association. Towards
this end, we leverage the temporal information encoded in
the edge embeddings and use them to produce attention coef-
ficients to guide the updates of mask features. The mask
features will therefore be most influenced by neighbors in
the graph belonging to the same trajectory.

Formally, let h̃(0)
i ∈ R

H×W×d represent a secondarymask
node embedding for every i ∈ V encoding visual informa-
tion. In addition, let Nw

e denote an MLP working on the
edges of the graph. At each message passing step l ≥ 1, we
calculate the unnormalized attention weights for each edge
of the graph:
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(a) Initial Setting (b) Vanilla node update (c) Time-aware node update

Fig. 2 Visualization of node updates during message passing. Arrow
directions in edges show time direction. Note the time division in t −1,
t , and t + 1. In this case, we have N past

3 = {1, 2} and N f ut
3 = {4, 5}. a

shows the starting point after an edge update has been performed (Eq.
3), and the intermediate node update embeddings (Eq. 4) have been

computed. b shows the standard node update in vanilla MPNs, in which
all neighbors’ embeddings are aggregated jointly. c shows our proposed
update, in which embeddings from past and future frames are aggre-
gated separately, then concatenated and fed into an MLP to obtain the
new node embedding

w
(l)
(i, j) = Nw

e

(
h(l−1)

(i, j)

)
(10)

The attention scores for the edge (i, j) are computed by
respecting the time-awaremessage passing rules and normal-
izing the weights over the past and future neighbors of the
node i with a softmax operator:

a(l)
(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
w

(l)
(i, j)

)
∑

k∈N past
i

exp
(
w

(l)
(i,k)

) if j ∈ N past
i

exp
(
w

(l)
(i, j)

)
∑

k∈N f ut
i

exp
(
w

(l)
(i,k)

) if j ∈ N f ut
i

(11)

The past and future context tensors for each node i are,
then, computed as a weighted sum of the node features of its
neighbors:

c(l)
i,past =

∑
j∈N past

i

a(l)
(i, j)h̃

(l−1)
j (12)

c(l)
i, f ut =

∑
j∈N f ut

i

a(l)
(i, j)h̃

(l−1)
j (13)

Finally, we obtain the updated node embeddings by con-
catenating initial embedding h̃(0)

i with the past and future
context tensors and feeding the result to a 2-layer CNN,
denoted as Ñv:

h̃(l)
i = Ñv([c(l)

i,past , c
(l)
i, f ut , h̃

(0)
(i) ]) (14)

Note that high-dimensional secondary node embeddings
h̃i and attentive update rules are only employed in theMOTS
setting. Default node embeddings hi are still present in this
scenario and are updated according to Eqs. 6–9.

We illustrate our update scheme in Fig. 3. With our
attentive message passing updates high-dimensional mask
features can participate in the message passing steps, and we
can train our model for tracking and segmentation jointly. It
is worth highlighting that updates of these node features are
directly governed by the edges of the graph. Hence, in our
end-to-end differentiable framework, both the edge features
h(l)

(i, j) (later classified for tracking) and node features h̃(l)
i

(later used for segmentation) are guided by both the track-
ing and segmentation objectives. Overall, we obtain a joint
framework in which segmentation features can guide asso-
ciation decisions. In Sect. 5.4, we empirically show that our
unified pipeline improves upon our baseline in which seg-
mentation and tracking are detached.

4.5 Feature Encoding

The initial embeddings that our MPN receives as input are
produced by other backpropagatable networks.
Appearance and Mask Embeddings. We rely on a CNN,
denoted as N enc

v , to learn to extract feature embeddings
directly from RGB data. For every detection oi ∈ O, and its
corresponding image patch ai , we obtain oi ’s corresponding
node embedding by computing h(0)

i := N enc
v (ai ). Moreover,
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Fig. 3 Visualization of our proposed attentive message passing. Updates of the node mask features (orange) are guided by the attention weights,
obtained from the edge features (green) (Color figure online)

we use an additional network composed of a CNN backbone
and RoI Align (He et al., 2017) denoted as Ñ enc

v to obtain
secondary node embeddings from each Region of Interest
(RoI) ri as h̃

(0)
i := Ñ enc

v (ri ).
Geometry Embedding. For each pair of detections in differ-
ent frames, we seek to obtain a representation that encodes
their relative position, size, as well as distance in time. For
every pair of detections oi and o j with timestamps ti 
= t j ,
we consider their bounding box coordinates parameterized
by top left corner image coordinates, height and width, i.e.,
(xi , yi , hi , wi ) and (x j , y j , h j , w j ). We compute their rela-
tive distance and size as:(
2(x j − xi )

hi + h j
,
2(y j − yi )

hi + h j
, log

hi
h j

, log
wi

w j

)

We then concatenate this coordinate-based feature vector
with the time difference t j − ti and relative appearance
‖N enc

v (a j ) − N enc
v (ai )‖2 and feed it to a neural network

N enc
e in order to obtain the initial edge embedding h(0)

(i, j).

