
Noname manuscript No.
(will be inserted by the editor)

Population-Based Evolutionary Gaming for Unsupervised
Person Re-identification

Yunpeng Zhai · Peixi Peng · Mengxi Jia · Shiyong Li · Weiqiang

Chen · Xuesong Gao · Yonghong Tian

Received: date / Accepted: date

Abstract Unsupervised person re-identification has

achieved great success through the self-improvement

of individual neural networks. However, limited by the

lack of diversity of discriminant information, a single

network has difficulty learning sufficient discrimina-

tion ability by itself under unsupervised conditions.

To address this limit, we develop a population-based
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evolutionary gaming (PEG) framework in which a

population of diverse neural networks are trained con-

currently through selection, reproduction, mutation,

and population mutual learning iteratively. Specifically,

the selection of networks to preserve is modeled as

a cooperative game and solved by the best-response

dynamics, then the reproduction and mutation are im-

plemented by cloning and fluctuating hyper-parameters

of networks to learn more diversity, and population mu-

tual learning improves the discrimination of networks

by knowledge distillation from each other within the

population. In addition, we propose a cross-reference

scatter (CRS) to approximately evaluate re-ID models

without labeled samples and adopt it as the criterion

of network selection in PEG. CRS measures a model’s

performance by indirectly estimating the accuracy of its

predicted pseudo-labels according to the cohesion and

separation of the feature space. Extensive experiments

demonstrate that (1) CRS approximately measures the

performance of models without labeled samples; (2)

and PEG produces new state-of-the-art accuracy for

person re-identification, indicating the great potential

of population-based network cooperative training for

unsupervised learning.

Keywords Evolutionary gaming · Population-
based training · Unsupervised learning · Person
re-identification

1 Introduction

Person re-identification (re-ID) aims to match persons

in an image gallery collected from non-overlapping cam-

era networks, which has attracted increasing interest

thanks to its wide applications in security and surveil-
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ResNet-50

DenseNet-169

(a) Before training (b) Single model training (c) Multi-model training (Ours)

Fig. 1: Feature distribution of the same samples with different methods where each color denotes a person identity.

Single model training(b) uses the self-learning mechanism only to enhance the discrimination ability it already

has before training(a) and still suffers from inaccurate pseudo-labels. However, multi-model training(c) explores

and exploits the complementary information among different models (marked by corresponding colored boxes) and

achieves more discrimination.

lance. Though supervised re-ID methods (Yang et al.,

2020) (Zheng et al., 2016) have achieved very decent
results, they are largely dependent on sufficient data

with expensive manual annotation, which also require

substantial personal identity information and entail

privacy issues. By contrast, unsupervised re-ID not only

reduces the cost of labeling but also protects personal

privacy without checking images manually. Commonly,

unsupervised re-ID can be divided into two categories:

unsupervised domain adaptation (UDA) (Zhai et al.,

2020a) (Zhong et al., 2020) and fully unsupervised re-ID

(FU) (Chen et al., 2021a) (Lin et al., 2019) depending

on whether using extra labeled data. In this study,

we will mainly focus on the fully unsupervised setting

which learns directly from unlabeled images and allows

for more scalability in real-world deployments.

To address the challenges of unsupervised re-ID,

recent efforts concentrate on training individual neural

networks by means of a self-improvement strategy

(Song et al., 2018) (Ge et al., 2020b). They attempt

to learn better representations based on self-predicted

pseudo-labels via clustering algorithms (Caron et al.,

2018) or graph neural networks (Ye et al., 2017).

However, a single model can use such a self-learning

mechanism only to enhance the discrimination ability it

already has and cannot tackle the incorrectly predicted

pseudo-labels, which prevents it from maximizing its

discrimination. Due to the lack of diversity of single

models, incorrect pseudo-labels are likely to remain

the same after unsupervised training such as the false

positive samples where images of different persons are

clustered into the same group or the false negative

samples where the images of the same person are

clustered into different groups, as shown in Fig. 1.

Importantly, since models learn diverse discrimination

with different architectures, the incorrect pseudo-labels

predicted by a model may be predicted correctly by

another model, marked by boxes in Fig. 1(b). In this

paper, we attempt to address unsupervised re-ID by

multiple model training, in which the complementary

information of different models can be integrated and

utilized effectively to explore the various latent knowl-
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edge contained in unlabeled data (the quantitative

analysis is shown in Sec. 4.4.1).

However, multiple model training still faces two

challenging issues: (1) How to learn diverse discrim-

ination with multiple different models? (2) How to

select a set of better models from many diverse models

for training? To tackle these issues, we propose a

population-based evolutionary gaming (PEG), which

selects and trains discriminative models by exploration

and exploitation of their diversity. PEG trains a pop-

ulation of models concurrently by iterative selection,

reproduction, mutation, and population mutual learn-

ing of neural networks, as shown in Fig. 2. Specifically,

selection adapts the whole population to the unlabeled

data by selecting and preserving the optimal subset

of networks with complementary discrimination ability

while abandoning other networks out of the subset. This

combinatorial optimization of networks in selection

is modeled as a multi-agent cooperative game and

solved by the best response dynamics, in which each

agent attempts to learn the best response to the other

agents’ action and thus leads to Nash equilibrium.

Then, reproduction and mutation are performed on

the selected population to increase its diversity by

making multiple copies of each network and applying

a stochastic disturbance to their hyper-parameters.

Selection and reproduction jointly maintain the size of

the population. Afterward, population mutual learning

is conducted among networks to assemble and further

explore the discrimination capacity via knowledge dis-

tillation within populations. Each network learns rep-

resentations from both population-shared pseudo-labels

and soft-labels predicted by other individual networks.

Utilizing periodically performing selection, reproduc-

tion and mutation, population mutual learning, the

evolutionary gaming process enables favorable traits

and knowledge of neural networks to be transmitted

through successive generations.

In the evolution gaming, a core issue is to define

the utility function of the game, that is, the criterion

of network selection in the evolution. However, the

evaluation of CNN models without labeled datasets has

not been well studied. Here, we propose cross-reference

scatter (CRS), which can approximately evaluate the

quality of networks using unlabeled samples. Generally,

the pseudo-labels predicted by better networks are more

accurate; however, their accuracy cannot be directly

evaluated when the ground truth is unavailable. More-

over, models trained by more accurate pseudo-labels

tend to achieve larger intra-cluster cohesion and inter-

cluster separation in the feature space because incorrect

labels will enforce models to separate samples of the

same class or aggregate samples of different classes.

Motivated by this phenomenon, we indirectly evaluate

a network according to the feature cohesion and sepa-

ration of a reference model that is trained by pseudo-

labels of the evaluated network. Hence, the CRS is

defined by the ratio of the inter-cluster and intra-cluster

variance of features to measure both separation and

cohesion. We demonstrate that the CRS approximately

reflects the discrimination capacity of models without

ground truth data and thus promotes the evolution

gaming to learn better representations.

A preliminary version of this work has been partially

published (Zhai et al., 2020c), which has demonstrated

the effectiveness of mutual learning among multiple

networks in unsupervised conditions. Based on that

version, this manuscript has made great improvements,

including: 1) We propose a novel population-based

evolutionary gaming (PEG) framework (Sec. 3.1). The

previous algorithm works passively only on given net-

works, and cannot adaptively select the most suitable

models from the model base. Based on the mutual

learning, PEG additionally contains an iterative selec-

tion of networks via a multi-agent cooperative game

preventing the weak networks to distract the overall

discrimination capability (Sec. 3.1.1). 2) We propose

a new cross-reference scatter (CRS) to approximately

measure re-ID models without labeled data. To evaluate

the model discrimination, the previous version intro-

duced inter-/intra-cluster scatter to roughly modulate

the weights of models during mutual learning. However,

it cannot be considered as the utility function of the

cooperative game in PEG due to the lack of capability

to accurately evaluate models. This paper improves

inter-/intra-cluster scatter to cross-reference scatter by
adding a cross-reference evaluation (CR) scheme (Sec.

3.1.1). 3) More qualitative and quantitative experi-

ments are conducted to evaluate the effectiveness of the

method, including but not limited to the validation and

analysis of CRS, the cooperative game, and PEG.

In summary, our contribution is as follow:

– It proposes a novel population-based evolutionary

gaming framework for unsupervised person re-ID

which trains a diverse population of neural networks

by iterative selection, reproduction, mutation and

mutual learning.

– It introduces a multi-agent cooperative game for the

selection of networks in the PEG, which aims to find

and preserve an optimal subset of the population on

unlabeled data.

– It investigates the evaluation of re-ID models us-

ing unlabeled data and proposes a cross-reference

scatter which approximately measures a model’s

discrimination capability by indirectly estimating
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its predicted pseudo-labels according to the cohesion

and separation of feature space.

– Experiments show that PEG outperforms state-of-

the-art methods on large-scale datasets, indicating

the great potential of population-based multiple

model training.

2 Related Works

2.1 Unsupervised Person Re-ID

Unsupervised person re-ID can be categorized into

Unsupervised Domain Adaptation (UDA) and Fully

Unsupervised Re-ID (FU). UDA methods try to train

a re-ID model by unlabeled target data together with

labeled source data, while FU methods attempt to train

models with only unlabeled data after pre-training.

Despite the different data conditions, most UDA and

FU methods adopt similar learning strategies which

can be summarized into two categories. A line of works

are mainly based on alignment to reduce distribution

shift between cameras or domains in pixel level, such

as SPGAN (Deng et al., 2018), CamStyle (Zhong et al.,

2019b), HHL (Zhong et al., 2018), ECN (Zhong et al.,

2019a), ATNet (Liu et al., 2019), PDA-Net (Li et al.,

2019b), DG-Net++ (Zou et al., 2020) and GCL (Chen

et al., 2021b), or feature level, such as TJ-AIDL (Wang

et al., 2018), DAAM (Huang et al., 2019), UCDA-

CCE (Qi et al., 2019) IICS (Xuan and Zhang, 2021)

and CAP (Wang et al., 2020a). This line of methods

sufficiently utilize the reliable information of camera

or domain styles but ignore the latent relationship

among unlabeled samples, which hinders them from

better performance. Another line of works are based on

pseudo label discovery, which rely on the iteration of

pseudo-label mining and model fine-tuning (Fan et al.,

2018) (Song et al., 2018) (Zhang et al., 2019) (Jin et al.,

2020) (Zhao et al., 2020) (Zheng et al., 2021b), such as

BUC (Lin et al., 2019), SSG (Fu et al., 2019), (Zhai

et al., 2020b), HCT (Zeng et al., 2020) and SpCL (Ge

et al., 2020b). Recent works mainly focus on label gener-

ation, label refinery, the assistance of extra information,

and optimization of representation. BUC (Lin et al.,

2019) proposed a bottom-up clustering approach to

generate pseudo labels. To reduce pseudo label noise,

DCML (Chen et al., 2020) selected credible training

samples and MMT (Ge et al., 2020a) proposed a mutual

learning scheme for better pseudo labels. JVTC (Li

and Zhang, 2020) and CycAs (Wang et al., 2020b)

explore temporal information to refine visual similarity.

