
Journal of VLSI Signal Processing 41, 225–234, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Processor Enhancements for Media Streaming Applications

S. BILAVARN
Signal Processing Institute, Swiss Federal Institute of Technology (EPFL)

E. DEBES
Architecture Research Lab, Intel

P. VANDERGHEYNST
Signal Processing Institute, Swiss Federal Institute of Technology (EPFL)

J.P. DIGUET
Lab. of Electronics and REal Time Systems, LESTER, University of South Britanny

Received March 3, 2003; Revised March 26, 2004; Accepted July 30, 2004

Abstract. The development of more processing demanding applications on the Internet (video broadcasting)
on one hand and the popularity of recent devices at the user level (digital cameras, wireless videophones, . . .)
on the other hand introduce challenges at several levels. Today, such devices present processing capabilities and
bandwidth settings that are inefficient to manage scalable QoS requirements in a typical media delivery framework.
In this paper, we present an impact study of such a scalable data representation optimized for QoS (Matching
Pursuit 3D algorithms) on processor architectures to achieve the best performance and power efficiency. A review
of state of the art techniques for processor architecture enhancement let us expect promising opportunities from
the latest developments in the reconfigurable computing research field. We present here the first design steps of
an efficient reconfigurable coprocessor especially designed to cope with future video delivery and multimedia
processing requirements. Architecture perspectives are proposed with respect to low development cost constraints,
backward compatibilty and easy coprocessor usage using an original strategy based on a hardware/software codesign
methodology.

Keywords: video coding, matching pursuit, multimedia processing, reconfigurable coprocessor, software
profiling, hardware design space exploration, codesign

1. Introduction

With the joint evolution of networking and digital cod-
ing technologies, video streaming on the internet is
likely to be one the major consumer of the new infor-
mation networks. The recent popularity of portable and
handheld devices provides heterogeneity in terms of de-
coder settings (processing power, bandwidth) that have
to be balanced first by an efficient visual data repre-

sentation, and second by suited processor capabilities.
To cope with this heterogeneity, future standards will
have to be scalable in order to deliver several Quality
of Services (QoS) within the same video stream. The
unavoidable counterpart of this is to enhance processor
execution in order to achieve the best video quality, real
time decoding and power efficiency. In this paper, we
address such an optimization study using representa-
tive algorithms in the field of video coding (Matching

226 Bilavarn et al.

Pursuit 3D algorithms currently under research at
EPFL) well-known to be a computationally demand-
ing challenge in multimedia processing, and derive
architectural issues on general purpose microproces-
sors. Until now, instruction set extension and dedicated
hardware have been the most popular approaches to
enhance a microprocessor execution for a given ap-
plication or class of applications. Today, the maturity
reached by reconfigurable technologies allows to ex-
plore new promising possibilities. Basically, a recon-
figurable hardware unit can be efficiently used to ex-
ecute many computational intensive kernels while the
remaining parts of the algorithm executes on the gen-
eral purpose core. In the following, we explore the rele-
vance of a reconfigurable hardware solution to enhance
future multimedia processing at low design costs.

The outline of the paper is the following: first, a re-
view of state of the art techniques in the field of proces-
sor optimization is presented. Then we present an orig-
inal method for tuning the original GPP architecture
towards the application domain using a reconfigurable
coprocessor solution. The strategy, which is based on
the study of representative algorithms in the intended
domain, will lead to derive some architecture impacts
and define a first architecture template. Finally, future
developments are presented.

2. Processor Architecture Enhancements

2.1. Optimization Techniques

Given the algorithmic complexity evolution expected,
the design of efficient architectures will be a key chal-
lenge for the near future. As an illustration, the com-
plexity of a Matching Pursuit decoder, which is a new
standard for scalable video coding, is about 100×
higher than a Discrete Wavelet Transform for the same
resolution level. The combination of this and the grow-
ing number of wireless and portable devices with low
processing capabilities introduce a need for perfor-
mance and power optimization. A lot of research is
being conducted in this field; we present here a survey
of the different trends, illustrated by some examples in
the field of digital signal processing.

