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Abstract. An audio fingerprint is a compact content-based signature that summarizes an audio recording. Audio
Fingerprinting technologies have attracted attention since they allow the identification of audio independently of its
format and without the need of meta-data or watermark embedding. Other uses of fingerprinting include: integrity
verification, watermark support and content-based audio retrieval. The different approaches to fingerprinting have
been described with different rationales and terminology: Pattern matching, Multimedia (Music) Information
Retrieval or Cryptography (Robust Hashing). In this paper, we review different techniques describing its functional
blocks as parts of a common, unified framework.
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1. Introduction

Audio fingerprinting is best known for its ability to
link unlabeled audio to corresponding meta-data (e.g.
artist and song name), regardless of the audio format.
Audio fingerprinting or content-based audio identifi-
cation (CBID) systems extract a perceptual digest of
a piece of audio content, i.e. a fingerprint and store it
in a database. When presented with unlabeled audio,
its fingerprint is calculated and matched against those
stored in the database. Using fingerprints and match-
ing algorithms, distorted versions of a recording can
be identified as the same audio content.

A source of difficulty when automatically identify-
ing audio content derives from its high dimensionality,
the significant variance of the audio data for percep-
tually similar content and the necessity to efficiently
compare the fingerprint with a huge collection of reg-
istered fingerprints. The simplest approach that one

may think of—the direct comparison of the digital-
ized waveform—is neither efficient nor effective. A
more efficient implementation of this approach could
use a hash method, such as MD5 (Message Digest 5) or
CRC (Cyclic Redundancy Checking), to obtain a com-
pact representation of the binary file. In this setup, one
compares the hash values instead of the whole files.
However, hash values are fragile, a single bit flip is
sufficient for the hash to completely change. Of course
this setup is not robust to compression or minimal dis-
tortions of any kind and, in fact, it cannot be considered
as content-based identification since it does not con-
sider the content, understood as information, just the
bits.

An ideal fingerprinting system should fulfill several
requirements. It should be able to accurately identify
an item, regardless of the level of compression and
distortion or interference in the transmission channel.
Depending on the application, it should be able
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to identify the titles from excerpts of only a few
seconds. The fingerprinting system should also be
computationally efficient. Efficiency is critical in a real
application both in the calculation of the fingerprint
of the unknown audio and, even more so, in the search
for a best match in huge repository of fingerprints.
This computational cost is related to the size of the
fingerprints, the complexity of the search algorithm
and the complexity of the fingerprint extraction.

The design principles and needs behind audio fin-
gerprinting are recurrent in several research areas.
Compact signatures that represent complex multime-
dia objects are employed in Information Retrieval for
fast indexing and retrieval. In order to index com-
plex multimedia objects it is necessary to reduce their
dimensionality (to avoid the “curse of dimensional-
ity”) and perform the indexing and searching in the
reduced space [1–3]. In analogy to the cryptographic
hash value, content-based digital signatures can be seen
as evolved versions of hash values that are robust to
content-preserving transformations [4, 5]. Also from
a pattern matching point of view, the idea of extract-
ing the essence of a class of objects retaining its main
characteristics is at the heart of any classification sys-
tem [6–10].

This paper aims to give a vision on it Audio Finger-
printing. The rationale along with the differences with
respect to watermarking are presented in 2. The main
requirements of fingerprinting systems are described
in 3. The basic modes of employing audio fingerprints,
namely identification, authentication, content-based
secret key generation for watermarking and content-
based audio retrieval and processing are commented in
Section 4. We then present in Section 5 some concrete
scenarios and business models where the technology
is used. In the lasts sections of the article (from Sec-
tion 6 to 10), we introduce the main contribution of the
article: a general framework of audio fingerprinting
systems. Although the framework focuses on identifi-
cation, some of its functional blocks are common to
content-based audio retrieval or integrity verification.

2. Definition of Audio Fingerprinting

An audio fingerprint is a compact content-based sig-
nature that summarizes an audio recording. Audio fin-
gerprinting has attracted a lot of attention for its au-
dio identification capabilities. Audio fingerprinting or
content-based identification (CBID) technologies ex-

tract acoustic relevant characteristics of a piece of audio
content and store them in a database. When presented
with an unidentified piece of audio content, character-
istics of that piece are calculated and matched against
those stored in the database. Using fingerprints and
matching algorithms, distorted versions of a single
recording can be identified as the same music title [11].