4.6 Training and Inference

Training Loss. To classify edges, we use an MLP with a
sigmoid-valued single output unit, sharing weights withNw

e .
For training, we use the weighted binary cross-entropy of our
predictions over the embeddings produced in the lastm mes-
sage passing steps, with respect to the target flow variables
(Lt ). Since our classification problem is severely imbalanced,
we weight positive terms in the loss with the inverse propor-
tion of positive samples.

Masks are obtained by feeding the updated node features
to a CNN that classifies each pixel of the RoI as fore-
ground/background with a per-pixel sigmoid. We define Ls

as the average binary cross-entropy loss over the pixels. Sim-
ilar toLt , we compute this loss for the lastmmessage passing
steps. Finally, we define a multi-task loss as L = Lt + Ls ,
which is the main objective of our training.
Tracking Inference. During inference, we interpret the set
of output values obtained from our model at the last message
passing step as the solution to our data association problem.
An easy way to obtain hard 0 or 1 decisions is to binarize the
output by thresholding. However, this procedure does not
generally guarantee that the flow conservation constraints in
Eqs. 1 and 2 are preserved. In practice, thanks to the pro-
posed time-aware update step, our method will satisfy over
98% of the constraints on average when thresholding at 0.5.
After that, a simple rounding scheme suffices to obtain a
feasible binary output. We consider the significantly smaller
subgraph consisting of nodes and edges involved in a vio-
lation of Eqs. 1 and 2 and solve a linear program with it to
ensure the satisfaction of constraints 1 and 2. Given the high
constraint satisfaction rate obtained by our model, the run-
time of this procedure adds an insignificant computational
overhead. As shown in Braso and Leal-Taixe (2020), the lin-
ear program can be replaced by a simple heuristic rounding
procedure without loss of tracking performance.
Mask prediction.To obtain our final masks, we use a 7-layer
CNN, denoted as Ñmask

v , to predict binary masks from the
node mask features for each RoI. Our segmentation network
Ñmask

v receives two sets of features, namely the updated node
features h̃(l)

i via attentive message passing, and the raw node

features h̃(0)
i prior to message passing updates, which can be

thought of as a skip connection:

maski = Ñmask
v ([h̃(l)

(i), h̃
(0)
(i) ]) (15)
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5 Experiments

In this section, we start by presenting ablation studies to
understand the behavior of our model better. We then com-
pare our model to the published methods on several datasets
and show state-of-the-art results. For the MOT experiments,
we use our default time-aware message passing framework,
as introduced in our conference paper, and denote it asMPN-
Track. For MOTS experiments, we extend our model to
include also attentive message passing as explained in Sect.
4.4 and denote our model asMPNTrackSeg. Implementation
details of the models are reported in Sect. 5.3.

5.1 Evaluation Metrics

To evaluate our method, we report the CLEAR MOT (Kas-
turi et al., 2009), IDF1 (Ristani et al., 2016) and HOTA
(Luiten et al., 2020b), together with the percentage of mostly
tracked (MT) and mostly lost targets (ML). For the CLEAR
MOT metrics, we use the multiple object tracking accu-
racy (MOTA), which combines false positive detections
(FP), false negative detections (FN), and identity switches
(IDs) into a single score. Despite its widespread use, MOTA
accounts mostly for the quality of detections and is not
affected significantly by identity preservation errors (Ristani
et al., 2016). IDF1, instead, is based on matching predicted
trajectories to ground truth trajectories, instead of boxes,
and therefore provides a better measure of data associa-
tion performance. Lastly, the recently proposed HOTA score
finds a balance between detection and data association per-
formance by being decomposable into Detection Accuracy
(DetA) and Association Accuracy (AssA). Hence, it can pro-
vide more clarity into the sources of errors committed by
different trackers. (Voigtlaender et al., 2019) adapts CLEAR
MOT metrics for MOTS by accounting for the segmentation
masks. Specifically, they replace the bounding box IoU with
amask-based IoU and proposemulti-object tracking and seg-
mentation accuracy (MOTSA) and soft multi-object tracking
and segmentation accuracy (sMOTSA). MOTSA utilizes the
number of true positives that reaches an IoU of 0.5 whereas,
sMOTSA accumulates the soft number of true positives to
incorporate segmentation quality even more into MOTA.