There are several ways to optimize programmable
processors. Typical optimization schemes are based on
specializing/adapting a given architecture to achieve
better processing efficiency. Most of the techniques
used rely on some kind of parallelization technique that

can take place at several levels, from the instruction to
the task level. The most popular approach addresses
Instruction Level Parallelism (ILP): the architecture is
tuned to the considered application domain by intro-
ducing specialized execution units and the instructions
associated. Instruction set extensions consists then in
detecting clusters of operations (sequences of instruc-
tions/recurrent patterns) that will lead to the definition
of function specific blocks. Those specific units are
then added to the datapath of a CPU and, usually, ex-
ploited using VLIW (Very Long Instruction Word) in-
structions. Several simultaneous operations are packed
this way into a single VLIW instruction resulting in
sensitive execution speedups. The extensive use of this
technique have shown it outperforms general purpose
processors both in cost, performance and power con-
sumption. An alternative technique exploits data level
parallelism with a well-known application to PC mi-
croprocessor being the Intel MMX technology [1]. The
SIMD (Single Instruction Multiple Data) technique en-
ables one instruction to perform the same operation on
multiple data elements in parallel: 8 simultaneous 8-
bits operations, 4 simultaneous 16-bits operations or
2 simultaneous 32-bits operations, for MMX Instruc-
tions. Thus it exploits the data parallelism inherent to
multimedia processing and produces full application
performance of 1.5 to 2 times faster than the same ap-
plications run on the same processor without MMX.

However, such techniques may not always be suffi-
cient and further parallelization may be needed in or-
der to meet higher power/performance constraints. En-
abling concurrency at higher levels (functional/task)
requires the design of a multi-processor system. To-
day, System on Chip (SoC) design makes the integra-
tion of several processors on the same die feasible, re-
ducing drastically the delay and power consumption
costs due to data transfers. Traditional heterogeneous
solutions are based on GPP(s) augmented with dedi-
cated (co-)processor(s). For example, some works in
the field of wireless applications have naturally ex-
plored the combination of a general purpose architec-
ture with a Digital Signal Processor [2]. The aim of
this type of architectures is to benefit from the high
processing power/low power consumption on the DSP
side to provide maximum performance without sacri-
ficing battery power.

Further efficiency may be achieved using dedicated
hardware to perform the co-processing of specific tasks.
This approach have been carried out in [3] for exam-
ple, where a specific co-processor has been designed

Processor Enhancements for Media Streaming Applications 227

for rendering of MPEG-4 compliant video scenes.
Basically, dedicated hardware presents the most ef-
fective way to optimize the overall cost-performance
trade-off and to reduce power consumption. But, the
efficiency of a hardware solution is at the expense of
flexibility, as it is necessary to develop a new ASIC to
implement changes or upgrades. That’s the reason why
a programmable solution is preferred.

Recently, reconfigurable computing introduced a
new issue to this problem, combining a GPP with re-
configurable hardware. First systems were naturally
based on FPGAs, and some works have shown very
interesting results. In [4] for example, a VLIW reconfig-
urable processor has been tested on signal processing
algorithms and showed speedups from 4.3x to 13.5x
and energy consumption reduction up to 92%. Other
examples have shown interesting results, like the Garp
architecture [5] that combines a MIPS processor with
reconfigurable hardware to accelerate loops of general-
purpose software applications. Although these results
are promising, optimizations are still possible in par-
ticular concerning the interconnection overhead. The
main argument is that FPGAs waste a lot of energy
because of the programmable network: a power break-
down of the FPGA shows that 65% of the power con-
sumption is associated with the interconnect [6].

The search of an optimal tradeoff between efficiency
and flexibility has led to an increase of the architecture
granularity that have been made possible by the evolu-
tion of SoC size.