The approach differs from an alternative existing
solution to identify audio content: Audio Watermark-
ing. In audio watermarking [12], research on psychoa-
coustics is conducted so that an arbitrary message, the
watermark, can be embedded in a recording without
altering the perception of the sound. The identification
of a song title is possible by extracting the message
embedded in the audio. In audio fingerprinting, the
message is automatically derived from the perceptu-
ally most relevant components of sound. Compared
to watermarking, it is ideally less vulnerable to attacks
and distortions since trying to modify this message, the
fingerprint, means alteration of the quality of the sound.
It is also suitable to deal with legacy content, that is,
with audio material released without watermark. In ad-
dition, it requires no modification of the audio content.
As a drawback, the computational complexity of fin-
gerprinting is generally higher than watermarking and
there is the need of a connection to a fingerprint repos-
itory. In addition, contrary to watermarking, the mes-
sage is not independent from the content. It is therefore
for example not possible to distinguish between per-
ceptually identical copies of a recording. Just like with
watermarking technology, there are more uses to fin-
gerprinting than identification. Specifically, it can also
be used for verification of content-integrity; similarly
to fragile watermarks.

At this point, we should clarify that the term
“fingerprinting” has been employed for many years
as a special case of watermarking devised to keep
track of an audio clip’s usage history. Watermark
fingerprinting consists in uniquely watermarking each
legal copy of a recording. This allows to trace back
to the individual who acquired it [13]. However, the
same term has been used to name techniques that
associate an audio signal to a much shorter numeric
sequence (the “fingerprint”) and use this sequence to
e.g. identify the audio signal. The latter is the meaning
of the term “fingerprinting” in this article. Other terms
for audio fingerprinting are robust matching, robust or
perceptual hashing, passive watermarking, automatic
music recognition, content-based digital signatures
and content-based audio identification. The areas
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relevant to audio fingerprinting include information re-
trieval, pattern matching, signal processing, databases,
cryptography and music cognition to name a few.

3. Properties of Audio Fingerprinting

The requirements depend heavily on the application
but are useful in order to evaluate and compare dif-
ferent audio fingerprinting technologies. In their Re-
quest for Information on Audio Fingerprinting Tech-
nologies [11], the IFPI (International Federation of the
Phonographic Industry) and the RIAA (Recording In-
dustry Association of America) tried to evaluate sev-
eral identification systems. Such systems have to be
computationally efficient and robust. A more detailed
enumeration of requirements can help to distinguish
among the different approaches [14, 15]:

Accuracy: The number of correct identifications,
missed identifications, and wrong identifications (false
positives).

Reliability: Methods for assessing that a query is
present or not in the repository of items to identify is of
major importance in play list generation for copyright
enforcement organizations. In such cases, if a song has
not been broadcast, it should not be identified as a
match, even at the cost of missing actual matches. In
other applications, like automatic labeling of MP3 files
(see Section 6), avoiding false positives is not such a
mandatory requirement.

Robustness: Ability to accurately identify an item,
regardless of the level of compression and distortion or
interference in the transmission channel. Other sources
of degradation are pitching, equalization, background
noise, D/A-A/D conversion, audio coders (such as
GSM and MP3), etc.

Granularity: Ability to identify whole titles from ex-
cerpts a few seconds long. It requires to deal with
shifting, that is lack of synchronization between the
extracted fingerprint and those stored in the database
and it adds complexity to the search (it needs to com-
pare audio in all possible alignments).

Security: Vulnerability of the solution to cracking or
tampering. In contrast with the robustness requirement,
the manipulations to deal with are designed to fool the
fingerprint identification algorithm.

Versatility: Ability to identify audio regardless of the
audio format. Ability to use the same database for dif-
ferent applications.

Scalability: Performance with very large databases
of titles or a large number of concurrent identifications.
This affects the accuracy and the complexity of the
system.

Complexity: It refers to the computational costs of
the fingerprint extraction, the size of the fingerprint,
the complexity of the search, the complexity of the
fingerprint comparison, the cost of adding new items
to the database, etc.

Fragility: Some applications, such as content-
integrity verification systems, may require the detec-
tion of changes in the content. This is contrary to the
robustness requirement, as the fingerprint should be
robust to content-preserving transformations but not to
other distortions (see Section 4.2).

Improving a certain requirement often implies losing
performance in some other. Generally, the fingerprint
should be:

• A perceptual digest of the recording. The fingerprint
must retain the maximum of acoustically relevant
information. This digest should allow the discrimi-
nation over a large number of fingerprints. This may
be conflicting with other requirements, such as com-
plexity and robustness.

• Invariant to distortions. This derives from the robust-
ness requirement. Content-integrity applications,
however, relax this constraint for content-preserving
distortions in order to detect deliberate manipula-
tions.

• Compact. A small-sized representation is interest-
ing for complexity, since a large number (maybe
millions) of fingerprints need to be stored and com-
pared. An excessively short representation, how-
ever, might not be sufficient to discriminate among
recordings, affecting thus accuracy, reliability and
robustness.

• Easily computable. For complexity reasons, the ex-
traction of the fingerprint should not be excessively
time-consuming.
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Figure 1. Content-based audio identification framework.

4. Usage Modes

4.1. Identification

Independently of the specific approach to extract the
content-based compact signature, a common architec-
ture can be devised to describe the functionality of
fingerprinting when used for identification [11].