5.2 Datasets

MOTChallenge. The multiple object tracking benchmark
MOTChallenge consists of several challenging pedestrian
tracking sequences, with frequent occlusions and crowded
scenes. The challenge includes four datasets 2D MOT 2015
(Leal-Taixé et al., 2015),MOT16 (Milan et al., 2016),MOT17
(Milan et al., 2016) and MOT20 (Dendorfer et al., 2020).
They contain sequences lasting from 3 seconds to over 2
minutes, and with varying viewing angles, size, number of

objects, camera motion, and frame rate. MOT20 is notable
for its extreme crowdedness, with close to 150 pedestrians
per frame, on average. MOTA and IDF1 scores are the most
important metrics in this benchmark.
KITTI. The KITTI Vision Benchmark Suite (Geiger et
al., 2012) focuses on robotics applications and includes
sequences of autonomous driving scenarios captured both in
rural andurban areas andonhighways.KITTI accommodates
challenging computer vision benchmarks, including optical
flow, visual odometry, and multi-object tracking. The track-
ing benchmark contains 21 sequences for training and 29 for
testing, recorded at 10 frames per second. Not all sequences
contain pedestrians, and those that do are characterized by
their low object density. KITTI has recently incorporated
HOTA as the main metric, and it also makes use of MOTA.
MOTS20 and KITTI-MOTS (Voigtlaender et al., 2019).
Recently, (Voigtlaender et al., 2019) extendedbothMOTChal-
lenge and KITTI sequences for MOTS. MOTS20 consists
of 4 training and 4 testing MOT16 sequences annotated
with high-resolution instance masks. KITTI-MOTS adds
segmentation masks for both pedestrians and cars to all
KITTI sequences. As for metrics, sMOTSA and IDF1 are the
main metrics to evaluate performance in MOTS20, whereas
KITTI-MOTSbases its evaluation on domain-adaptedHOTA
that accounts for the mask quality.
Human inEvents (HiEve) (Lin et al., 2020). TheHiEdataset
is a recently proposed benchmark focused on pedestrian
tracking, detection, pose estimation, and action recognition in
diverse surveillance scenarios, often characterized by heavy
occlusions. It is the largest dataset currently available for
pedestrian tracking, containing over 1.3 million annotated
boxes across 19 sequences for training and 13 for testing,
with an average trajectory length of over 480 frames. It uses
two of the same metrics used in MOTChallenge, MOTA and
IDF1, and does not accommodate HOTA.

5.3 Implementation Details

Network Models. For the network N enc
v used to encode

detections appearances (seeSect. 4.5),we employ aResNet50
(He et al., 2016) architecture pretrained on ImageNet (Deng
et al., 2009), followed by global average pooling and two
fully-connected layers to obtain embeddings of dimension
256. We train the network for the task of ReIdentification
(ReID) jointly on three publicly available datasets: Mar-
ket1501 (Zheng et al., 2015), CUHK03 (Li et al., 2014) and
DukeMTMC (Ristani et al., 2016). Note that using external
ReID datasets is a common practice among MOT methods
(Tang et al., 2017; Kim et al., 2018; Ma et al., 2019).

Once trained, three new fully connected layers are added
after the convolutional layers to reduce the embedding size
of N enc

v to 32. To obtain secondary node features, we use a
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COCO pretrained ResNet50-FPN backbone (He et al., 2016;
Lin et al., 2017), referred as Ñ enc

v .
Data Augmentation. To train our network, we sample
batches of graphs. Each graph corresponds to small clips
with a fixed number of frames. For MOT experiments, we
use 15 frames per graph sampled at six frames per second
for static sequences and nine frames per second for thosewith
amoving camera. ForMOTS experiments, on the other hand,
we use 30 frames per graph without any sampling. We per-
form data augmentation by randomly removing nodes from
the graph, hence simulatingmissed detections, and randomly
shifting bounding boxes.
Training.Wehave empirically observed that additional train-
ing of the ResNet blocks provides no significant increase in
performance, but carries a significantly larger computational
overhead. Hence, during training, we freeze all convolutional
layers and train jointly all of the remaining model compo-
nents. We train for 15000 iterations for MOT and fifteen
epochs for MOTS with a learning rate of 3 · 10−4, weight
decay term of 10−4 and an Adam Optimizer with β1 and β2