Decreasing the number of transistors used for device
configuration reduces energy consumption and recon-
figuration times [7]. Of course, this results in a loss of
generality, but achieving low reconfiguration times has
introduced a new interesting feature: the possibility of
dynamic configuration (e.g. at run time) that have led
to the emergence of a new research area focussing on
Adaptive Computing Systems.

Adaptive computing systems introduce a new
promising design alternative, and this technology pro-
vides several benefits. Adaptive systems offer the po-
tential for realizing cost effective systems as well as
providing adaptability to changing system require-
ments, at run time. For example, a convolution is
mapped onto a combination of memory, multipliers
and accumulators. The same modules can be used in a
different configuration to compute for instance a Fast
Fourier Transform (FFT). This way, reconfigurability
could bring the flexibility necessary to handle a vari-
ety of multimedia services and standards or to operate

in dynamic application and communication environ-
ments. Several works in this field have explored the
relevance of a matrix of ALUs to provide parallel pro-
cessing capabilities [8–10]. Those projects report the
best accelerations potential on typical benchmarks, but
the impact on the design effort and the resulting cost
overhead is prohibitive in a perspective of high diffu-
sion consumer electronics. A low cost development is-
sue ensuring moreover backward compatibility is pos-
sible by minimizing the modifications of an existing
general purpose architecture.

2.2. Optimization Strategy

As we target general purpose processors intended for
consumer use, one of our main concern is to define a so-
lution ensuring backward compatibility with previous
existing architectures and algorithms. For that reason,
we chose to explore the efficiency of a co-processor
solution, as it does not introduce a lot of time overhead
for microarchitecture design and tool set development.
The co-processor simply connects the system bus and
may be exploited by mean of an extension of the in-
struction set. The strategy used to design the reconfig-
urable hardware is derived from a hardware/software
codesign methodology and is presented in Fig. 1.

A thorough application study is used to (1) identify
critical processing functions in the application using
a profiling step and (2) analyze parallelism i.e. sev-
eral processing requirements (number, type and width
of execution units) vs execution time tradeoffs. The
first point allows to extract a set of critical functions
(bottlenecks) that may be good candidates for hard-
ware acceleration. For those hardware functions, a fast
Design Space Exploration technique is used to high-
light the acceleration potential for several processing
requirements. The methodology used for (2) is based
on the Design Space Exploration methodology de-
scribed in [11]. This method has been followed to guide
the coprocessor design towards an optimal applica-
tion/architecture matching. In particular, it allows very
fast parallelism exploration from early specifications
(C description) without the need of any time consum-
ing hardware synthesis step. For a given specification,
several area/performance tradeoffs related to differ-
ent implementation opportunities (loop unrolling and
folding, scheduling, binding) are evaluated. This par-
allelism exploration process does not consider the data
transfer and reconfiguration times overhead, the tim-
ing values correspond to estimations that are computed

228 Bilavarn et al.

Figure 1. Design space exploration strategy: an application analysis at the system level based on a codesign methodology.

using FPGA libraries. We assume here fast data trans-
fers and low reconfiguration times, issues concerning
those aspects will be tackled in a second phase. From
this point of view, local speedups are derived to give
a measure of the relative enhancement compared to
a sequential (software) execution. Global speedups re-
port the global algorithm execution enhancement when
functions are mapped onto the reconfigurable hard-
ware (3). The set of information obtained (speedup
vs processing requirements) is used to discuss oppor-
tunities on the co-processor design/usage and derive
some architectural impacts more suited to the design
constraints and application domain requirements. The
latter are analyzed in the following, with a special em-
phasis on scalable video coding using Matching Pursuit
3D algorithms, currently under development at EPFL.