The overall functionality mimics the way humans
perform the task. As seen in Fig. 1, a memory of the
recordings to be recognized is created off-line (top);
in the identification mode (bottom), unlabeled audio is
presented to the system to look for a match.

Database creation: The collection of recordings to
be recognized is presented to the system for the extrac-
tion of their fingerprint. The fingerprints are stored in a
database and can be linked to a tag or other meta-data
relevant to each recording.

Identification: The unlabeled recording is processed
in order to extract a fingerprint. The fingerprint is
subsequently compared with the fingerprints in the
database. If a match is found, the tag associated with
the recording is obtained from the database. Optionally,
a reliability measure of the match can be provided.

4.2. Integrity Verification

Integrity verification aims at detecting the alteration of
data. The overall functionality (see Fig. 2) is similar
to identification. First, a fingerprint is extracted from
the original audio. In the verification phase, the finger-
print extracted from the test signal is compared with
the fingerprint of the original. As a result, a report in-
dicating whether the signal has been manipulated is

Figure 2. Integrity verification framework.

output. Optionally, the system can indicate the type of
manipulation and where in the audio it occurred. The
verification data, which should be significantly smaller
than the audio data, can be sent along with the original
audio data (e.g. as a header) or stored in a database.
A technique known as self-embedding avoids the need
of a database or a special dedicated header, by embed-
ding the content-based signature into the audio data
using watermarking (see Fig. 3). An example of such
a system is described in [16].

4.3. Watermarking Support

Audio fingerprinting can assist watermarking. Audio
fingerprints can be used to derive secret keys from
the actual content. As described by Mihçak et al. [5],
using the same secret key for a number of differ-
ent audio items may compromise security, since each
item may leak partial information about the key. Au-
dio fingerprinting/perceptual hashing can help generate
input-dependent keys for each piece of audio. Haitsma
et al. [4] suggest audio fingerprinting to enhance the
security of watermarks in the context of copy attacks.
Copy attacks estimate a watermark from watermarked
content and transplant it to unmarked content. Binding
the watermark to the content can help to defeat this
type of attacks. In addition, fingerprinting can be use-
ful against insertion/deletion attacks that cause desyn-
chronization of the watermark detection: by using the
fingerprint, the detector is able to find anchor points
in the audio stream and thus to resynchronize at these
locations [5].
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Figure 3. Self-embedding integrity verification framework: (a)
fingerprint embedding and (b) fingerprint comparison.

4.4. Content-Based Audio Retrieval and Processing

Deriving compact signatures from complex multime-
dia objects is an essential step in Multimedia Informa-
tion Retrieval. Fingerprinting can extract information
from the audio signal at different abstraction levels,
from low level descriptors to higher level descriptors.
Especially, higher level abstractions for modeling au-
dio hold the possibility to extend the fingerprinting
usage modes to content-based navigation, search by
similarity, content-based processing and other appli-
cations of Music Information Retrieval. In a query-
by-example scheme, the fingerprint of a song can be
used to retrieve not only the original version but also
“similar” ones [17].

5. Application Scenarios

Most of the applications presented in this section are
particular cases of the identification usage mode de-
scribed above. They are therefore based on the ability
of audio fingerprinting to link unlabeled audio to cor-
responding meta-data, regardless of audio format.

5.1. Audio Content Monitoring and Tracking

5.1.1. Monitoring at the Distributor End. Content
distributors may need to know whether they have
the rights to broadcast certain content to consumers.
Fingerprinting helps identify unlabeled audio in TV
and Radio channels repositories. It can also iden-
tify unidentified audio content recovered from CD
plants and distributors in anti-piracy investigations
(e.g. screening of master recordings at CD manufac-
turing plants) [11].

5.1.2. Monitoring at the Transmission Channel. In
many countries, radio stations must pay royalties for
the music they air. Rights holders are eager to monitor
radio transmissions in order to verify whether royal-
ties are being properly paid. Even in countries where
radio stations can freely air music, rights holders are
interested in monitoring radio transmissions for statis-
tical purposes. Advertisers are also willing to monitor
radio and TV transmissions to verify whether commer-
cials are being broadcast as agreed. The same is true
for web broadcasts. Other uses include chart compi-
lations for statistical analysis of program material or
enforcement of “cultural laws” (e.g. in France a cer-
tain percentage of the aired recordings needs to be
in French). Fingerprinting-based monitoring systems
can be and are actually being used for this purpose.
The system “listens” to the radio and continuously
updates a play list of songs or commercials broad-
cast by each station. Of course, a database contain-
ing fingerprints of all songs and commercials to be
identified must be available to the system, and this
database must be updated as new songs come out. Ex-
amples of commercial providers of such services are:
Broadcast Data System (www.bdsonline.com), Mu-
sic Reporter (www.musicreporter.net), Audible Magic
(www.audiblemagic.com), Yacast (www.yacast.fr).