Contrastive learning with feature memory bank has

been widely used in many works to learn more robust

representation (Zheng et al., 2021a) (Chen et al.,

2021a). SpCL (Ge et al., 2020b) progressively generated

more reliable clusters for the unified contrastive loss.

Cluster Contrast (Dai et al., 2021) proposed to store

feature vectors and compute contrast loss in the cluster

level. Although great success has been made, this line

of methods usually leverage a single model to learn

the knowledge that it already has, making it hard to

learn sufficient capability due to the lack of diverse

discrimination. To alleviate this problem, we propose

PEG based on multi-model training where diversity of

discrimination can be explored and exploited by the

evolution of networks.

2.2 Multiple Model Ensemble

There is a considerable number of previous works

on ensembles with neural networks. Explicit ensemble

methods often train a series of base-level networks

and average the predictions across them as the final

result, which have low efficiency during both training

and testing (Hansen and Salamon, 1990) (Perrone and

Cooper, 1992) (Krogh and Vedelsby, 1994) (Dietterich,

2000) (Huang et al., 2017a) (Lakshminarayanan et al.,

2017). Recently, implicit ensemble methods are ex-

plored to tackle this problem. A typical approach (Sri-

vastava et al., 2014), (Wan et al., 2013), (Huang et al.,

2016), (Singh et al., 2016) generally create a series

of networks with shared weights during training and

then implicitly ensemble them at test time. Another

approach (Shen et al., 2019) focuses on label refinery

by distilling and transferring knowledge from a variety

of trained networks to a single network for higher

discrimination capability. However, these supervised

methods cannot be directly used on unsupervised re-ID

tasks, especially when the training set and the testing

set share non-overlapping label space. On the other

hand, existing methods accomplish the ensemble on all

base-level networks while they ignore the problem that

a very weak base-level network could drag down the

overall performance when included. Commonly, “All” is

not the “Best”. In this work, we propose a cooperative

game in the selection phase of the framework to find and

preserve the optimal combination of base-level networks

using the unlabeled data and obtain progressive en-

semble by an iterative population evolutionary gaming

under unsupervised conditions.

2.3 Algorithmic Game Theory

Machine learning methods with multi-agent game are

proposed to address various tasks, such as image gen-

eration (Goodfellow et al., 2014), attacks and de-
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fenses for deep learning (Yuan et al., 2019), playing

computer games (Vinyals et al., 2019) (Peng et al.,

2020), etc. SVM can be considered as a game between

two agents where one agent challenges the other to

find the best hyper-plane after providing the most

difficult points for classification. Generative adversarial

networks (GANs) (Goodfellow et al., 2014) train two

networks, the discriminator and the generator, against

each other in order to generate images that can pass

for real data. These methods are designed for non-

cooperative games where agents have contrary rewards.

However, in this work, the selection of networks is

modeled as a multi-agent cooperative game, where

rewards are global and shared by all agents. Although

methods with cooperative games have been explored for

reinforcement learning (Peng et al., 2020), they can not

be used for such a computer vision task. Our approach

consider the Best-response dynamics in cooperative

game theory to solve a Nash equilibrium of model

selection strategy.

2.4 Unsupervised Evaluation Metrics of Models

Metrics used in person re-ID always depend on samples

with ground truth, such as mean Average Precision

(mAP) and Cumulative Match Characteristic (CMC)

curve, which are calculated between model prediction

and the corresponding ground truth labels. However,

these supervised metrics are not available during un-

supervised learning when labels of data are unknown,

therefore, they cannot be used as the criterion of the

model selection in our PEG framework. On the other

hand, several unsupervised evaluation metrics which

require no data label have been designed to measure

the performance of clustering algorithms as internal

evaluation metrics (Davies and Bouldin, 1979) (Baker

and Hubert, 1975) (Hubert and Levin, 1976) (Maulik

and Bandyopadhyay, 2002) (Halkidi et al., 2002). For

example, the silhouette coefficient (Rousseeuw, 1987)

estimates the average distance between each point in

one cluster and points in the nearest neighboring clus-

ter. The Dunn index (Dunn, 1973) calculates the ratio

of the minimum of inter-cluster distance to the max-

imum of intra-cluster distance between samples. Nev-

ertheless, these cluster validations cannot be directly

used for the evaluation of re-ID models, for example, by

the quality of clustering with their extracted features

under the same clustering algorithm. That’s because

the distribution of feature clusters cannot measure

the performance of models, especially in unsupervised

settings. For instance, the metrics may estimate well

clustering of features even when the model is poor

but only is trained to overfit on its inaccurate labels.

In this paper, we propose a cross-reference scatter

which approximately measures a model’s discrimination

capability by indirectly estimating its predicted pseudo-

labels. It utilizes the pseudo-labels to train a reference

network for a few iterations and then observes the

cohesion and separation of its feature space to estimate

the discrimination of the evaluated model. This method

mines the latent visual relationships between image

samples and so can approximately estimate models’

discrimination on unlabeled data.

2.5 Population-Based Evolutionary Training

Population-based evolution has been widely studied to

solve real-valued optimization problems. For distance

metric learning, a related task of re-ID, EDML (Fukui

et al., 2013) and its variants (Kalintha et al., 2019) (Ali

et al., 2020) were proposed to optimize a linear or

non-linear transformation using differential evolution.

However, these approaches cannot address the training

of deep neural networks in re-ID due to the large

scale of learnable parameters. Our approach is inspired

by and built upon another line of Population Based

Training (PBT) (Jaderberg et al., 2017), which is

originally proposed for optimization of hyperparam-

eters of networks. PBT trains a population of net-

works and performs periodically a process of exploiting

and exploring, leading to automatic learning of the

best configurations. It has been proved effective for

a suite of challenging problems, including Atari and

StarCraft II of reinforcement learning (Vinyals et al.,

2019) (Jaderberg et al., 2019), training Generative

Adversarial Network (GAN) (Jaderberg et al., 2017)

and data augmentation (Ho et al., 2019). However,

such a population-based training of networks has not

been explored in unsupervised conditions, in which the

criterion of network selection is difficult to determine.

On the other hand, existing PBT approaches follow

the principle of best individual selection, while our

method selects and preserves optimal groups of net-

works that are more complementary. We additionally

incorporate mutual learning within the population into

the framework, leading to superior performance on the

unsupervised re-ID.

3 Methodology

3.1 Population-based Evolutionary Gaming

Due to the lack of diversity of individual networks,

sufficient discrimination for unsupervised person re-ID

is difficult to achieve. In contrast to previous works
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Fig. 2: Population-based evolutionary gaming framework. PEG iteratively performs selection,

reproduction&mutation and population mutual learning to learn diverse and discriminative models under

unsupervised conditions. In every generation, (1) selection preserves the optimal combination of models through

a cooperative game with a set of selector agents to maximize the utility function (CRS). (2) Reproduction and

mutation clone models and fluctuate their hyper-parameters to explore more diversity. (3) Population mutual

learning trains models with mutated hyper-parameers by knowledge distillation from each other to enhance and

assemble their discrimination.

that use a single network for self-training, we propose

a PEG that concurrently trains a diverse population

of neural networks through an evolutionary game. In

our formulation, the population P containsK networks,

each of which is denoted asM(θ, ϕ). θ is the learnable

parameters, and ϕ is its hyper-parameters including the

learning rate and loss ratios. The proposed training

algorithm consists of three iterative phases, namely,

selection to preserve adaptive networks, reproduction

and mutation to learn more diversity, and population

mutual learning to assemble knowledge, as illustrated

in Fig. 2. The procedure of PEG is also described in

Algorithm 1.

3.1.1 Selection

Since poor models may drag down the performance in

multiple model training, we first propose a selection

phase to preserve better models in PEG. Given a pop-

ulation P of K neural network models {M1, ...,MK},
selection aims to find an optimal subset of the popula-

tion that is more adaptive to the given data, as shown

in Fig. 2. Then, networks of the subset are preserved

for later training, while other networks are abandoned

to reduce the population size. The selection scheme is

considered as a multi-agent cooperative game among

L selector agents characterized by (A1,A2, ...,AL, u),

where Al is the action space of agent l; and u : A→ R
denotes the utility function of the joint action A ∈
A1 × A2 × ... × AL. The action of each agent al ∈ Al

is to select one neural network from the population P,
Al = {M1, ...,MK}. The number of agents is restricted

due to the limitation of computational resources. In

the cooperative game, agents pursue the same goal to

maximize their team utility u. To maximize the discrim-

ination and complementarity of the preserved networks,
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Algorithm 1 Population-based Evolutionary Gaming

Input: Unlabeled dataset {X}.
Input: Initial population P of K models {Mk} with parameters {θk} and hyper-parameters {ϕk}, k = 1, ...,K.
Output: The inference modelM(θ).

1: for each generation do
2: // Selection
3: Select L models from the population P by the cooperative game in Sec. 3.1.1,

{Ml, l = 1, ..., L}=SELECTION(P, L).
4: Update the population P ← {Ml, l = 1, ..., L}.
5: // Reproduction&Mutation
6: for each modelMl do
7: Clone H models ofMl:Ml

h(θ
l
h, ϕ

l
h) =Ml(θl, ϕl), h = 1, ..., H.

8: Mutate the hyper-parameters of the cloned models:
ϕl
h ∼ U((1− r)ϕl

h, (1 + r)ϕl
h), h = 1, ..., H.

9: Add the cloned model into the population, P ← P + {Ml
h(θ

l
h, ϕ

l
h)}, h = 1, ..., H

10: end for
11: Update the population size K ← L× (H + 1)
12: // Population mutual learning
13: Optimize parameters of models in P by population mutual learning in Sec. 3.1.3:

{θk} ← PML(X, {θk}),k = 1, ...,K.
14: end for
15: Select a model for inference:M(θ)=SELECTION(P, 1)
16: Return The inference modelM(θ).

we define the utility function u by the performance of

the ensemble model. However, a model’s performance

is difficult to estimate without labeled testing data. To

address this problem, we design cross-reference scatter

Jcr to evaluate the ensemble model and consider it

the formula of the utility function, u(A) = Jcr(ϑ(A)),

where ϑ denotes the ensemble model produced by

the networks currently selected by the agents. The

detailed description of the cross-reference scatter will be

provided in Section 3.1.1. Since there are approximately

KL possible action combinations, a global optimal

solution is impossible to derive by enumerating all

the possibilities. Therefore, we turn to obtain a Nash

equilibrium solution Ã = {ãl}, where each agent

attempts to learn the best response to the other agents’

actions:

u(a′l, Ã−l) ≤ u(Ã), (1)

where a′l is any unilateral deviation, Ã−l = {ãl′}l′ ̸=l

and −l represents all agents except al. We solve Eq.