set to 0.9 and 0.999, respectively.
Batch Processing. We process videos offline in batches of
n frames, with n − 1 of those overlapping, to ensure that
the maximum time distance between two connected nodes in
the graph remains stable across the whole graph. We prune
graphs by connecting two nodes only if both are among the
top-K mutual nearest neighbors according to the ResNet
features. We set n = 15, K = 50 for MOT and n = 30,
K = 150 for MOTS experiments. Each batch is solved inde-
pendently by our network, and for overlapping edges and
masks between batches, we average the predictions com-
ing from all graph solutions. To fill gaps in our trajectories,
we perform simple bilinear interpolation over the missing
frames.
Baseline. Recently, (Bergmann et al., 2019) have shown the
potential of detectors for simple data association, establishing
a new baseline for MOT.We exploit this in our MOT version
and preprocess all sequences by first running (Bergmann et
al., 2019) on public detections, which allows us to be fully
comparable to all methods on MOTChallenge. Note that this
procedure has been adopted by several methods in the recent
literature (Dai et al., 2021; Hornakova et al., 2020; He et al.,
2021). One key drawback of (Bergmann et al., 2019) is its
inability to fill in gaps, hence failing in properly recovering
identities through occlusions. Aswewill show, this is exactly
where our method excels. For the MOTS domain, however,
we don’t adopt this scheme with (Bergmann et al., 2019) and
we use our model independently.
Detections For all MOT benchmarks in MOTChallenge and
HiEve, we use the provided detections to ensure a fair
comparison with other methods. For MOTS20 and KITTI
benchmarks, we use bounding box detections obtained with
a Mask R-CNN (He et al., 2017) with ResNeXt-152 back-

Fig. 4 We report our method’s runtime in frames-per-second over
sequences with varying pedestrian densities, as measured by average
detections per frame

bone (Xie et al., 2017) trained on ImageNet and COCO (Lin
et al., 2014), as these benchmarks do not accommodate pub-
lic detections.
Runtime. We build our graph on the output of Bergmann
et al. (2019) for MOT. Hence, we take also its runtime
into account. Our method, on its own, runs at 35fps, while
(Bergmann et al., 2019) without the added re-ID head runs
at 8fps, which gives the reported average of 6.5fps on a
single Nvidia P5000 GPU, running on a machine with 8
3.6GHz CPU cores. When we incorporate the attentive mes-
sage passing scheme and segmentation head, our unified
framework runs at 2.3fps on MOTS20. To provide further
analysis, in Fig. 4 we report our method’s runtime in fps over
MOT15, MOT16, and MOT20 test sequences depending on
their pedestrian density (in average detections per frame).
While our method is naturally slower in denser sequences,
it still shows a very competitive runtime in very crowded
scenes containing over 60 pedestrians per frame.

5.4 Ablation Study

In this section, we aim to answer five main questions
towards understanding our model. Firstly, we compare the
performance of our time-aware neural message passing
updates with respect to the time-agnostic vanilla node update
described in Sect. 4.2. Secondly, we assess the impact of the
number of message passing steps in network training to the
overall tracking performance. Thirdly, we investigate how
different information sources, namely, appearance embed-
dings from our CNN and relative position information, affect
different evaluation metrics. Then, we quantify the impact
of the attentive message passing explained in Sect. 4.4 by
exploring the effect of the features used for mask prediction.
Finally, we compare our tracking-only model and unified
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Table 1 We investigate how our
proposed update improves
tracking performance with
respect to a vanilla MPN

Arch. MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Constr. ↑
Vanilla 63.2 67.1 586 372 3239 119,853 917 83.2

T. aware 64.0 70.0 648 362 6169 114,509 602 98.8

Vanilla stands for a basic MPN, T. aware denotes our proposed time-aware update. The metric Constr refers
to the percentage of flow conservation constraints satisfied on average over entire validation sequences

model to demonstrate the effect of jointly training for track-
ing and segmentation.
Experimental Setup. We conduct all of our experiments
with the training sequences of the MOT15, MOT17, and
MOTS20 datasets. To evaluate our models onMOT datasets,
we split MOT17 sequences into three sets (sequences 2, 10
and 3; 4 and 11; and 5 and 9), and use these to test our models
with 3-fold cross-validation. We then report the best over-
all MOT17 metrics obtained during validation. For MOTS
results, we perform 4-fold cross-validation on MOTS20 and
report the mean scores obtained in the best epochs by leaving
one sequence out at a time.
Time-AwareMessage Passing. We investigate how our pro-
posed time-aware node update affects performance. For a fair
comparison, we also add the skip connection with respect to
initial edge features to the vanilla update, and increase the
parameter count of its node update MLP to match the overall
parameter count of the time-aware model. Still, we observe
a significant improvement in almost all metrics, including
close to 3 points in IDF1. As we expected, our model is
particularly powerful at linking detections, since it exploits
neighboring information and graph structure, making the
decisions more robust, and hence producing significantly
fewer identity switches. We also report the percentage of
constraints that are satisfied when directly thresholding our
model’s output values at 0.5. Remarkably, our method with
time-aware node updates is able to produce almost com-
pletely feasible results automatically, i.e., 98.8% constraint
satisfaction (Table 1), while the baseline has only 83.2% sat-
isfaction. This demonstrates its ability to capture the MOT
problem structure.
Number of Message Passing Steps. Intuitively, increasing
the number of message passing steps L allows each node and
edge embedding to encode further context andgives edgepre-
dictions the ability to be iteratively refined.Hence, onewould
expect L values greater than zero to yield better-performing
networks. We test this hypothesis in Fig. 5a by training net-
works with a fixed number of message passing steps, from
0 to 18. We use the case L = 0 as a baseline in which we
train a binary classifier on top of our initial edge embeddings,
and hence, no contextual information is used. As expected,
we see a clear upward tendency for both IDF-1 and MOTA.
Moreover, we observe a steep increase in both metrics from
zero to two message passing steps, which demonstrates that
the most improvement is obtained when switching from pair-