Napster and Web-based communities alike, where
users share music files, have proved to be excellent
channels for music piracy. After a court battle with
the recording industry, Napster was enjoined from
facilitating the transfer of copyrighted music. The first
measure taken to conform with the judicial ruling was
the introduction of a filtering system based on file-
name analysis, according to lists of copyrighted music
recordings supplied by the recording companies. This
simple system did not solve the problem, as users
proved to be extremely creative in choosing file names
that deceived the filtering system while still allowing
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other users to easily recognize specific recordings.
The large number of songs with identical titles was
an additional factor in reducing the efficiency of
such filters. Fingerprinting-based monitoring systems
constitute a well-suited solution to this problem.
Napster actually adopted a fingerprinting technology
(see www.relatable.com) and a new file-filtering
system relying on it. Additionally, audio content can
be found in ordinary web pages. Audio fingerprinting
combined with a web crawler can identify this content
and report it to the corresponding right owners (e.g.
www.baytsp.com).

5.1.3. Monitoring at the Consumer End. In usage-
policy monitoring applications, the goal is to avoid
misuse of audio signals by the consumer. We can con-
ceive a system where a piece of music is identified by
means of a fingerprint and a database is contacted to
retrieve information about the rights. This information
dictates the behavior of compliant devices (e.g. CD and
DVD players and recorders, MP3 players or even com-
puters) in accordance with the usage policy. Compliant
devices are required to be connected to a network in
order to access the database.

5.2. Added-Value Services

Content information is defined as information about
an audio excerpt that is relevant to the user or nec-
essary for the intended application. Depending on the
application and the user profile, several levels of con-
tent information can be defined. Here are some of the
situations we can imagine:

• Content information describing an audio excerpt,
such as rhythmic, timbrical, melodic or harmonic
descriptions.

• Meta-data describing a musical work, how it was
composed and how it was recorded. For example:
composer, year of composition, performer, date of
performance, studio recording/live performance.

• Other information concerning a musical work, such
as album cover image, album price, artist biography,
information on the next concerts, etc.

Some systems store content information in a
database that is accessible through the Internet. Fin-
gerprinting can then be used to identify a record-
ing and retrieve the corresponding content informa-
tion, regardless of support type, file format or any

other particularity of the audio data. For example, Mu-
sicBrainz, Id3man or Moodlogic (www.musicbrainz.
org, www.id3man.com, www.moodlogic.com) auto-
matically label collections of audio files; the user
can download a compatible player that extracts fin-
gerprints and submits them to a central server from
which meta data associated to the recordings is down-
loaded. Gracenote (www.gracenote.com), who has
been providing linking to music meta-data based on
the TOC (Table of Contents) of a CD, recently of-
fered audio fingerprinting technology to extend the
linking from CD’s table of contents to the song level.
Their audio identification method is used in com-
bination with text-based classifiers to enhance the
accuracy.

Another example is the identification of an audio ex-
cerpt by mobile devices, e.g. a cell phone; this is one of
the most demanding situations in terms of robustness,
as the audio signal goes through radio distortion, D/A-
A/D conversion, background noise and GSM coding,
and only a few seconds of audio are available (e.g.
www.shazam.com).

5.3. Integrity Verification Systems

In some applications, the integrity of audio recordings
must be established before the signal can actually be
used, i.e. one must assure that the recording has not
been modified or that it is not too distorted. If the
signal undergoes lossy compression, D/A-A/D conver-
sion or other content-preserving transformations in the
transmission channel, integrity cannot be checked by
means of standard hash functions, since a single bit
flip is sufficient for the output of the hash function to
change. Methods based on fragile watermarking can
also provide false alarms in such a context. Systems
based on audio fingerprinting, sometimes combined
with watermarking, are being researched to tackle this
issue. Among some possible applications [16], we can
name: Check that commercials are broadcast with the
required length and quality, verify that a suspected in-
fringing recording is in fact the same as the recording
whose ownership is known, etc.

6. General Framework

In spite of the different rationales behind the identifica-
tion task, methods share certain aspects. As depicted in
Fig. 6, there are two fundamental processes: the finger-
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Figure 4. Content-based audio identification framework.

print extraction and the matching algorithm. The fin-
gerprint extraction derives a set of relevant perceptual
characteristics of a recording in a concise and robust
form. The fingerprint requirements include:

• Discrimination power over huge numbers of other
fingerprints,

• Invariance to distortions,
• Compactness,
• Computational simplicity.

The solutions proposed to fulfill the above require-
ments imply a trade-off between dimensionality re-
duction and information loss. The fingerprint extrac-
tion consists of a front-end and a fingerprint modeling
block (see Fig. 5). The front-end computes a set of
measurements from the signal (see Section 7). The
fingerprint model block defines the final fingerprint
representation, e.g: a vector, a trace of vectors, a code-
book, a sequence of indexes to HMM sound classes, a
sequence of error correcting words or musically mean-
ingful high-level attributes (see Section 8).