1 via best-response dynamics. Each agent acts in a

circular manner until it falls into a Nash equilibrium,

where the action of each agent is the best response

to the other agents. Below, we provide the detailed

procedure of the cooperative selection game.

(1) Initialization of agent actions: randomly initialize

al ∈ Al for l = 1, ..., L.

(2) For agent l, solve the optimal action of agent al
in response to the actions of the other L − 1

agents. The objective for optimization of al can be

formulated as,

a∗l = argmax
âl∈Al

u(âl,a−l), (2)

where a−l means all agents except al.

(3) Then update the joint action to (a∗l ,a−l), as a∗l is

a best response to a−l.

A← (a∗l ,a−l). (3)

(4) Repeat steps 2 to 3 for agent l + 1.

(5) If the joint action A has not changed in the last

L−1 optimization rounds, the utility falls into Nash

equilibrium, where every agent implements the
best response to all other agents. In this case, we

stop the optimization process, preserve the selected

networks for the next generation, and abandon the

other networks.

Cross-reference Scatter

A core issue is to estimate a model’s performance

using unlabeled data in the selection phase of the pro-

posed evolutionary game; however, such a measurement

has not been explored. In this study, we propose a cross-

reference scatter (CRS) for the approximate evaluation

of re-ID models using unlabeled samples. Generally,

the pseudo-labels predicted by better networks are

more accurate, but the specific accuracy of the labels

cannot be directly evaluated without the ground truth.

However, models trained by more accurate pseudo-

labels tend to achieve larger intra-cluster cohesion and

inter-cluster separation in the feature space because

incorrect labels will enforce models to separate samples

of the same class or aggregate samples of different
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inter-/intra-cluster 

scatter

Fig. 3: Illustration of evaluation scheme of the proposed

cross-reference scatter (CRS), which approximately

measures a model’s discrimination capability by the

inter-/intra-cluster scatter of a reference model that

is briefly trained using pseudo-labels predicted by the

evaluated model.

classes, which is difficult to accomplish. Therefore, it is

reasonable to indirectly evaluate a network according to

the feature cohesion and separation of a reference model

that is trained by pseudo-labels which are predicted

with the evaluated model.

First, we introduce an inter-/intra-cluster scatter

(ICS) to estimate the separation and cohesion of clus-

ters in the feature space. Although existing metrics such

as DBI (Davies and Bouldin, 1979), SC (Rousseeuw,

1987) have been studied to estimate clustering, they

usually pay more attention to the hard edge samples of

clusters while ignoring the overall distribution, and thus

are not applicable to measure re-ID models. Inspired

by the objective of linear discriminant analysis, that

is, to maximize the ratio of the between-class variance

and the within-class variance, the inter-/intra-cluster

scatter is defined as the ratio of the inter-cluster vari-

ance and intra-cluster variance in the clustered feature

space. Given the set of images represented by feature

vectors f(X|Θ), where Θ denotes the parameters of the

feature extractor network, we cluster all samples intoM

groups as C. We measure the cohesion of each cluster by

the variance of features assigned to it. The intra-cluster

scatter of cluster Ci is defined as

Si
intra(X|Θ) =

∑
x∈Ci

[f(x|Θ)− µi]
T [f(x|Θ)− µi], (4)

where µi =
∑

x∈Ci
f(x|Θ)/ni is the centroid of cluster

Ci (with ni samples). Then, the intra-cluster scatter of

all clusters is computed as

Sintra(X|Θ) =

M∑
i=1

Si
intra(X|Θ). (5)

To measure the separation of feature clusters, the inter-

cluster scatter is defined as the variance of cluster

Algorithm 2 Cross Reference Scatter (CRS)

Input: Unlabeled dataset {X}.
Input: Evaluated model Θ.
Input: Reference model θref .
Output: CRS of the evaluated model: Jcr(Θ).

1: Extract features on {X} by the evaluated model Θ:
f(X|Θ).

2: Generate pseudo-labels Ỹ (Θ) of X by clustering samples
using f(X|Θ).

3: Train the reference model θref with {X, Ỹ (Θ)} for a fixed
number of iterations by optimizing Eq. 12, 14.

4: Calculate ICS of the reference model θref on {X}:
J(X|θref ) by Eq. 7.

5: Jcr(Θ) = J(X|θref ).
6: Return CRS of the evaluated model: Jcr(Θ).

centroids

Sinter(X|Θ) =

M∑
i=1

ni[µi − µ]T [µi − µ], (6)

where µ =
∑N

n=1 f(xn|Θ)/N is the center of the

entire dataset. Considering both the separation and

cohesion of feature clusters, the inter-/intra-cluster

scatter J(X|Θ) is defined as the ratio of the inter-

cluster scatter and intra-cluster scatter

J(X|Θ) = Sinter(X|Θ)/Sintra(X|Θ). (7)

J(X|Θ) increases when the inter-cluster scatter is larger

and the intra-cluster scatter is smaller, which entails

larger separation and cohesion within feature clusters.

Utilizing inter-/intra-cluster scatter (ICS), we at-

tempt to evaluate a model by indirectly estimating

its predicted pseudo-labels in a cross-reference (CR)

manner. Given a network model with parameter Θ for

evaluation, we first implement the model to extract

the convolutional features of all samples f(X|Θ). Then,

minibatch k-means clustering is performed on f(X|Θ)

to classify all samples into M different clusters. After

clustering, the produced cluster IDs are used as pseudo-

labels Ỹ (Θ) for samples X. To estimate the accuracy

of the predicted pseudo-labels Ỹ (Θ), we adopt them as

supervision to train a reference model with parameters

θref by optimizing the cross-entropy loss with label

smoothing and the softmax triplet loss for a certain

number of iterations, and then measure the separation

and cohesion of the reference model by computing the

inter-/intra-cluster scatter J(X|θref ) as cross reference
scatter (CRS) Jcr(Θ). The value of CRS is then used

for model evaluation, where a larger CRS indicates

better discrimination capability of the evaluated model

Θ. The evaluation scheme is illustrated in Fig. 3 and

the detailed process is shown in Algorithm 2.
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Importantly, we use the k-means clustering be-

cause the fair comparison of CRS among models re-

quires the same cluster number during clustering. Specif-

ically, since CRS is defined by the ratio of intra-cluster

variance and inter-cluster variance, it is relative to the

cluster numbers. For example, a larger cluster number

may lead to a larger CRS value due to the smaller intra-

cluster variances. And the cluster numbers by other

clustering algorithms, i.e. DBSCAN, with different

evaluated feature models are likely to be different,

making it unfair to compare their CRS for model

selection.

For fast and fair evaluation, we adopt a slight

network, OSNet, with the same initial parameters as

the reference model to evaluate different models. The

number of training iterations of it is set to a small value

from 500 to 1000 according to the number of samples.

3.1.2 Reproduction and Mutation

Reproduction and mutation provide more diversity

within the population by reproducing networks and mu-

tating their hyper-parameters, including the learning

rate and loss ratios after selection. In the reproduction

and mutation phase, each network reproduces multiple

descendants, one of which preserves the original hyper-

parameters while the others apply a stochastic distur-

bance to their hyper-parameters to attempt to learn

different information and increase the diversity of the

population. Specifically, the mutated hyper-parameters

ϕ′ are sampled from a uniform distribution U((1 −
r)ϕ, (1 + r)ϕ) that fluctuates within r of the original

value. The steps 5-11 in Algorithm 1 summarize

the process of reproduction and mutation. Note that

the mutation does not immediately change the weight

parameters of neural networks. Changes occur to them

when networks are trained by their mutated hyper-

parameters in mutual learning.

3.1.3 Population Mutual Learning

After mutation, population mutual learning is per-

formed among networks in the population P to access

and assemble diverse discrimination capability using

unlabeled data in an iteratively collaborative way, as

shown in Fig. 2. Each network accomplishes learn-

ing from the whole population by means of its own

hyper-parameters acquired from mutation. The learn-

ing scheme consists of a clustering-based pseudo-label

prediction procedure and a mutual feature learning

procedure. In each iterative epoch, pseudo-labels are

first predicted for all samples via clustering and then

utilized to fine-tune the networks of the population.

In this phase, networks learn representations of images

in two ways: from the shared pseudo-labels predicted

by the whole population via clustering and from the

output of other networks as soft labels via knowledge

distillation. The procedure of this population mutual

learning is described in Algorithm 3.

Pseudo-label prediction. Pseudo-labels are pre-

dicted at the beginning of each iterative epoch. In order

to predict reliable pseudo-labels, the framework utilizes

all networks in the population {M1, ...,MK} jointly

as a combinatorial model ϑ(P) to extract features

for sample clustering. The clustering-based pseudo-

label prediction procedure consists of three steps in

total: (1) First, ensemble features of unlabeled samples

{X} are obtained by concatenating features that are

individually extracted by all networks, f(X|ϑ(P)) =

[f(X|θ1); ...; f(X|θk)]; (2) Then, DBSCAN (Ester et al.,

1996) clustering is performed on f(X|ϑ(P))to classify

all unlabeled samples into M different clusters. (3) The

produced cluster IDs are used as pseudo-labels Ỹ for the

training samples X. The steps 2 and 3 in Algorithm

3 summarize this clustering process.

Different from CRS, we use DBSCAN here for model

learning to generate more accurate pseudo-labels, since

DBSCAN has been proven effective and efficient for a

lot of clustering-based unsupervised person re-identification

Ge et al. (2020b) Chen et al. (2021a). Compared with

the k-means cluster algorithm, DBSCAN mines sample

relations more accurately according to their density

without setting the number of clusters and then helps

learn more discriminative models.

Mutual feature learning. Utilizing the predicted

pseudo-labels, the framework aims to organize networks

within the population to learn from each other and

enhance themselves in a mutual learning manner, as

shown in Fig. 2. In each training iteration, the same

batch of images with different random augmentations

is first fed to all the networks in the population pa-

rameterized by {θk} to predict the classification con-

fidence predictions {p(xn|θk)} and feature representa-

tions {f(xn|θk)}. The classification confidence predic-

tions are computed by a linear transformation of the

feature representations followed by a softmax function.