Fig. 5 We report the evolution of IDF1, MOTA and sMOTSA when
training networks with an increasing number of message passing steps
for MPNTrack and MPNTrackSeg

wise to high-order features in the graph. We also note that
the upwards tendency stagnates after four message passing
steps and shows no improvement after twelve message pass-
ing steps. We repeat the same experiment for MPNTrackSeg
and report our findings in Fig. 5b. Similar to our previous
findings, we observe an increase in IDF1 and sMOTSA from
zero to two message passing steps. The upward trend contin-
ues until four steps, and the performance stagnates between
four to six steps. Hence, we use L = 12 in our final config-
uration for MOT and L = 4 for MOTS.
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Effect of the Features. In the MOT setting, our model
receives two main streams of information: (i) appearance
information from a CNN and (ii) geometry features from an
MLP encoding relative position between detections. We test
their usefulness by experimentingwith combinations of three
groups of features for edges: time difference, relative posi-
tion, and the euclidean distance inCNNembeddings between
the two bounding boxes. Results are summarized in Table 2.
We highlight the fact that relative position seems to be a key
component of overall performance since its addition yields
the largest relative performance increase. Nevertheless, CNN
features are powerful to reduce the number of false positives
and identity switches; hence, we use them in our final con-
figuration.
Attentive Message Passing. We now evaluate the effect of
our proposed attentive message passing updates for multi-
object tracking and segmentation. As can be seen in Eq.
15, our model receives both updated node features from
message passing and raw node features via a skip connec-
tion for mask prediction. In Table 3, we experiment with
the combinations of these features. In addition, we compare
these results with an additive message passing scheme that
simply aggregates features from neighbors via summation
instead of using attention. Note that only using the raw fea-
tures via skip connections is equivalent to eliminating the
message passing on mask features from our model and cor-
responds to using an independent segmentation network on
top of our tracking-only version (MPNTrack), which serves
as a baseline. Our graph-based framework already achieves
competitive results while using skip connections with raw
features alone. Performing message passing updates by sim-
ply summing neighboring node features is commonly used as
an aggregation function inMPNs, however, this approach can
not capture a rich visual representation required for our set-
ting, as indicated by the lower sMOTSA score. We speculate
that this drop is caused by the fact that incorporating segmen-
tation features from neighboring nodes with equal weights
harms our mask quality due to the outweighing caused by
the large number of neighboring nodes belonging to differ-
ent trajectories. With attention-based updates, we improve
upon additive updates, highlighting the importance of taking
identity information into account while performing message
passing updates. Combining both raw features and attentive
updates further boosts our performance, as indicated by the
1.1 points increase in IDF1 score and 15% drop inML. Over-
all, while identity preservation scores get a significant boost
from our attentive message passing module, we note that
mask-quality related scores i.e., sMOTSA stay comparable
to those of our baseline.We conclude that themain advantage
of our joint framework lies in its ability to boost association
performance by exploiting the rich appearance information
that segmentation features provide.

Joint Training for Tracking and Segmentation. We com-
pare MPNTrack and MPNTrackSeg in terms of data associ-
ation performance to demonstrate the effect of joint training.
For a fair comparison, we use the same parameters for both
models and train them on MOTS20. Based on a shared set
of ground truth, we use bounding box-based annotations for
MPNTrack and mask-based annotations for MPNTrackSeg.
After training, we disable the mask-related components of
MPNTrackSeg. We base the evaluation on bounding boxes
and report MOT metrics. As shown in Table 4, we observe
+0.4 IDF1 and +0.2 MOTA improvements with our unified
model. These observations suggest that association perfor-
mance benefits from mask information and joint training
within our unified framework.