Given a fingerprint derived from a recording, the
matching algorithm searches a database of fingerprints
to find the best match. A way of comparing finger-
prints, that is a similarity measure, is therefore needed
(see Section 9.1). Since the number of fingerprint com-
parisons is high in a large database and the similarity
can be expensive to compute, we require methods that
speed up the search. Some fingerprinting systems use
a simpler similarity measure to quickly discard can-
didates and the more precise but expensive similarity
measure for the reduced set of candidates. There are
also methods that pre-compute some distances off-line
and build a data structure that allows reducing the num-
ber of computations to do on-line (see Section 9.2).
According to [1], good searching methods should be:

Figure 5. Fingerprint extraction framework: Front-end (top) and
fingerprint modeling (bottom).

Figure 6. Feature extraction examples.

• Fast: Sequential scanning and similarity calculation
can be too slow for huge databases.

• Correct: Should return the qualifying objects, with-
out missing any—i.e. low False Rejection Rate
(FRR).

• Memory efficient: The memory overhead of the
search method should be relatively small.

• Easily updatable: Insertion, deletion and updating of
objects should be easy.
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The last block of the system—the hypothesis testing
(see Fig. 6)—computes a reliability measure indicating
how confident the system is about an identification (see
Section 10).

7. Front-End

The front-end converts an audio signal into a sequence
of relevant features to feed the fingerprint model block
(see Fig. 6). Several driving forces co-exist in the de-
sign of the front-end:

• Dimensionality reduction
• Perceptually meaningful parameters (similar to

those used by the human auditory system)
• Invariance/robustness (to channel distortions, back-

ground noise, etc.)
• Temporal correlation (systems that capture spectral

dynamics).

In some applications, where the audio to identify is
coded, for instance in mp3, it is possible to by-pass
some blocks and extract the features from the audio
coded representation.

7.1. Preprocessing

In a first step, the audio is digitalized (if necessary)
and converted to a general format, e.g: mono PCM
(16 bits) with a fixed sampling rate (ranging from 5
to 44.1 KHz). Sometimes the audio is preprocessed to
simulate the channel, e.g: band-pass filtered in a tele-
phone identification task. Other types of processing
are a GSM coder/decoder in a mobile phone identifi-
cation system, pre-emphasis, amplitude normalization
(bounding the dynamic range to (−1,1)).

7.2. Framing and Overlap

A key assumption in the measurement of characteris-
tics is that the signal can be regarded as stationary over
an interval of a few milliseconds. Therefore, the signal
is divided into frames of a size comparable to the vari-
ation velocity of the underlying acoustic events. The
number of frames computed per second is called frame
rate. A tapered window function is applied to each
block to minimize the discontinuities at the beginning
and end. Overlap must be applied to assure robustness
to shifting (i.e. when the input data is not perfectly

aligned to the recording that was used for generating
the fingerprint). There is a trade-off between the ro-
bustness to shifting and the computational complexity
of the system: the higher the frame rate, the more ro-
bust to shifting the system is but at a cost of a higher
computational load.

7.3. Linear Transforms: Spectral Estimates

The idea behind linear transforms is the projection
of the set of measurements to a new set of features.
If the transform is suitably chosen, the redundancy is
significantly reduced. There are optimal transforms
in the sense of information packing and decorrelation
properties, like Karhunen-Loève (KL) or Singular
Value Decomposition (SVD) [9]. These transforms,
however, are problem dependent and computationally
complex. For that reason, lower complexity trans-
forms using fixed basis vectors are common. Most
CBID methods therefore use standard transforms
from time to frequency domain to facilitate efficient
compression, noise removal and subsequent process-
ing. Lourens [18], (for computational simplicity),
and Kurth et al. [19], (to model highly distorted
sequences, where the time-frequency analysis exhibits
distortions), use power measures. The power can still
be seen as a simplified time-frequency distribution,
with only one frequency bin.

The most common transformation is the Discrete
Fourier Transform (DFT). Some other transforms have
been proposed: the Discrete Cosine Transform (DCT),
the Haar Transform or the Walsh-Hadamard Trans-
form [2]. Richly et al. did a comparison of the DFT
and the Walsh-Hadamard Transform that revealed that
the DFT is generally less sensitive to shifting [20].
The Modulated Complex Transform (MCLT) used by
Mihçak et al. [5] and also by Burges et al. [21] exhibits
approximate shift invariance properties [5].