To transfer knowledge from one network to others, the

outputs of each network serve as soft labels for training

other networks. However, directly using the current

predictions as soft labels to train each model decreases

the independence of the model outputs, which might

result in error amplification. To avoid this issue, the

temporally averaged model (Tarvainen and Valpola,

2017) of each network, which preserves more original

knowledge, is used to generate reliable soft pseudo-

labels for supervision. The parameters of the tempo-
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Algorithm 3 Population Mutual Learning (PML)

Input: Unlabeled dataset {X}. Population P of K models parameterized by {θk}, k = 1, ...,K.
Output: Updated neural network parameters {θk}.
1: for each epoch do
2: Extract ensemble features on {X} by combinatorial model ϑ(P): f(X|ϑ(P)) = [f(X|θ1); ...; f(X|θk)].
3: Generate pseudo-labels Ỹ of X by clustering samples using f(X|ϑ(P)).
4: for each iteration t, mini-batch B ⊂ X do
5: Randomly sample S networks {θks} ⊂ {θk}, each indexed by ks, s = 1, ..., S.

6: Calculate soft-labels from temporally average model of each sampled network with {Θks

T }: p(xi∈B|Θks

T ), Pi∈B(Θks

T )
7: Calculate output of each current model with {θks}: p(xi∈B|θks), Pi∈B(θks).
8: Update parameters {θks} by optimizing Eq. 16.

9: Update temporally average model weights {Θks
t } following Eq. 8.

10: end for
11: end for
12: Return Networks parameters {θk}, k = 1, ...,K.

rally averaged model of network θk at current iteration

t are denoted as Θk
t , which is updated as

Θk
t = αΘk

t−1 + (1− α)θk, (8)

where α ∈ [0, 1] is the scale factor, and the initial

temporal average parameters are Θk
0 = θk. For each

network Mk, three loss functions are computed as

optimization objectives: mutual identity loss, mutual

triplet loss and voting loss. The mutual identity loss

(Zhang et al., 2018) of models learned by a certain

network Me is defined as the cross entropy between

the ID prediction of the student network Mk and the

teacher networkMe

Lk←e
mid = − 1

N

N∑
n=1

p(xn|Θe)T logp(xn|θk). (9)

The mutual triplet loss (Ge et al., 2020a) of models

learned by a certain network Me is defined as the

binary cross entropy

Lk←e
mtri = −

1

N

N∑
n=1

[
Pn(Θ

e) logPn(θ
k)

+ (1− Pn(Θ
e)) log(1− Pn(θ

k))

]
,

(10)

where Pn(θ
k) denotes the softmax of the feature dis-

tance between negative sample pairs

Pn(θ
k) =

e∥f(xn|θk)−f(xn−|θk)∥

e∥f(xn|θk)−f(xn+|θk)∥ + e∥f(xn|θk)−f(xn−|θk)∥ ,

(11)

where xn+ denotes the hardest positive sample of

anchor xn according to the pseudo-labels Ỹ and xn−
denotes the hardest negative sample. ∥ · − · ∥ denotes

L2 distance.

To learn stable and discriminative knowledge from

the pseudo-labels obtained by clustering, we introduce

voting loss, which consists of the classification loss and

triplet loss. For each modelMk, the classification loss

is defined as the cross entropy with label smoothing

(Szegedy et al., 2016)

Lk
id = − 1

N

N∑
n=1

q̃T logp(xn|θk), (12)

where q̃ is the smoothing label according to pseudo-

labels Ỹ . Each element is calculated by

q̃j =

{
1− ε+ ε

M j = ỹn
ε
M j ̸= ỹn

, (13)

The softmax triplet loss is defined as:

Lk
tri =

− 1

N

N∑
n=1

log
e∥f(xn|θk)−f(xn−|θk)∥

e∥f(xn|θk)−f(xn+|θk)∥ + e∥f(xn|θk)−f(xn−|θk)∥

(14)

where xn+ denotes the hardest positive sample of

anchor xn according to the pseudo-labels and xn−
denotes the hardest negative sample. The voting loss

is defined by summarizing the classification loss and

the triplet loss

Lk
vot = widLk

id + wtriLk
tri, (15)

where wid and wtri are the loss ratios. For each model

Mk, the overall optimized objective is defined by

Lk =
1

K − 1
(wmid

K∑
e ̸=k

Lk←e
mid + wmtri

K∑
e ̸=k

Lk←e
mtri) + Lk

vot.

(16)
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Each model is trained by its own hyper-parameters

ϕ = {ε, wid, wtri, wmid, wmtri} to explore different in-

formation. In addition, direct descendants of the same

networks do not learn from each other in the mutual

learning phase since they acquire similar knowledge.

Note that training of a large-size population requires

unaffordable computational resources. To address this

problem, we use a random sampling strategy of net-

works. Specifically, for each batch of data, mutual

learning is performed only on a randomly sampled

subset of networks, as shown in step 5 in Algorithm

3.

3.2 Analysis of Escaping Capacity

Here we analyze the escaping capacity from the local

optimum of our approach. The optimization of our

approach can be formulated into two interactive phases.

The first one is to optimize the label assignment of

samples according to feature models

argmin
Ỹ

fa(Ỹ , Θ,X), (17)

where Ỹ is the assigned labels and fa is the objective

loss function of the phase which is determined by the

used clustering algorithm. Θ and X denote the model

parameters and input samples, respectively. The second

phase is to optimize the parameters of feature models

according to the label assignment

argmin
Θ

fm(Θ, Ỹ ,X|ϕ). (18)

fm(·|ϕ) is loss function to train the models Θ as Eq. 16,

and ϕ is the hyper-parameters. The two optimization

phases interact as a two-agent game and the local

optimum occurs when the game halts at a Nash equi-

librium:

∃ (Ỹ ∗, Θ∗),

s.t.

Ỹ ∗ = argmin
Ỹ

fa(Ỹ , Θ∗, X),

Θ∗ = argmin
Θ

fm(Θ, Ỹ ∗, X|ϕ).

(19)

In our approach, function fm(·|ϕ) will be changed

when the hyper-parameters ϕ are mutated to new

values ϕ′, leading to the shift of the local optimal

model parameters Θ∗. Therefore the Nash equilibrium

between Ỹ and Θ will be broken, and the local optimum

at (Ỹ ∗, Θ∗) will not exist exactly since the mutation

changes the condition of the Nash equilibrium.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate the proposed method on three large-scale

person re-identification benchmarks including Market-

1501 (Zheng et al., 2015), DukeMTMC-reID (Ristani

et al., 2016) (Zheng et al., 2017) and MSMT17 (Wei

et al., 2018).

Market-1501: This dataset contains 32,668 images

of 1,501 identities from 6 disjoint cameras, among which

12,936 images from 751 identities form a training set,

19,732 images from 750 identities (plus a number of

distractors) form a gallery set, and 3,368 images from

750 identities form a query set.

DukeMTMC-reID: This dataset is a subset of

the DukeMTMC. It consists of 16,522 training images,

2,228 query images, and 17,661 gallery images of 1,812

identities captured using 8 cameras. Of the 1812 identi-

ties, 1,404 appear in at least two cameras and the rest

(distractors) appear in a single camera.

MSMT17 contains 126,441 images of 4,101 IDs

captured from a 15-camera network. The training set

has 32,621 images of 1,041 identities, and the testing set

has 93,820 images of 3,060 identities. During inference,

11,659 images are selected as query and the other 82,161

images are used as gallery from the testing set.

Evaluation Metrics:We use the Cumulative Match-

ing Characteristic (CMC) curve and mean average

precision (mAP) for performance evaluations and com-

parisons.

4.2 Implementation Details

Model settings. We adopt eight models with ar-

chitectures of similar-weight parameters to initialize

the population, including DenseNet-121 (Huang et al.,

2017b), DenseNet-169, IBN-DenseNet-121 (Pan et al.,

2018), IBN-DenseNet-169, Inception-v3 (Szegedy et al.,

2016), ResNet-50, IBN-ResNet-50a and IBN-ResNet-

50b. All model are pretrained using ImageNet (Deng

et al., 2009). In every model, the convolutional feature

output by the last pooling layer is used for image

representation.

PEG settings. The maximum size of networks in

the selection phase L is set to 3 for experiments. A

lightweight OSNet (Zhou et al., 2019) is used as the

reference model of CRS for faster training. In addition,

we conduct minibatch k-means clustering for CRS, and

the number of clusters M is set to 500 for Market-

1501 and DukeMTMC-reID following MMT (Ge et al.,

2020a). In the reproduction and mutation phase, each

network reproduces 3 networks with mutation factor
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r = 0.5. The whole population evolves for 3 generations

in total. Our method is trained on 4 GPUs under

PyTorch framework. During testing, we use only one

network which is selected by CRS in the population for

feature representations.

Training settings. In mutual learning, we calculate

k-reciprocal Jaccard distance (Zhong et al., 2017) for

clustering, where k1, k2 are set to 6 and 30, respectively.

We set the minimum cluster samples to 4 and a distance

threshold to 0.6 for DBSCAN (Ester et al., 1996).

During training, the input image is resized to 256×128,
and traditional image augmentation is performed via

random flipping and random erasing. For each class

from the training set, a mini-batch of 256 is sampled

with P = 16 randomly selected classes and K = 16

randomly sampled images for computing the hard batch

triplet loss. We use the Adam (Kingma and Ba, 2014)

with weight decay 0.0005 to optimize parameters. In

population mutual learning, the learning rate is fixed

to 0.00035 for the overall 15 epochs. In each epoch, the

temporal ensemble momentum α in Eq. 8 is set to 0.999.

4.3 Comparison with State-of-the-Arts

We compare PEG with state-of-the-art person re-ID

methods in Table 1 and Table 2 on Market-1501,

DukeMTMC-reID and MSMT17 datasets, respectively.

The performance of our full approach is reported as

PEG(Full). In addition, we also evaluate PEG using the

same backbone of ResNet50 as most of the other meth-

ods since backbones are important for feature learning.

However, the backbones of models are automatically

selected in our selection phase. To guarantee a model

with ResNet50 is preserved in the population, we limit

PEG to choose at least one ResNet50 network at every

time of selection. The results tested by ResNet50 are

reported as PEG/ResNet50.

Previous unsupervised methods can be categorized

into unsupervised domain adaptation (UDA) and fully

unsupervised (FU) methods. State-of-the-art UDAmeth-

ods are first listed and compared in Table 1 and

Table 2, including MMCL (Wang and Zhang, 2020),

JVTC (Li and Zhang, 2020), DG-Net++ (Zou et al.,

2020), ECN++ (Zhong et al., 2020), AD-Cluster (Zhai

et al., 2020a), MMT (Ge et al., 2020a), DCML (Chen

et al., 2020), MEB-Net (Zhai et al., 2020c), MetaCam-

DSCE (Yang et al., 2021), SpCL (Ge et al., 2020b) and

GLT (Zheng et al., 2021a). All these methods usually

rely on an annotated source domain to provide basic

discrimination and transfer it to the target domain.