5.5 Benchmark Evaluation

5.5.1 Multi-Object Tracking

MOTChallenge. In Table 5, we report our results in all
four datasets in the MOTChallenge. We achieve competitive
results and retain one of the fastest runtimes among pub-
lished methods. We note that we are outperformed by two
graph-basedmethods that were published after our approach:
Lif_T and LPC_MOT. Lif_T, also follows a graph-based for-
mulation, however, it uses a complex optimization scheme
and additional engineered features such as DeepMatching
(Revaud et al., 2016). As a result, it is over one order of
magnitude slower than our approach. For LPC_MOT, we
note that it builds over our work, and it also combines a mes-
sage passing networkwith a graph-based approach.However,
it replaces our network flow formulation with a signifi-
cantly more involved multiple-hypothesis-based approach.
We note that its runtime slows down significantly in crowded
sequences such as those inMOT20, while our method retains
the same speed and is, again, one order of magnitude faster.
Lastly, we also are outperformed by a regression-based
method that was published after our approach: TMOH. It
follows a bounding box regression-based approach with
a stronger backbone and is, therefore, able to reduce the
amount of false negative detections in a way that is not avail-
able to us. Note, however, that it is also significantly slower
than our method. Moreover, it follows an orthogonal direc-
tion to our approach, and potentially, both methods could be
combined, similarly to how we integrated Tracktor into our
approach.
KITTI. In Table 6 we report our pedestrian tracking results
among published methods using 2D inputs on KITTI (i.e.
no Lidar nor depth), and observe that we surpass all pre-
vious methods in terms of HOTA by a significant margin
(+4.2 points). Our improvement is due to the data association
capabilities of our model, as can be seen by a +5.7 improve-
ment with respect to the previous best association accuracy

123



International Journal of Computer Vision (2022) 130:3035–3053 3047

Table 2 We explore
combinations of three sources of
information for edge features:
time difference in seconds
(Time), relative position features
(Pos) and the Euclidean distance
between CNN embeddings of
the two detections (CNN)

Edge Feats. MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
Time 58.8 52.6 529 372 13,127 122,800 2962

Time+CNN 62.3 64.5 641 363 10923 115,375 812

Time+Pos 63.6 68.7 631 365 6308 115,506 895

Time+Pos+CNN 64.0 70.0 648 362 6169 114,509 602

Table 3 We examine the contributions of the features and update schemes used for segmentation: initial node features before message passing
updates (Raw) and updated node features (Upd.) after additive (Add.) and attentive (Att.) message passing steps

Method Raw Upd. sMOTSA↑ IDF1↑ MOTSA↑ MT↑ ML↓ ID Sw.↓ MOTSP↑ TP↑
MPNTrack + Seg � 60.5 71.8 75.1 130 20 252 82.1 21,864

MPNTrackSeg-Add Add. 57.3 72.2 73.2 127 21 227 80.2 21,651

MPNTrackSeg-Att Att. 60.7 72.0 75.1 130 20 228 82.3 21,903

MPNTrackSeg-Att+R � Att. 60.3 73.1 74.9 128 17 223 82.0 21,858

Table 4 We compare our
tracking-only model
(MPNTrack) and unified model
(MPNTrackSeg) to demonstrate
the effect of jointly training for
tracking and segmentation

Edge Feats. MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
MPNTrack 62.1 68.2 134 17 5106 4867 232

MPNTrackSeg 62.3 68.6 129 20 4729 5143 271

We perform bounding-box-based evaluation and report MOT metrics

(AssA). We also note that our detection accuracy (DetA) is
slightly lower than that of other newer methods, since we
used off-the-shelf detections, and our method focuses solely
on association. This can be further observed in our relatively
lower MOTA, which is caused by a relatively larger number
of False Negatives in the detections we used. However, as it
can be seen from our overall HOTA score, our method has
significantly superior overall tracking performance. These
results show the versatility of our approach, and its ability
to perform well in a setting for which it is not specialized:
non-crowded autonomous driving scenes.
Human in Events. In Table 7 we report our results on the
HiEve dataset. For a fair comparison, we exclude from this
table competitors of the MM20’ Grand Challenge (Lin et al.,
2020), as they used multiple additional datasets for train-
ing, as well as model ensembles. Among published methods,
we observe that our model achieves state-of-the-art perfor-
mance in terms of key IDF1, Mostly Tracked, Mostly Lost,
and ID switches. We note that these are the key measures
of data association, which proves that our model excels at
this task in the particularly crowded scenarios present in
the HiEve dataset. We also note that our MOTA is below
that of SiamMOT. This can be explained due to the fact
that SiamMOT makes use of a heavy-weight Faster R-CNN
detector based on DLA-169 (Yu et al., 2018) that is trained
on an additional large-scale dataset, CrowdHuman (Shao
et al., 2018), and therefore can find a better tradeoff between
false positives and false negatives. This leads to an improved
MOTA, despite having higher ID Switches. Instead, we use

Tracktor for preprocessing with a ResNet50 backbone, and
we use exclusively the provided training data in HiEve.