7.4. Feature Extraction

Once on a time-frequency representation, additional
transformations are applied in order to generate the
final acoustic vectors. In this step, we find a great
diversity of algorithms. The objective is again to
reduce the dimensionality and, at the same time,
to increase the invariance to distortions. It is very
common to include knowledge of the transduction
stages of the human auditory system to extract
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more perceptually meaningful parameters. Therefore,
many systems extract several features performing a
critical-band analysis of the spectrum (see Fig. 3).
In [6, 22], Mel-Frequency Cepstrum Coefficients
(MFCC) are used. In [7], the choice is the Spectral
Flatness Measure (SFM), which is an estimation of
the tone-like or noise-like quality for a band in the
spectrum. Papaodysseus et al. [23] presented the
“band representative vectors”, which are an ordered
list of indexes of bands with prominent tones (i.e. with
peaks with significant amplitude). Energy of each band
is used by Kimura et al. [3]. Haitsma et al. use the
energies of 33 bark-scaled bands to obtain their “hash
string,” which is the sign of the energy band differences
(both in the time and the frequency axis) [4].

Sukittanon and Atlas claim that spectral estimates
and related features only are inadequate when au-
dio channel distortion occurs [8]. They propose mod-
ulation frequency analysis to characterize the time-
varying behavior of audio signals. In this case, features
correspond to the geometric mean of the modulation
frequency estimation of the energy of 19 bark-spaced
band-filters.

Approaches from music information retrieval in-
clude features that have proved valid for comparing
sounds: harmonicity, bandwidth, loudness [22].

Burges et al. point out that the features commonly
used are heuristic, and as such, may not be optimal [21].
For that reason, they use a modified Karhunen-Loéve
transform, the Oriented Principal Component Analysis
(OPCA), to find the optimal features in an “unsuper-
vised” way. If PCA (KL) finds a set of orthogonal
directions which maximize the signal variance, OPCA
obtains a set of possible non-orthogonal directions
which take some predefined distortions into account.

7.5. Post-Processing

Most of the features described so far are absolute mea-
surements. In order to better characterize temporal
variations in the signal, higher order time derivatives
are added to the signal model. In [6] and [24], the
feature vector is the concatenation of MFCCs, their
derivative (delta) and the acceleration (delta-delta), as
well as the delta and delta-delta of the energy. Some
systems only use the derivative of the features, not
the absolute features [7, 19]. Using the derivative of
the signal measurements tends to amplify noise [10]
but, at the same time, filters the distortions produced
in linear time invariant, or slowly varying channels

(like an equalization). Cepstrum Mean Normalization
(CMN) is used to reduce linear slowly varying channel
distortions in [24]. If Euclidean distance is used (see
Section 9.1), mean subtraction and component wise
variance normalization are advisable. Some systems
compact the feature vector representation using trans-
forms (e.g. PCA [6, 24]).

It is quite common to apply a very low resolution
quantization to the features: ternary [20] or binary [4,
19]. The purpose of quantization is to gain robustness
against distortions [4, 19], normalize [20], ease hard-
ware implementations, reduce the memory require-
ments and for convenience in subsequent parts of the
system. Binary sequences are required to extract error
correcting words utilized in [5, 19]. In [5], the dis-
cretization is designed to increase randomness in order
to minimize fingerprint collision probability.

8. Fingerprint Models

The fingerprint modeling block usually receives a se-
quence of feature vectors calculated on a frame by
frame basis. Exploiting redundancies in the frame
time vicinity, inside a recording and across the whole
database, is useful to further reduce the fingerprint size.
The type of model chosen conditions the similarity
measure and also the design of indexing algorithms for
fast retrieval (see Section 9).

A very concise form of fingerprint is achieved by
summarizing the multidimensional vector sequences
of a whole song (or a fragment of it) in a single vector.
Etantrum [25] calculates the vector out of the means
and variances of the 16 bank-filtered energies corre-
sponding to 30 s of audio ending up with a signature
of 512 bits. The signature along with information on
the original audio format is sent to a server for iden-
tification. Musicbrainz’ TRM signature [26] includes
in a vector: the average zero crossing rate, the esti-
mated beats per minute (BPM), an average spectrum
and some more features to represent a piece of audio
(corresponding to 26 s). The two examples above are
computationally efficient and produce a very compact
fingerprint. They have been designed for applications
like linking mp3 files to meta-data (title, artist, etc.) and
are more tuned for low complexity (both on the client
and the server side) than for robustness (cropping or
broadcast streaming audio).

Fingerprints can also be sequences (traces, trajec-
tories) of features. This fingerprint representation is
found in [22], and also in [4] as binary vector se-
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quences. The fingerprint in [23], which consists on
a sequence of “band representative vectors,” is binary
encoded for memory efficiency.

Some systems, include high-level musically mean-
ingful attributes, like rhythm ( [28]) or prominent pitch
(see [22, 26]).

Following the reasoning on the possible sub-
optimality of heuristic features, Burges et al. [21]
employ several layers of OPCA to decrease the local
statistical redundancy of feature vectors with respect
to time. Besides reducing dimensionality, extra robust-
ness requisites to shifting and pitching are accounted
in the transformation.