Without any identity annotation from source domains,

our proposed PEG outperforms all of them on Market-

1501, DukeMTMC-reID datasets, and most of them on

MSMT17 dataset except SpCL. The results indicate

the better capacity of PEG to explore the information

of the unlabeled data by exploiting the diversity of

multiple models. On the other hand, although other

approaches have also been proposed to utilize multiple

models, such as MMT and MEB-Net, our PEG still

surpasses them by exploring and exploiting the diver-

sity of multiple models through evolutionary gaming.

With mutation to provide more diverse discrimina-

tion, it automatically finds and preserves the optimal

combination of networks from the population in every

generation and thus achieves better performance in the

end.

State-of-the-art fully unsupervised methods are then

listed and compared in Table 1 and Table 2 including

BUC (Lin et al., 2019), SSL (Lin et al., 2020), JVTC (Li

and Zhang, 2020), MMCL (Wang and Zhang, 2020),

MPRD (Ji et al., 2021), HCT (Zeng et al., 2020),

CycAs (Wang et al., 2020b), GCL (Chen et al., 2021b),

UGA (Wu et al., 2019), IICS (Xuan and Zhang, 2021),

IN unsup. (Fu et al., 2021), SpCL (Ge et al., 2020b),

OPLG (Zheng et al., 2021b), CAP (Wang et al., 2020a),

ICE (Chen et al., 2021a) and ClusterContrast (Dai

et al., 2021). Especially, ICE (aware) denotes using ex-

tra camera information, and ICE (agnostic) denotes not

using it. The compared approaches mainly rely on the

pseudo-label discovery of single networks. Among them,

methods tagged by “*” denote that elaborate extra

temporal information is additionally used to improve

the discrimination, such as CycAs and UGA, while our

approach only considers person appearance similarity.

The performance of these methods is provided just

for reference since it is not our point to explore the

extra temporal information, and our method does not

use any of them. The fully unsupervised methods are

separated into two groups, including linear classifier

based methods and memory bank based methods:

(1) Comparison with linear classifier based

methods. For the linear classifier based methods, our

approach with ResNet50 achieves better performance

than most of them only except CycAs and UGA on the

MSMT17 dataset, as shown in Table 1, 2. Different from

the other two datasets, CycAs and UGA with extra

temporal information achieves better performance on

MSMT17 because images in the dataset are more

diverse and harder to cluster accurately, making the

elaborate extra temporal information particularly im-

portant. Nevertheless, these methods still suffer from

the lack of diversity in single model training, which

prevented them from maximizing their discrimination

under unsupervised conditions. The superior perfor-

mance of PEG can be attributed to the multiple model

training, which improves the networks’ discriminative
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Table 1: Comparison with person re-identification state-of-the-art methods on Market-1501 and DukeMTMC-reID

datasets. “*” denotes the methods using extra temporal information. PEG(Full) denotes the overall performance of

our approach. For a fair comparison, PEG/ResNet50 is tested with the same ResNet50 backbone as most compared

methods. PEG+CCL and PEG+ICE denote training with ClusterContrast (Dai et al., 2021) and ICE(Chen et al.,

2021a) as baselines, respectively. The performance of our approach is highlighted with bold fonts.

Methods
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Unsupervised Domain Adaptation
MMCL (Wang and Zhang, 2020) 60.4 84.4 92.8 95.0 51.4 72.4 82.9 85.0
JVTC (Li and Zhang, 2020) 61.1 83.8 93.0 95.2 56.2 75.0 85.1 88.2
DG-Net++ (Zou et al., 2020) 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.4
ECN++ (Zhong et al., 2020) 63.8 84.1 92.8 95.4 54.4 74.0 83.7 87.4
AD-Cluster (Zhai et al., 2020b) 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
MMT (Ge et al., 2020a) 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5
DCML (Chen et al., 2020) 72.6 87.9 95.0 96.7 63.3 79.1 87.2 89.4
MEB-Net (Zhai et al., 2020c) 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2
MetaCam-DSCE (Yang et al., 2021) 76.5 90.1 - - 65.0 79.5 - -
SpCL (Ge et al., 2020b) 77.5 89.7 96.1 97.6 - - - -
GLT (Zheng et al., 2021a) 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8

Fully Unsupervised – Linear Classifier Based
LOMO (Liao et al., 2015) 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6
Bow (Zheng et al., 2015) 14.8 35.8 52.4 60.3 8.3 17.1 28.8 34.9
UMDL (Peng et al., 2016) 12.4 34.5 52.6 59.6 7.3 18.5 31.4 37.6
BUC (Lin et al., 2019) 29.6 61.9 73.5 78.2 22.1 40.4 52.5 58.2
SSL (Lin et al., 2020) 37.8 71.7 83.8 87.4 28.6 52.5 63.5 68.9
JVTC (Li and Zhang, 2020) 41.8 72.9 84.2 88.7 42.2 67.6 78.0 81.6
MMCL (Wang and Zhang, 2020) 45.5 80.3 89.4 92.3 40.2 65.2 75.9 80.0
MPRD (Ji et al., 2021) 51.1 83.0 91.3 93.6 43.7 67.4 78.7 81.8
HCT (Zeng et al., 2020) 56.4 80.0 91.6 95.2 50.7 69.6 83.4 87.4
*CycAs (Wang et al., 2020b) 64.8 84.8 - - 60.1 77.9 - -
GCL (Chen et al., 2021b) 66.8 87.3 93.5 95.5 62.8 82.9 87.1 88.5
*UGA (Wu et al., 2019) 70.3 87.2 - - 53.3 75.0 - -
IICS (Xuan and Zhang, 2021) 72.1 88.8 95.3 96.9 59.1 76.9 86.1 89.8
IN unsup. (Fu et al., 2021) 72.4 87.8 - - 64.9 80.3 - -
PEG/ResNet50 82.8 92.8 97.5 98.7 70.4 82.2 90.8 93.6
PEG(Full) 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5

Fully Unsupervised – Memory Bank Based
SpCL (Ge et al., 2020b) 73.1 88.1 95.1 97.0 65.3 81.2 90.3 92.2
OPLG (Zheng et al., 2021b) 78.1 91.1 96.4 97.7 65.6 79.8 88.6 91.6
ICE(agnostic) (Chen et al., 2021a) 79.5 92.0 97.0 98.1 67.2 81.3 90.1 93.0
ClusterContrast (Dai et al., 2021) 82.6 93.0 97.0 98.1 72.8 85.7 92.0 93.5
PEG+CCL/ResNet50 83.3 93.4 97.3 98.4 74.4 84.6 92.1 94.0
PEG+CCL(Full) 87.1 94.6 98.0 98.8 76.8 86.4 93.1 95.0
CAP (Wang et al., 2020a) 79.2 91.4 96.3 97.7 67.3 81.1 89.3 91.8
ICE(aware) (Chen et al., 2021a) 82.3 93.8 97.6 98.4 69.9 83.3 91.5 94.1
PEG+ICE/ResNet50 83.3 94.1 97.8 98.5 71.0 84.4 92.0 94.3
PEG+ICE(Full) 84.5 94.3 98.0 98.5 72.8 85.3 92.5 94.3

capability by mutual learning among diverse networks.

And it can also be attributed to the selection of PEG,

which preserves the more discriminative models in

every generation and achieves the better performance

of them. In addition, our full approach PEG(Full) fur-

ther improves the re-ID performance by automatically

selecting better architectures.

(2) Comparison with memory bank based

methods. Memory banks (Ge et al., 2020b) were

employed in many recent methods (Dai et al., 2021)

to replace the linear classifier before the softmax cross-

entropy loss function to improve unsupervised re-ID

performance. Specifically, memory bank based methods

can be further categorized into two groups including i)

ClusterContrast, SpCL, and OPLG that learn general

memories for all cameras, and ii) ICE and CAP that

design specific memories for each camera. Since our

research mainly focuses on the problem of training

multiple models, it is independent of these methods for

training single models. And they are not contradictive
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Table 2: Comparison with person re-identification state-of-the-art methods on MSMT17 dataset. “*” denotes the

methods using extra temporal information. PEG(Full) denotes the overall performance of our approach. For a fair

comparison, PEG/ResNet50 is tested with the same ResNet50 backbone as most compared methods. PEG+CCL

and PEG+ICE denote training with ClusterContrast (Dai et al., 2021) and ICE(Chen et al., 2021a) as baselines,

respectively. The performance of our approach is highlighted with bold fonts.

Methods
MSMT17

mAP R-1 R-5 R-10

Unsupervised Domain Adaptation
ECN (Zhong et al., 2020) 10.2 30.2 41.5 46.8
MMT (Ge et al., 2020a) 24.0 50.1 63.5 69.3
SpCL (Ge et al., 2020b) 26.8 53.7 65.0 69.8

Fully Unsupervised – Linear Classifier Based
MMCL (Wang and Zhang, 2020) 11.2 35.4 44.8 49.8
TAUDL (Li et al., 2018) 12.5 28.4 - -
UTAL (Li et al., 2019a) 13.1 31.4 - -
IICS (Xuan and Zhang, 2021) 18.6 45.7 57.7 62.8
*UGA (Wu et al., 2019) 21.7 49.5 - -
*CycAs (Wang et al., 2020b) 26.7 50.1 - -
PEG/ResNet50 24.5 48.4 61.5 67.5
PEG(Full) 30.9 57.9 69.7 74.5

Fully Unsupervised – Memory Bank Based
SpCL (Ge et al., 2020b) 19.1 42.3 55.6 61.2
ICE(agnostic) (Chen et al., 2021a) 29.8 59.0 71.7 77.0
ClusterContrast (Dai et al., 2021) 27.6 56.0 66.8 71.5
PEG+CCL/ResNet50 33.4 61.3 73.4 77.8
PEG+CCL(Full) 41.8 69.1 79.5 82.9
CAP (Wang et al., 2020a) 36.9 67.4 78.0 81.4
ICE(aware) (Chen et al., 2021a) 38.9 70.2 80.5 84.4
PEG+ICE/ResNet50 42.1 72.0 82.0 85.4
PEG+ICE(Full) 44.9 73.9 83.2 86.3

with our main contribution and are compatible with

our method. To verify this, we additionally report our

performance on the two typical stronger baselines of

ClusterContrast as PEG+CCL, and ICE as PEG+ICE

respectively in Table 1, 2.

For the camera-general memory bank based meth-

ods, PEG+CCL / ResNet50 surpasses most of other

state-of-the-art methods only except ClusterContrast

for Rank-1 accuracy on DukeMTMC-reID. For Cluster-

Contrast, the relatively poor Rank-1 on DukeMTMC-

reID dataset shows its weakness for some hard negative

samples which were mistakenly identified as the same

persons, because the soft mutual losses in mutual

learning lack the certainty of labels and may not learn

strong capability to separate hard negative samples.