3. Application Study: Matching Pursuit

3.1. Matching Pursuit Algorithm Overview

MP3D coding [13] is based on the use of an approx-
imation algorithm known as Matching Pursuit (MP).
MP generates a naturally scalable decomposition of
the video signal. This decomposition is then efficiently
coded and transmitted to the clients. MP [14] tries to

capture the spatio-temporal structures that are present
in a sequence of 3-D space-time signal I (x, y, t). It
approximates the signal by a linear combination of
generalized waveforms tuned to match the requested
structures and selected among a vast library:

I =
N−1∑

i=0

ci gγi . (1)

where gγ is a function (i.e. an atom), and the set of
all the atoms is referred to as a dictionary D. MP pro-
vides an interesting generic solution to (1) by itera-
tively decomposing the signal using a greedy strategy.
The set of atoms that composes the dictionary are tuned
to best represent the video signal. The atoms are com-
posed of separable 2D spatial functions and tempo-
ral functions. First, the spatial functions are spanned
from two mother functions: a 2-D Gaussian function
g1(x, y) = 1√

π
e−(x2+y2) and its 2nd partial derivative

g2(x, y) = 2√
3π

(4x2 − 2)e−(x2+y2) by shifting, orient-
ing, and scaling them. The function g1(x, y) repre-
sents the low-frequencies of the image whereas g2(x, y)
deals with the discontinuities which are edges and con-
tours. Second, the temporal functions are generated
from β-spline β3(t) function by shifting and scaling it.
β-spline is a smooth function that fits the motion model

Processor Enhancements for Media Streaming Applications 229

Table 1. Profiling results of the decoder subfunctions on a Pentium
III mobile processor.

Function Execution time (sec) Distribution (%)

Total 6.01 –

ComputeNorm 4.25 70.7

SetPixelValue 0.76 12.6

DecodeVideo 0.99 16.5

Others 0.01 0.2

present in a video sequence. Those mother functions
are used to generate the intermediate atom represen-
tations based on 3 dimensional arrays (atom[x][y][t])
used in the coding/decoding process. Compression per-
formance is achieved through the set of coefficients ci

and indexes γi (7 parameters for each atom are used
in video coding). The coding structure obtained allows
progressive video reconstruction and quality when the
number of atoms increases.

3.2. Decoder Study

MP Decoding is an iterative process over the atoms per-
formed in 3 steps: (1) Atom array construction from the
indexes γi (function ComputeNorm), (2) atom normal-
ization (function SetPixelValue) where all pixels are
divided by the atom norm value and (3) video recon-
struction (function DecodeVideo) performed using a
simple MAC scheme. Profiling results obtained on a
Pentium 3 mobile processor are presented in Table 1.

Functions SetPixelValue and DecodeVideo are rele-
vant candidates for hardware acceleration because they
are based on parallel divisions (that can be replaced
by parallel multiplications in this case) and MAC pat-
terns that are current computation schemes and can be

Figure 2. Decoder speed up estimation.

reused for other DSP algorithms. For those two func-
tions, hardware design space exploration using [11]
have led to the results reported in Fig. 2. The process-
ing requirements correspond to the number of execu-
tion units allocated, i.e. number of MACs for video
reconstruction and number of dividers for atom nor-
malization.

The local speedup values show the important accel-
eration potential (up to a value of 430 using 256 MAC
units for video reconstruction, and 330 for atom nor-
malization using 256 divider units). Even though such
configurations of 256 MACs/dividers are not realistic,
lowest configurations still exhibit speedup potential of
several orders of magnitude. To give an idea of the
related enhancement on the full algorithm execution
time, global speedups have been computed and does
not exceed a value of 1.41.

This can be explained by Amdahl’s law [12] be-
cause of the remaining software functions executing
on the GPP, especially the ComputeNorm bottleneck
as it represents more than 70% of the total decoding
time.

Consequently, one would like to speed up execution
by executing this bottleneck (function ComputeNorm)
on the coprocessor. But the computing complexity
of this function (due to the generating functions of
Section 3.1) makes it difficult to implement the entire
loop kernel without a strong impact on the architec-
ture complexity, instruction design and reconfiguration
times. Optimization with several instructions present-
ing low complexity and thus a higher reuse potential
is a low cost solution: simple instructions are easy to
configure more reusable, and allow to address the opti-
mization of complex loop kernels. This shows the im-
portance of defining a high reusable instruction set that
maximizes the optimization potential, coprocessor use

230 Bilavarn et al.

Figure 3. Encoder speed up estimation.

and thus the acceleration potential, as will be explained
in Section 4.