“Global redundancies” within a song are exploited
in [7]. If we assume that the features of a given au-
dio item are similar among them (e.g: a chorus that
repeats in a song probably hold similar features), a
compact representation can be generated by clustering
the feature vectors. The sequence of vectors is thus ap-
proximated by a much lower number of representative
code vectors, a codebook. The temporal evolution of
audio is lost with this approximation. Also in [7], short-
time statistics are collected over regions of time. This
results in both higher recognition, since some tempo-
ral dependencies are taken into account, and a faster
matching, since the length of each sequence is also
reduced.

Cano [6] and [24] use a fingerprint model that further
exploits global redundancy. The rationale is very much
inspired on speech research. In speech, an alphabet of
sound classes, i.e. phonemes can be used to segment
a collection of raw speech data into text achieving a
great redundancy reduction without “much” informa-
tion loss. Similarly, we can view a corpus of music,
as sentences constructed concatenating sound classes
of a finite alphabet. “Perceptually equivalent” drum
sounds, say for instance a hi-hat, occurs in a great
number of pop songs. This approximation yields a fin-
gerprint which consists in sequences of indexes to a
set of sound classes representative of a collection of
recordings. The sound classes are estimated via unsu-
pervised clustering and modeled with Hidden Markov
Models (HMMs). Statistical modeling of the signal’s
time course allows local redundancy reduction. The
fingerprint representation as sequences of indexes to
the sound classes retains the information on the evolu-
tion of audio through time.

In [5], discrete sequences are mapped to a dictionary
of error correcting words. In [19], the error correcting
codes are at the basis of their indexing method.

9. Similarity Measures and Searching Methods

9.1. Similarity Measures

Similarity measures are very much related to the type
of model chosen. When comparing vector sequences, a
correlation metric is common. The Euclidean distance,
or slightly modified versions that deal with sequences
of different lengths, are used for instance in [22].
In [8], the classification is Nearest Neighbor using a
cross entropy estimation. In the systems where the
vector feature sequences are quantized, a Manhattan
distance (or Hamming when the quantization is
binary) is common [4, 20]. Mihçak et al. [5] suggest
that another error metric, which they call “Exponential
Pseudo Norm” (EPN), could be more appropriate to
better distinguish between close and distant values
with an emphasis stronger than linear.

So far we have presented an identification frame-
work that follows a template matching paradigm [9]:
both the reference patterns—the fingerprints stored in
the database—and the test pattern—the fingerprint ex-
tracted from the unknown audio—are in the same for-
mat and are compared according to some similarity
measure, e.g: hamming distance, a correlation and so
on. In some systems, only the reference items are actu-
ally “fingerprints”—compactly modeled as a codebook
or a sequence of indexes to HMMs [7, 24]. In these
cases, the similarities are computed directly between
the feature sequence extracted from the unknown audio
and the reference audio fingerprints stored in the repos-
itory. In [7], the feature vector sequence is matched
to the different codebooks using a distance metric.
For each codebook, the errors are accumulated. The
unknown item is assigned to the class which yields
the lowest accumulated error. In [24], the feature se-
quence is run against the fingerprints (a concatena-
tion of indexes pointing at HMM sound classes) using
the Viterbi algorithm. The most likely passage in the
database is selected.

9.2. Searching Methods

A fundamental issue for the usability of a fingerprinting
system is how to efficiently do the comparison of the
unknown audio against the possibly millions of finger-
prints. A brute-force approach that computes the sim-
ilarities between the unknown recording’s fingerprint
and those stored in the database can be prohibitory. The
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time for finding a best match in this linear or sequential
approach is proportional to Nc(d( )) + E , where N is
the number of fingerprints in the repository and c(d( ))
the time needed for a single similarity calculation and
E accounts for some extra CPU time.

9.2.1. Pre-Computing Distances Off-Line. One can-
not pre-calculate off-line similarities with query fin-
gerprint because the fingerprint has not been previ-
ously presented to the system. How ever one can pre-
compute distances among the fingerprints registered
in the repository and build a data structure to reduce
the number of similarity evaluations once the query is
presented. It is possible to build sets of equivalence
classes off-line, calculate some similarities on-line to
discard some classes and search exhaustively the rest
(see for example [3]). If the similarity measure is a
metric, i.e. the similarity measure is a function that
satisfies the following properties: positiveness, sym-
metry, reflexivity and the triangular inequality, there
are methods that reduce the number of similarity eval-
uations and guarantee no false dismissals (see [29]).
Vector spaces allow the use of efficient existing spatial
access methods [30].

9.2.2. Filtering Unlikely Candidates with a Cheap
Similarity Measure. Another possibility is to use a
simpler similarity measure to quickly eliminate many
candidates and the more precise but complex on the
rest, e.g. in [31, 32]. As demonstrated in [30], in order
to guarantee no false dismissals, the simple (coarse)
similarity used for discarding unpromising hypothesis
must lower bound the more expensive (fine) similarity.