However, robust improvement of PEG is mainly shown

by other metrics, especially the higher mAP on all

benchmarks, indicating that PEG deals better with

those hard positive samples, which is more important

for the practical application of security. Furthermore,

our full approach of PEG + CCL (Full) produces a

new state-of-the-art performance on Market1501 and

DukeMTMC-reID. The better performance can be at-

tributed to the fact that the diverse population provides

more reliable supervision for each other. The improved

results also demonstrate that our evolution gaming

approach is easily combined with different loss functions

and can be further improved by more effective losses.

For the camera-specific memory bank based meth-

ods, PEG+ICE / ResNet50 outperforms all the com-

pared methods on the three datasets and produces a

new state-of-the-art performance on MSMT17 dataset.

The superior performance to the PEG+CCL onMSMT17

can be attributed to that camera-specific memories al-

leviate the strong camera variance in the dataset which

has 15 cameras. However, camera-specific memories are

complementary with our PEG framework and can be

further improved for better performance.

4.4 Ablation Study

4.4.1 Evaluation of Components

Detailed ablation studies are performed to evaluate the

components of PEG as shown in Table 3.
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Table 3: Ablation studies of PEG using eight initial networks under unsupervised conditions. Single model baseline

denotes the best performance of single model training using self-improvement mechanism. Multi-model means

that all models are used for pseudo label prediction and every model is then trained individually. PML denotes

population mutual learning. Sel., Rep. and Mut. denote selection, reproduction and mutation in PEG framework,

respectively. Single architecture + PEG denotes the population is initialized with a single model.

Methods
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Single model baseline 69.6 84.9 92.9 94.9 55.9 72.8 81.9 85.4
Multi-model 76.4 89.7 95.6 97.1 63.4 79.0 87.0 90.0
Multi-model + PML 78.5 90.4 96.1 97.6 66.1 80.3 88.3 91.2
Multi-model + PML + Sel. 79.2 90.9 96.3 97.5 66.9 80.8 88.8 91.6
Multi-model + PML + Sel. + Rep.&Mut. 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5
Single architecture + PEG 80.1 90.9 96.3 97.4 69.4 82.1 90.3 92.9

Table 4: Ablation studies of PEG on a stronger baseline of cluster contrast loss (CCL). CCL-Single denotes the

baseline using the model of IBN-ResNet50. CCL-Multi means that all models are used for pseudo label prediction

and every model is then trained individually. Sel. denotes selection, and PEG denote our full method.

Methods
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

CCL-Single 83.3 92.6 96.8 97.9 74.4 86.2 92.1 93.9
CCL-Multi 79.4 91.2 96.8 97.8 68.9 81.6 89.9 91.7
CCL-Multi + Sel. 84.3 92.9 97.1 98.2 74.9 86.3 92.4 94.1
CCL-Multi + PEG 87.1 94.6 98.0 98.8 76.8 86.4 93.1 95.0

Table 5: Ablation studies of components of population mutual learning (PML) on selected models without

reproduction and mutation: Supervised Upper Bound - Deep models trained using the labelled training images.

Single Model - evaluation using the best single model. Ensemble Feature - evaluation using feature ensemble

among multiple networks. Baseline Ensemble - Models jointly trained by shared pseudo-labels but without mutual

learning. Lvot (Eq. 15), ΘT (Eq. 8), Lmid (Eq. 9) and Lmtri (Eq. 10) are described in Sec. 3.1.3.

Methods
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Supervised Upper Bound
Single Model 84.4 94.1 97.9 98.8 71.2 85.5 92.5 94.3
Ensemble Feature 86.4 94.9 98.0 98.9 77.7 88.9 94.5 95.6
Baseline Ensemble (Only Lvot) 76.6 89.1 95.7 97.2 63.2 77.2 87.5 91.0
PML w/o ΘT 73.3 87.9 95.3 97.1 62.6 77.5 87.0 90.1
PML w/o Lmid 77.2 90.2 95.9 97.4 65.1 79.2 88.5 91.2
PML w/o Lmtri 77.0 89.6 95.8 97.4 65.3 79.3 88.8 91.2
PML 79.2 90.9 96.3 97.5 66.9 80.8 88.8 91.6

Effectiveness of multiple model training. Mul-

tiple model training usually achieves better perfor-

mance than single model training because of the com-

plementary discrimination of different models. In this

section, we first introduce a baseline multi-model en-

semble without mutual learning for comparison that

only uses voting loss in Eq. 15 to train networks jointly,

denoted as Multi-model. With eight networks used for

ensemble, pseudo-labels are predicted by concatenating

the features outputted from all networks and then used

to supervise the training of each network individually

by optimizing the voting loss. We also report the result

of the single model baseline using the best architecture,

ResNet50-IBNa. As shown in Table 3, Multi-model

outperforms the single model training by large margins,

indicating that more accurate pseudo-labels can be

predicted using multiple models.
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Effectiveness of population mutual learning.

Population mutual learning conducts knowledge distil-

lation among all base models for the better ensemble.

Compared with the baseline ensemble as Multi-model,

models achieve better performance with mutual learn-

ing among themselves, as Multi-model + PML in Table

3. For example, the mAP is improved by 2.1% and 2.7%

on Market-1501 and DukeMTMC-reID, respectively.

The improvement can be attributed to that models

additionally learn the distribution predicted by other

models which contain more discriminative information.

In addition, more detailed ablation studies are per-

formed to evaluate the components of mutual learning

as shown in Table 5. In this experiment, three net-

works (DenseNet-121-IBNa, DenseNet-169-IBNa, and

ResNet-50-IBNa) are trained concurrently. We first

validate the temporally average model by removing

it, denoted as PML w/o ΘT . For this experiment,

we directly use the prediction of the current networks

parameterized by θT instead of the temporally average

networks with parameters ΘT as soft labels. As Table. 5

shows, distinct drops are observed, indicating that net-

works tend to degenerate to be homogeneous without

using temporally average models, which substantially

decreases the learning capability. Then we evaluate

the mutual loss in Sec. 3.1.3 from two aspects: the

mutual identity loss and the mutual triplet loss. The

former is denoted as PML w/o Lmid. Results show

that mAP drops from 79.2% to 77.2% on Market-1501

dataset and from 66.9% to 65.1% on DukeMTMC-

reID dataset. Similar drops can also be observed when

studying the mutual triplet loss, which is denoted

as PML w/o Lmtri. The effectiveness of the mutual

learning, including both two mutual losses, can be

largely attributed to that it enhances the discrimination

capability of all networks. Overall, the performance

of the mutual learning ensemble largely outperforms

the baseline ensemble. We also compare the mutual

learning ensemble with two supervised upper bounds,

which are trained using ground truths. The Single

Model denotes evaluation using the best single model,

and the Ensemble Feature denotes evaluation using

feature ensemble among multiple networks. Our mutual

learning ensemble is relatively close to them with

evaluation using a single model.

Effectiveness of selection. Selection phase in

PEG finds and preserves an optimal subset of base

networks for better multi-model training. The exper-

iment with mutual learning and selection is denoted

as Multi-model + PML + Sel. in Table 3. For this

experiment, the selection is performed to preserve a

combination of 3 networks from all 8 networks using the

cooperative game in Section 3.1.1, then the preserved

models are trained by mutual learning. Experimental

results show that the selection phase improves the

performance of Multi-model + PML even using fewer

models. The superior performance indicates that some

models may be redundant and cannot provide more

discrimination but require more computation during

training. However, the selection effectively preserves

better models with the proposed cooperative gaming

while abandoning weak models that could even de-

grade the overall discrimination capability of the whole

ensemble. Without those weaker models, models will

achieve better discrimination from more reliable and

efficient mutual learning.

Effectiveness of reproduction and mutation.

Reproduction and mutation drive the PEG framework

to train more diverse models by mutating their hyper-

parameters, which is the key to the exploration of model

diversity in our evolution process. With this compo-

nent, PEG achieves the best performance in Table 3

as Multi-model + Sel. + Rep.&Mut.. The effectiveness

of reproduction and mutation can be attributed to the

exploration of training more diverse models with selec-

tion preserving the better ones of them after mutual

learning. Beneficial from the iteration of reproduction,

mutation, and selection, PEG keeps exploring and

exploiting diverse and discriminative capacity for better

re-ID models. In addition, multiple network ensemble

with different architectures is also used to exploit

their diversity. To further validate the effectiveness

for the diversity of reproduction and mutation, we

evaluate PEG with only a single model to initialize

the population with reproduction and mutation, as

Single architecture + PEG in Table 3. Compared with

the single model baseline, the experiment improves the

accuracy by large margins, and it also outperforms

the multi-model without reputation and mutation. The

results demonstrate that reputation and mutation are

more important for exploring diversity. Moreover, our

full approach of PEG with both multiple architectures

and reputation&mutation performs the best, demon-

strating that the diversities from the two components

are complementary.

Generalization Analysis. To validate the general-

ization of our approach with different baseline training

methods, ablation studies on a stronger baseline of

cluster contrast loss are evaluated as shown in Table

4. Compared with the single model, it performs not

good when directly using multiple models for pseudo-

label prediction, denoted as CCL-Multi. The distinct

degradation of performance indicates that the weak

models make a negative impact on such a stronger

baseline. The models converge quickly to the inaccurate

pseudo label partially predicted by the weak models
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and can no longer be improved. However, the perfor-

mance of the multi-model is largely improved using

the selection before training. It demonstrates that the

selection still preserves better models effectively and

abandons the weak models which are harmful to the

ensemble. Furthermore, CCL-Multi + PEG produces

the best performance on both datasets, validating the

effectiveness of the mutation and reproduction. The

superior results show that our PEG is effective and

generalizable for different baseline methods.

4.4.2 Evaluation of Cross-Reference Scatter

In this section, we first validate the basic motivation of

the cross-reference scatter, the phenomenon that more

accurate labels lead to larger intra-cluster cohesion and

inter-cluster separation in the trained feature space.

We use inter-/intra-cluster scatters (ICS) to measure

the separation as well as the cohesion over the feature

space of models. As shown in Fig. 4, a larger ICS

means larger inter-cluster separation and intra-cluster

cohesion. We evaluate the ICS of models trained by

labels with different accuracy. Specifically, the label

accuracy is controlled by replacing a part of the ground

truth with randomly incorrect labels. The results shown

in Fig. 5 indicate a positive correlation between the

ICS and the label accuracy, which confirms the basic

hypothesis of CRS.

We also evaluate the cross-reference scatter with

different metrics for clustering algorithm to compare

the performance of re-ID models without ground truth.