5.5.2 Multi-Object Tracking and Segmentation

MaskR-CNNMOTSBaselines. Following a similar approach
to (Voigtlaender et al., 2019), we take several top-performing
MOT methods that use public detections on the MOT17
benchmark and generate segmentation masks on their pre-
computed outputs with aMaskR-CNN trained on COCO that
shares the same backbone with Ñ enc

v . We report the results
on the MOTS20 training set in Table 8. For a fair compar-
ison, we run our model with MOT17 public detections in
this experiment. Note that we use a stronger segmentation
model with the baselines compared to Voigtlaender et al.
(2019), and we improve on the original scores reported by
them. It is worth highlighting that we report our 4-fold cross-
validation results, whereas the baselines are already trained
on these sequences together with additional sequences from
the MOT17 training set. Remarkably, despite this disadvan-
tage, our method outperforms the baselines. These results
provide strong evidence that our unified approach that per-
forms joint tracking and segmentation can improve over
methods that detach segmentation from tracking.
MOTS20. We present our results on MOTS20 train and
test sets in Table 9. For a fair comparison on the train-
ing set, we follow TrackFormer’s 4-fold cross-validation
scheme. In this setting, we observe 1.2 sMOTSA and 3.7
MOTSA improvements over TrackFormer, and 1.8 and 4.9
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Table 6 Comparison of our method with state-of-the-art on KITTI-tracking test set

Method HOTA ↑ DetA ↑ AssA ↑ MOTA ↑ MT (%) ↑ ML(%) ↓ FP ↓ FN ↓ ID Sw. ↓

2D Methods

NOMT (Choi, 2015) 36.3 31.9 41.6 36.5 19.2 43.6 12319 2249 127

CenterTrack (Zhou et al., 2020) 40.4 44.5 35.4 53.8 21.3 34.7 8061 2201 425

Quasi-Dense (Pang et al., 2021) 41.1 44.8 38.1 55.6 31.3 20.3 8493 1309 487

MPNTrack (Ours) 45.3 43.7 47.3 46.2 44.0 10.3 6956 5096 397

3D Methods

CIWT (Osep et al., 2017) 33.9 34.0 34.1 42.1 14.1 35.1 11821 1149 433

JRMOT (Shenoi et al., 2020) 34.1 29.6 39.5 45.3 13.1 47.4 10207 1822 179

AB3DMOT (Weng et al., 2020) 35.6 33.0 38.6 38.9 17.2 41.2 11744 2135 259

EagerMOT (Kim et al., 2021a) 39.4 40.6 38.7 49.8 27.5 24.1 8959 2161 496

Methods written in italic were published after our CVPR2020 work

Table 7 Comparison of our method with state-of-the-art on the Human in Events test dataset

Method MOTA ↑ IDF1 ↑ MT(%) ↑ ML (%) ↓ FP↓ FN ↓ ID Sw. ↓

DeepSORT (Wojke et al., 2017) 27.2 28.6 8.5 41.4 5894 426,68 2220

CenterTrack (Zhou et al., 2020) 31.1 41.8 8.6 27.9 10014 35253 2767

TPM (Peng et al., 2020) 33.6 37.7 10.7 31.2 6595 35,395 4287

GMPHD-ReId (Baisa, 2021) 31.3 37.7 36.0 24.3 17,309 26,158 4392

STPP (Wang et al., 2020) 37.5 40.2 20.4 29.8 7395 31,638 4536

SiamMOT (Shuai et al., 2021) 53.2 51.7 26.7 27.5 2837 28,485 1308

MPNTrack (Ours) 48.0 53.3 33.6 23.8 7756 27,236 1243

Methods written in italic were published after our CVPR2020 work.

Table 8 Comparison of our method with the baselines obtained from MOT methods on MOTS20 train set

Method Val. sMOTSA ↑ IDF1 ↑ MOTSA ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

MOTS20 Train Set - Public

jCC (Keuper et al., 2020) × 48.8 61.6 63.3 81 32 2514 7159 202

MHT_DAM (Kim et al., 2015) × 51.4 62.6 65.4 82 34 2266 6877 164

FWT (Henschel et al., 2018) × 51.5 54.0 65.4 81 33 1835 7213 249

Lif_T (Hornakova et al., 2020) × 53.6 73.3 67.5 89 23 2026 6615 92

CenterTrack (Zhou et al., 2020) × 53.9 58.4 67.5 80 34 1488 6975 279

Tracktor++ (Bergmann et al., 2019) × 54.6 62.7 67.7 72 24 1036 7509 154

MPNTrackSeg (Ours) � 55.4 68.2 67.8 76 39 955 7592 102

We report our cross-validation scores, whereas baselines are obtained from the corresponding method’s training set results.

MOTSA improvements over PointTrack. On the MOTS20,
test set, our model establishes a new state-of-the-art by sig-
nificantly improving on all metrics over the top published
methods. Specifically, we outperform TrackFormer, TraDeS,
and TrackR-CNN by 3.7, 7.8, and 18.2 points in sMOTSA
and 5.2, 10.1, and 16.4 points in IDF1, respectively. In addi-
tion, our model achieves the highest track coverage among
all methods and reduces the number of identity switches by
25% compared to the closest method.