9.2.3. Inverted File Indexing. A very efficient
searching method is the use of inverted files indexing.
Haitsma et al. proposed an index of possible pieces of
a fingerprint that points to the positions in the songs.
Provided that a piece of a query’s fingerprint is free of
errors (exact match), a list of candidate songs and posi-
tions can be efficiently retrieved to exhaustively search
through [4]. In [6], indexing and heuristics similar to
those used in computational biology for the compari-
son of DNA are used to speed up a search in a system
where the fingerprints are sequences of symbols. Kurth
et al. [19] present an index that use code words ex-
tracted from binary sequences representing the audio.
Sometimes this approaches, although very fast, make
assumptions on the errors permitted in the words used
to build the index which could result in false dismissals.

9.2.4. Candidate Pruning. A simple optimization to
speed up the search is to keep the best score encoun-
tered thus far. We can abandon a similarity measure
calculation if at one point we know we are not going
to improve the best-so-far score (see for instance [3]).
Some similarity measures can profit from structures
like suffix trees to avoid duplicate calculations [1].
Miller et al. [27] propose a tree to avoid redundancies
in the calculation of the best-match in a framework built
on the fingerprint representation of [4]. Combining the
tree structure with a “best-so-far” heuristic avoids not
only current fingerprint similarity computation but also
all the fingerprints that have a common starting.

9.2.5. Other Approaches. In one of the setups of [33],
the repository of fingerprints is split into two databases.
The first and smaller repository holds fingerprints with
higher probability of appearance, e.g. the most popu-
lar songs of the moment, and the other repository with
the rest. The queries are confronted first with the small
and more likely repository and only when no match is
found does the system examine the second database.
Production systems actually use several of the above
depicted speed-up methods. Wang and Smith [33] for
instance, besides searching first in the most popular
songs repository, uses an inverted file indexing for fast
accessing the fingerprints along with a heuristic to fil-
ter out unpromising candidates before it exhaustively
searches with the more precise similarity measure.

10. Hypothesis Testing

This last step aims to answer whether the query is
present or not in the repository of items to identify.
During the comparison of the extracted fingerprint
to the database of fingerprints, scores (resulting from
similarity measures) are obtained. In order to decide
that there is a correct identification, the score needs to
be beyond a certain threshold. It is not easy to choose
a threshold since it depends on: the used fingerprint
model, the discriminative information of the query, the
similarity of the fingerprints in the database, and the
database size. The larger the database, the higher the
probability of wrongly indicating a match by chance,
that is a false positive. The false positive rate is also
named false acceptance rate (FAR) or false alarm rate.
The false negative rate appears also under the name of
false rejected rate (FRR). The nomenclature is related
to the Information Retrieval performance evaluation
measures: Precision and Recall [1]. Approaches to
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deal with false positives have been explicitly treated
for instance in [4, 18, 34].

11. Summary

We have presented a review of the research carried
out in the area of audio fingerprinting. Furthermore a
number of applications which can benefit from audio
fingerprinting technology were discussed. An audio
fingerprinting system generally consists of two com-
ponents: an algorithm to generate fingerprints from
recordings and algorithm to search for a matching fin-
gerprint in a fingerprint database. We have shown that
although different researchers have taken different ap-
proaches, the proposals more or less fit in a general
framework. In this framework, the fingerprint extrac-
tion includes a front-end where the audio is divided
into frames and a number of discriminative and robust
features is extracted from each frame. Subsequently
these features are transformed to a fingerprint by a fin-
gerprint modeling unit which further compacts the fin-
gerprint representation. The searching algorithm finds
the best matching fingerprint in a large repository ac-
cording to some similarity measure. In order to speed
up the search process and avoid a sequential scanning
of the database, strategies are used to quickly eliminate
non-matching fingerprints. A number of the discussed
audio fingerprinting algorithms are currently commer-
cially deployed, which shows the significant progress
that has been made in this research area. There is,
of course, room for improvement in the quest for more
compact, robust and discriminative fingerprints and ef-
ficient searching algorithms. It also needs to be seen
how the identification framework can be extended to
browsing and similarity retrieval of audio collections.

References

1. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, Addison Wesley, 1999.

2. S. Subramanya, R. Simha, B. Narahari, and A. Youssef,
“Transform-Based Indexing of Audio Data for Multimedia
Databases,” in Proc. of Int. Conf. on Computational Intelligence
and Multimedia Applications, New Delhi, India, Sept. 1999.

3. A. Kimura, K. Kashino, T. Kurozumi, and H. Murase, “Very
Quick Audio Searching: Introducing Global Pruning to the
Time-Series Active Search,” in Proc. of Int. Conf. on Compu-
tational Intelligence and Multimedia Applications, Salt Lake
City, Utah, May 2001.

4. J. Haitsma and T. Kalker, “A Highly Robust Audio Fingerprint-
ing System,” in Proceedings of the International Symposium
on Music Information Retrieval, Paris, France, 2002.
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