All comparison models with different architectures were

first pre-trained in DukeMTMC-reID dataset and then
evaluated in Market-1501 by the metrics. To demon-

strate whether a metric can show the relative per-

formance between models, we evaluate the correlation

between the metric scores and the re-ID performance

for all metrics, as shown in Fig. 6. Since CRS measures

models at the start of every generation in PEG but aims

to select the models that perform better after training,

the metric scores were calculated before training and

the re-ID performance is evaluated with mAP after the

model has been unsupervised trained on the unlabeled

data from Market1501, which represents more latent

performance of models. We first compare ICS with

two metrics for clustering algorithm including Davies-

Bouldin Index (DBI) and Silhouette Coefficient (SC),

as shown in the first line of Fig. 6. All three metrics

are calculated directly on the feature space of the

evaluated models by performing k-means clustering.

For each metric, we used Spearman’s Rank Correlation

(ρ) (Spearman, 1961) and Kendall’s Rank Correlation

(τ) (Kendall, 1938) to measure the correlation between

the metric scores and the re-ID performance. However,

we clearly see the poor correlation of the metrics with

the re-ID performance according to the small ρ and

τ , indicating that the distribution of features before

training can not show the real performance of models.

Then we evaluate the three metrics using our proposed

cross-reference (CR) evaluation where metrics are cal-

culated on the feature distribution of a reference model

trained by predicted labels. As illustrated in the second

line of Fig. 6, correlations are consistently improved

by CR, which validates its effectiveness. Importantly,

our CRS (ICS+CR) performs the highest correlation

with ρ = 0.93 and τ = 0.86 among all six compared

metrics. Besides, we also present the rankings of models

under different metrics in Fig. 7. Compared with the

ground truth ranking result in the last column, CRS

achieves a similar ranking of models while other metrics

fail to rank them well. The superior performance of

CRS can be attributed to two reasons. One reason

is the cross-reference evaluation that measures the

accuracy of predicted labels can better reflect models’

performance, and another reason is the ICS which

better measures the convergence degree of the reference

model. Specifically, both DBI and SC focus on the

distribution of the difficult edge samples of clusters

while they ignore the overall distribution and thus

cannot measure well the degree of model convergence.

We also evaluate CRS with different clustering

algorithms such as DBSCAN. In our work, DBSCAN

is adopted in model learning to generate more accu-

rate pseudo-labels like many recent unsupervised re-ID

works. However, it is not applicable for CRS because

the fair comparison of CRS among models requires the

same cluster number during clustering, while DBSCAN

cannot guarantee that. Specifically, CRS defined by the

ratio of intra-/inter-cluster variance is relative to the

cluster numbers. And the cluster numbers by DBSCAN

with different evaluated feature models are likely to be

different, making it unfair to compare their CRS for

model selection. In our work, we use kmeans with the

same cluster number k for all evaluated models. To

validate its effectiveness, we evaluate the correlation

between CRS and model performance using different

clustering algorithms, as shown in Fig. 8. Compared

with kmeans (M=500), DBSCAN achieves a much

lower Spearman’s Rank Correlation (ρ) (Spearman,

1961) and Kendall’s Rank Correlation (τ) (Kendall,

1938) between the metric and mAP values. The results

show that CRS with DBSCAN fails to measure the

models, and KMeans does it better. Therefore, we use

kmeans with the same cluster number for CRS.

Furthermore, we study the number of clusters M for

k-means in CRS, which is hard to fix in the real world.
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ICS=0.36 ICS=0.73 ICS=1.28 ICS=1.49

Fig. 4: Illustration of feature distribution with different Inter-/intra-cluster scatters (ICS). A larger ICS means

larger cohesion within feature clusters and larger separation across feature clusters. Best viewed in color.

Table 6: Comparison of re-ID performance using different cluster numbers M for kmeans clustering in CRS.

Methods
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10
PEG (M=500) 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5
PEG (M=700) 85.0 94.1 97.8 98.8 73.3 84.8 92.0 94.1
PEG (M=900) 83.8 93.1 97.4 98.4 72.3 83.7 91.3 93.8
PEG (M=1500) 83.6 93.1 97.2 98.5 71.5 84.1 91.6 93.6
PEG (M=2000) 83.5 93.7 97.8 98.6 71.3 83.6 91.2 93.4

IC
S

Label Accuracy

ICS and label accuracy

Fig. 5: The positive correlation between inter-/intra-

cluster scatter (ICS) and label accuracy indicates that

more accurate labels usually lead to larger ICS, which

means larger cohesion within feature clusters and

larger separation across feature clusters during model

training.

We first compare the correlation between CRS and re-

ID performance with different values of M , as shown in

Fig. 8. CRS shows stronger correlations when M is set

to 500 or 700, which is close to the number of person IDs

in the datasets. The good performance of this cluster

number is consistent with other kmeans based methods

like MMT (Ge et al., 2020a). When M is larger, the

correlation will be weaker. But the CRS still basically

reflects the performance of re-ID models, indicating it

is robust to the cluster number. On the other hand, we

Table 7: Comparison with different architecture for the

reference model in CRS. All models are trained for 500

iterations during the evaluation of CRS. Models easy

to converge such as OSNet and ResNet-50 show better

measurement.

Reference Model ρ τ Param. Time/iter.

DenseNet-121 0.74 0.57 6.95M 0.99s
ResNet-50 0.86 0.71 23.51M 1.11s
ResNet-101 0.40 0.36 42.50M 1.87s
OSNet 0.93 0.86 1.91M 0.98s

also evaluate the performance of our full method with

different M on both Market1501 and DukeMTMC-reID

datasets. As shown in Table 6, the re-ID performance is

generally consistent with the correlations of CRS. PEG

performs best when M is set to 700, where CRS also

achieves the highest ρ and τ , making selection able to

select better models.

To validate CRS for very weak evaluated models

which predict mostly wrong pseudo labels, we estimate

CRS at different noise levels. Although its predicted

labels are partially wrong for each evaluated model,

we add extra noises by disrupting the label order of a

particular portion of samples. As shown in Fig. 9, CRS

maintains a stronger correlation between its values and

model performance with the increase of the noise ratio,

indicating its robustness for the wrong labels. When the

noise level is too high such as 0.8, the correlation visibly
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Fig. 6: Comparison with different unsupervised measures on the correlation between the measures and re-ID

performance (mAP after unsupervised learning) over different models (point a-h) on Market-1501 dataset. For

each measure, we use Spearman’s Rank Correlation (ρ) (Spearman, 1961) and Kendall’s Rank Correlation (τ)

(Kendall, 1938) to measure the correlation between the metric and mAP values. A higher absolute value of ρ

(or τ) indicates a stronger correlation. Our proposed CRS shows a stronger correlation, indicating that it better

reflects the performance of re-ID models.

Table 8: Comparison of re-ID performance of PEG using different light-weight networks as reference models in

CRS.

Reference Models
Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10
OSNet 84.3 93.7 97.8 98.5 71.9 83.8 91.2 93.5
MobileNet 83.9 93.1 97.8 98.6 72.0 83.9 91.2 93.3
ResNet18 84.8 93.8 97.7 98.7 72.1 83.4 91.8 93.8

deteriorated. However, higher CRS can still roughly

reflect the better models.

In addition, we evaluate CRS with different ar-

chitectures of the reference model. Four models are

compared with fewer parameters to more parame-

ters including OSNet, DenseNet-121, ResNet-50, and

ResNet-101. For fair, all reference models are trained

for 500 iterations during the evaluation of CRS. As

shown in Table 7, we observe that models easy to

converge such as OSNet and ResNet-50 show better

measurement for higher correlation ρ and τ , while mod-

els hard to converge, like DenseNet-121 and ResNet-

101, don’t perform well. Specifically, DenseNet using a

dynamic architecture and ResNet-101 have deep layers

and amounts of parameters, therefore they both require

much more time to train. Since only a few training
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Fig. 7: Rankings of 9 models under existing clustering

measures and the proposed metric “CRS”. The ground

truth ranks models by the mAP after unsupervised

learning.

Table 9: Comparison with different selection strategies

for initial network architectures. The results are tested

after once selection and mutual learning without

mutation on Market-1501 dataset.

Selection strategies mAP R-1 R-5 R-10

Deepest 77.9 89.9 96.1 97.1
Most heavyweight 76.7 89.3 96.1 97.5
Cooperative game (Ours) 79.2 90.9 96.3 97.5

iterations are performed in CRS, the two architectures

cannot show a sufficiently differentiable difference in

feature distribution when evaluating different models.

Moreover, we evaluate PEG for CRS with other light-

weight networks as the reference model, including Mo-

bileNet and ResNet18. Different from OSNet specially

designed for re-ID, the other two architectures are

designed for general purpose. Table 8 shows the re-ID

performance of PEG with different reference models for

CRS. Our method achieves comparable re-ID perfor-

mance consistently on Market-1501 and DukeMTMC-

reID datasets. The results indicate that our CRS metric

is model-general for reference models, which is not

limited to certain architectures. In this work, we adopt

the OSNet as the reference model of CRS in all other

experiments for less time-consuming and more accurate

measurement.

4.4.3 Analysis of Selection

Comparison with different model selection strate-

gies. For the method of selection of networks in PEG,

Table 10: Comparison between individual selection and

group selection in PEG. Individual selection selects

networks with better individual performance (CRS)

while group selection selects the network combination

with better overall performance (CRS).

Selection strategies mAP R-1 R-5 R-10

Individual selection 82.3 92.7 97.1 98.2
Group selection 83.6 93.3 97.3 98.3

we first compare our cooperative gaming (using the

best-response dynamics according to CRS) with dif-

ferent selection strategies of network architectures, for

example, using some of the deepest or weight-heaviest

networks since deeper or weight-heavier networks gen-

erally achieve better performance. Considering that

these strategies can not select networks from ones with

the same architecture, in this experiment, we perform

the selection from networks with different architectures

only once and then train them by mutual learning

before testing. The experiment results shown in Table 9

indicate that our approach selects better models which

achieve higher performance through mutual learning.

The better selection can be attributed to that the CRS

approximately measures the discriminative capability

of models by efficiently using the unlabeled data.

Moreover, we compare our group selection with the

individual selection in PEG. For individual selection,

we evaluated the CRS of every single network and

accordingly preserved the best L networks. While for

group selection, we use the cooperative game to find

and preserve the group of L networks with the highest

overall CRS. Through the iterative evolutionary game,

the group selection performs better, as shown in Table

10. The superior performance indicates that networks

preserved by the group selection are more complemen-

tary and it helps to achieve a better population in later

evolutionary training.

Convergence analysis of cooperative selection

gaming. We now discuss the convergence of the coop-

erative gaming of selection. Note that in every iteration

of best response dynamics in Eq. 2, the outcome of

the utility function strictly increases. Thus, no cycles

are possible. Since the game is finite by assumption,

it eventually ends, necessarily at a Nash equilibrium.