KITTIMOTS.We compare our method against the top pub-
lished methods on KITTIMOTS in Table 10. We achieve the
best performance among the methods that only utilize 2D
information and surpass the previous state-of-the-art, Point-
Track, by 1.1 HOTA. Our approach excels in association
accuracy (AssA) and MT, in which we outperform the clos-
est method with 4 points and 20% more track coverage. In
fact, our 2D approach obtains highly competitive results even
when compared to the methods that make use of 3D informa-
tion, such as EagerMOT and MOTSFusion. Specifically, we
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Table 9 Comparison of our method with state-of-the-art on MOTS20 train and test sets

Method sMOTSA ↑ IDF1 ↑ MOTSA ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

MOTS20 Train Set

TrackR-CNN (Voigtlaender et al., 2019) 52.7 – 66.9 – – – – –

MOTSNet (Porzi et al., 2020) 56.8 – 69.4 – – – – –

PointTrack (Xu et al., 2020b) 58.1 – 70.6 – – – – –

TrackFormer (Meinhardt et al., 2021) 58.7 – – – – – – –

MPNTrackSeg (Ours) 59.9 71.9 74.3 126 17 1679 5017 210

MOTS20 Test Set

TrackR-CNN (Voigtlaender et al., 2019) 40.6 42.4 55.2 127 71 1261 12,641 567

TraDeS (Wu et al., 2021) 50.8 58.7 65.5 162 60 1474 9169 492

TrackFormer (Meinhardt et al., 2021) 54.9 63.6 – – – 2233 7195 278

MPNTrackSeg (Ours) 58.6 68.8 73.7 207 26 1059 7233 202

Table 10 Comparison of our method with state-of-the-art on KITTI MOTS test set

Method HOTA ↑ DetA ↑ AssA ↑ sMOTSA ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
2D Methods

TrackR-CNN (Voigtlaender et al., 2019) 41.9 53.8 33.8 47.3 123 36 5355 1171 482

PointTrack (Xu et al., 2020b) 54.4 62.3 48.0 61.5 132 25 4341 344 176

MPNTrackSeg (Ours) 55.5 60.5 52.0 57.3 152 26 3743 857 162

3D Methods

MOTSFusion (Luiten et al., 2020a) 54.0 60.8 49.5 58.8 128 42 4868 463 279

EagerMOT (Kim et al., 2021a) 57.7 60.3 56.2 58.1 117 37 5056 458 270

VIP-DeepLab (Qiao et al., 2021) 64.3 70.7 59.5 68.8 199 7 2265 731 209

obtain a significantly higher MT while also preserving 50%
more tracks. Furthermore, our model produces the fewest
number of identity switches among all 2D and 3D methods.

6 Discussion

Overall, we have demonstrated strong results in both box-
based andmask-based tracking in a variety of datasets. Given
our graph-based formulation, our method’s strongest abil-
ity is data association, as it can be observed from its high
IDF1 and AssA scores, together with its fast runtime (Table
5). Moreover, as shown in Tables 8, 9 and 10, our method
achieves top scores with our proposed attentive message
passing module on MOTS benchmarks by blending track-
ing and segmentation cues, demonstrating the potential of
solving complementary tasks jointly within a unified frame-
work.

We also note, however, that our method falls short in
overall tracking performance when compared to some of
the more recent tracking methods that either use more com-
plex optimization schemes (Hornakova et al., 2020), or are
regression-based (Stadler and Beyerer, 2021). Regarding the

former, we believe that our method’s significantly improved
runtime offers a favorable efficiency tradeoff. Moreover, we
note that LPC_MOT (Dai et al., 2021) has been inspired by
our work to use a message passing neural network within a
multiple-hypothesis graph formulation.

Regarding regression-based approaches, we would like
to note that they offer a different performance profile. Our
method, since it is graph-based, focuses entirely on data asso-
ciation. Regression-based methods, instead, have the ability
to track an increased number of boxes, and hence can improve
MOTA significantly, but fall short in terms of data associa-
tion performance, as can be seen from the relatively lower
IDF1 scores of CenterTrack (Zhou et al., 2020) and TMOH
(Stadler and Beyerer, 2021). We believe there is a need to
investigate how these two lines of work can be combined to
get the benefits of both of them. We hope future work will
be able to develop such integration.

7 Conclusion

We have introduced a fully differentiable framework based
on message passing networks that can exploit the under-
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lying graph structure of the tracking problem. Our unified
architecture reasons over the entire graph and performs data
association and segmentation jointly bymerging appearance,
geometry, andmask features.Our approach achieves state-of-
the-art results in bothmulti-object tracking and segmentation
tasks on several benchmarks. We hope that our approach
will open the door for future efforts in marrying graph-based
methods with deep learning approaches and exploiting syn-
ergies between tracking and segmentation.
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