The convergence of the cooperative game is illustrated

in Fig. 10, where each game eventually halts at a Nash

equilibrium.
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Fig. 8: Comparison of CRS with different cluster settings on the correlation between the measures and re-ID

performance (mAP after unsupervised learning) over different models on Market-1501 dataset.

4.4.4 Parameter Analysis

Analysis of agent number L in the selection. The

agent number L in the cooperative game of selection

determines the maximal size of the selected subset of

networks. Here we evaluate the performance of our

method and computational cost of the selection over

different values of L, as shown in Fig. 11. Usually,

a smaller L will lead to a lack of diversity of the

population since only a small number of networks

can be preserved during selection. However, L should

not be very large because it will waste much more

computational resources for solving the best-response

dynamics. On the other hand, a larger L also means

the larger size of the population in the next generation,

which will cost more time for mutual learning among

the networks. Taken together, a L of 3 is proper in our

experiments, which achieves good performance without

consuming too many computational resources.

Analysis of mutation factor r. The mutation

factor r in Sec. 3.1.2 will affect the diversity of popu-

lations and so the evolutionary training processes. We

studied this parameter by setting it to different values

and checking the mAP performance of all networks in

the populations. Fig. 12 shows experimental results on

Market-1501, where each circle point denote a single

model. Using a larger r usually leads to a higher

diversity within populations, which further leads to

a higher possibility of achieving better performance.

Specifically, a larger r results in a higher upper bound

(maximized performance) and a similar average value.

Notably, the average values do not represent the final

performance. Although PEG aims to train a popula-

tion of diverse networks, only one network is selected

automatically according to Cross Reference Scatter for

inference at the end of training, which is probably to

be the better one. Therefore, the final performance of

our method doesn’t depend on the average values of

the population but depends on the performance of the

selected model. On the other hand, a population with

a higher upper bound is more likely to select a better

model. For example, when r is set to 0.05 the best model

in the population achieves 83.6% mAP, but when r is

set to 0.5, there are 1/4 models in the population that
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Fig. 9: Comparison of CRS at different noisy levels of pseudo-labels on the correlation between the measures and

re-ID performance (mAP after unsupervised learning) over different models on Market-1501 dataset.

U
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li
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Market-1501 DukeMTMC-reID

CUB-200-2011 SOP

BRD Iteration BRD Iteration

Fig. 10: Illustration of curves of utility outcome (calcu-

lated by CRS) over the best response dynamics (BRD)

iterations in the first selection phase during population-

based training. The utility outcome increases strictly

and eventually halts at a Nash equilibrium.

achieve mAP higher than 83.6%, which may be selected

for superior performance. Importantly, the final model

is selected according to Cross Reference Scatter which

is to estimate model performance by unlabeled training

data. Experimental results in Sec. 4.4.2 demonstrated

that better models are likely to have higher CRS values

to be selected. And when r = 0.5 it provides more

Fig. 11: Comparison with different agent numbers L

in the cooperative selection game. A larger L leads to

better performance but higher time consumption. The

mutation factor r is set to 0.2 for stability.

better models as candidates for the final selection.

However, a larger r will also bring larger variance and

instability of network performance within populations

because it may reproduce very weak networks that drag

down the overall discrimination capability of the whole
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Fig. 12: Performance of networks in populations over

different mutation factor r. Each box represents a

population and points denote models. A larger r leads

to better performance but larger variance of networks

within populations.

Generation 1 2 3 4 5
mAP 66.0 83.8 84.9 85.3 84.4
R-1 81.8 93.0 93.5 94.2 93.1

Fig. 13: Illustration of the model performance in every

generation for 5 generation evolution.

population by mutual learning. Given all of that, we set

r to 0.5 for both performance and stability.

Analysis of the number of generations. To

analyze the number of generations, we provide the

model performance in every generation for 5 generation

evolution, as shown in Fig. 13. The performance of

models is boosted rapidly in the first and second

generation, and the boost slows down gradually as

the generation increases. After three generations of

evolution, the performance is nearly convergent, and

models achieve stable results.

4.4.5 Multiple models vs. heavyweight models

Heavyweight networks are more likely to learn discrim-

inative representations than lightweight models since

Network parameters/M Network parameters/M

m
A

P

m
A

P

Market-1501 DukeMTMC-reID

ResNet-101

Population

ResNet-50

DenseNet169

Population

ResNet-101

DenseNet169

ResNet-50

Fig. 14: Comparison between the lightweight networks

within the population and heavyweight networks

trained individually on two datasets.

they have deeper architectures and more parameters.

However, models with heavyweights require more time

and computational resources during both the train-

ing and inference stages, making them infeasible in

practice. Our experiments show that through PEG,

lightweight models can surpass heavyweight models

with IBN that are individually trained under unsuper-

vised conditions. Take the market-1501 dataset as an

example. After the evolutionary game of the population

of lightweight networks, all member networks of the

population achieve better performance than heavy-

weight networks, such as ResNet-101, as shown in Fig.

14. Specifically, one of the networks achieves a much

higher mAP of 84.3% than ResNet-101 with only 1/3 of

the parameters. The superior results can be attributed

to two aspects. One is the mutation and selection

that sufficiently explore and exploit the population.

Mutation makes networks learn diverse knowledge,

and selection maintains the optimal model groups and

abandons the others. The models in the selected and

preserved groups are complementary, so they produce

more accurate and robust pseudo-labels for the next

training phase and learn more discriminative features.

The second reason is the mutual learning performed

among all networks in the whole population. Since the

models preserved by mutation and selection are diverse

and complementary, each contains only a small part

of the knowledge of the whole population. Through

mutual learning, the knowledge of the population is

assembled into each network by distillation, which

equips the models with more discriminative capability.

The PEG method explores the potential of lightweight

networks and searches for the approximate global op-

timal solution and thus outperforms the heavyweight

models.
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Table 11: Comparison of computational cost between single models and PEG with different population sizes. PEG

(small) selects only two models during selection, and every model reproduces to 2 times. And PEG (large) follows

the original settings according to the implementation details.

Methods
Performance Training cost Testing cost
mAP R-1 Param. /M Complexity /GMac Time /h Param. /M Complexity /GMac

IBN-DenseNet169 57.4 75.2 12.49 2.23 3.5 12.49 2.23
IBN-ResNet50 69.6 84.9 23.51 4.08 3.9 23.51 4.08
IBN-ResNext101 72.2 87.4 42.13 6.54 4.8 42.13 6.54
ResNet200 73.1 88.7 62.65 10.02 8.9 62.65 10.02
ResNetrs420 73.1 86.5 189.84 20.62 19.3 189.84 20.62
PEG (small) 84.1 93.0 72.00 12.62 10.7 12.49 2.23
PEG (large) 84.3 93.7 128.85 24.57 21.1 12.49 2.23

Selection time/h Clustering time/h Model learning time/h Total time/h
3.39 1.27 17.7 21.14

Generation 1 Generation 2 Generation 3

Selection Clustering Model learning

Training time / h

m
A

P

Fig. 15: Illustration of time consumption of every procedure in our approach. Time of selection, clustering and

model learning are represented by green, yellow and white, respectively. Blue curves represent the performance of

every model in the population.

4.5 Computational Cost

To evaluate the efficiency and effectiveness of the com-

putational cost, we evaluate a series of large single

models for reference as shown in Table 11. Experiments

are conducted on four V100 GPUs. From the perspec-

tive of training, our method requires comparable com-

putational cost with the large single models (such as

ResNetrs420) while achieving significant performance

improvement. And from the perspective of testing, our

method requires as less computational cost as the small

single models (such as IBN-DenseNet169) and surpasses

them by large margins. More detailed descriptions are

listed below.

(1) The improvement by increasing parame-

ters is limited for single models on re-ID per-

formance, and our PEG largely surpasses the

best single model with comparable computa-

tions, demonstrating the cost meaningful. Specif-

ically, we evaluate five architectures from lightweight to

heavyweight including IBN-DenseNet169, IBN-ResNet50,

IBN-ResNext101, ResNet200 and ResNetrs420. As pa-

rameters increase, single models usually achieve better

performance, whereas they require more computational

complexity and time for training. However, the im-

provement is limited when the parameters are very

large, i.e., ResNetrs420 cannot surpass ResNet200 even

though more than two times of parameters and training

time are used. Compared with single models, PEG

improves the accuracy by large margins. Although

population-based training demands more cost, the cost

is worth and affordable. Importantly, PEG provides

further improvement that cannot be achieved by simply

increasing model parameters.

To reduce the cost, we provide two implementation

versions of PEG: small and large, with different sizes of

the population. Specifically, PEG (small) maintains a

lightweight population for efficient training, which se-
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lects only two models during selection and every model

reproduces to 2 times. And PEG (large) follows the

original settings according to the implementation de-

tails. Significantly, the provided PEG (small) achieves

comparable performance with PEG (large) and requires

only half the training cost. It also outperforms the best

single architecture ResNet200 for more than 10% of

mAP while costing comparable computing resources,

which is more affordable and efficient than the large

version. We suggest the version of PEG (small) for

application in resource-limited environments.

(2) PEG requires less computational cost for

testing, making it more applicable and valuable

in practice. As is shown in Table 11, the computa-

tional complexity during testing of PEG is largely less

than the large single models, even nearly 1/5 of the best

one, ResNet200. It only requires as less computational

cost as small single models such as IBN-DenseNet169

while surpassing its performance by large margins. It is

because only one network in the population is selected

in the end for evaluation. Since the training procedure is

only conducted once, while the test will be continuously

repeated in the actual re-ID system, PEG with less

testing cost is applicable and valuable in practice.

To further analyze the training time of every proce-

dure in our approach, we illustrated the training process

over time in Fig. 15. Among the total training time,

model learning accounts for the largest proportion.

Model learning is performed by data loading, feedfor-

ward of all networks, backward of losses, and updating

of parameters. This part of time is relative to the

number and depth of networks. For example, the time

of model learning in Generation 2 is shorter than in the

other generations because there are only four networks

in the population. The time of the selection stage is

different in the three generations. On the one hand, it

is affected by the number of candidate networks. On the

other hand, it is affected by the convergence of the best-

response dynamics. Moreover, clustering costs the least

time, only for the extraction of features and execution

of clustering algorithms.

5 Conclusion

The paper proposed a population-based evolutionary

gaming which trains concurrently a population of net-

works for unsupervised person re-ID. We demonstrate

that the population can evolve and achieve progressive

discrimination through iterative selection to preserve

adaptive networks, reproduction and mutation to pro-

vide more diversity, and mutual learning to assem-

ble knowledge. Moreover, our proposed cross-reference

scatter can approximately estimate the performance

of networks using unlabeled data and thus is utilized

as the utility of cooperative game in the selection

phase. Our approach not only produces a new state-

of-the-art accuracy on multiple benchmarks but also

provided a fresh insight for population-based multi-

network training.
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