3.3. Encoder Study

Encoding consists in finding the best atom subset that
will maximize video quality and compute the respec-
tive coefficients. For a given MP iteration, computing
the scalar product of the current residual term with all
possible atoms performs best atoms selection. To re-
duce the processing complexity, this computation is
achieved in the frequency domain. FFT and Inverse
FFT are intensively used (only the Inverse FFT repre-
sents 21% of the overall computations), so an efficient
implementation is important for this application.

In order to analyze some execution benefits, we have
considered several possibilities of hardware implemen-
tation of an FFT. Figure 3 reports the exploration results
on a 128 × 128 FFT, and its impact on the global en-
coding time. The processing requirements correspond
to the number of FFT butterflies (4 mult, 2 add, 2 sub)
allocated. Like in the case of the decoder analysis, local
speedups show a very important acceleration potential
(up to 488) while the global acceleration remains be-
low a value of 1.3 because of the software processing
left unoptimized. Like in the case of the decoder, fur-
ther enhancement is possible thanks to the definition of
high reuse potential instructions (Section 4).

4. Architecture Impacts

4.1. Architecture Design Constraints

As stated previously, the considered architecture is
based on a general purpose processor tightly coupled

with a reconfigurable hardware. The coprocessor is
dedicated to the acceleration of many computation-
ally intensive tasks common in DSP processing using a
coarse grain matrix of DSP ressources called Process-
ing Elements (PEs) and connected to a programmable
interconnect network. Given this, fast data transfers and
low reconfiguration times are essential conditions to
exploit the inherent parallelism potential of this struc-
ture. Issues concerning the processing requirements of
PEs, memory bandwidth and reconfiguration to design
a relevant and workable system reconfigurable at run
time are addressed in the following.

Previous application study of MP algorithms have
led to identify a set of critical functions for which a
simple hardware implementation is possible.

But on the other hand, the implementation of some
complex functions or loop kernels creates two main
issues at the system level. First, the complexity of a
function impacts the ability to perform easy and fast
reconfiguration. Complex mechanisms are required in
this case like using partial reconfiguration support or
configuration caches, or to perform dynamic task al-
location and configuration loading. The impact on the
design cost is high in this case. The second limitation
concerns the development tools, in particular the defini-
tion of an efficient compiler considering reconfigurable
hardware specificity (in particular, parallelism explo-
ration). This is an issue that is currently addressed in
the research community. Hardware configuration re-
quires design expertise and complex synthesis proce-
dures (high level and logic synthesis, placement & rout-
ing) beyond the knowledge of most programmers. The
need of mature development tools limits strongly the
scope of applications.

Fortunately, multimedia computing exhibits prop-
erties that may be efficiently used to define a simple

Processor Enhancements for Media Streaming Applications 231

Table 2. Class of algorithms suited for coprocessor implementa-
tion.

Function Specification equation

DCT X (k) = α(n)
∑N−1

n=0 x(n).cos
[

π (2n+1)k
2N

]

FFT X (k, f) = ∑N−1
n=0 x(n).e− j2πkn/N

Filters X (k) = ∑
bn .x(k − n)

Convolution (x ∗ y)(k) = ∑+∞
n=−∞ x(n).y(k − n)

Correlation (x ◦ y)(k) = ∑+∞
n=−∞ x(n).y(k + n)

Sqrt
√

z == ∑∞
n=0

[(−1
2

)
n

(1−z)n)
n!

]

Log log(z) = ∑∞
n=1

(−1)k−1(z−1)k

k

Exp ez = ez0
∑∞

n=0
(z−z0)

k! at z == z0

usage without too much performance impact. The idea
is to exploit the high data parallelism, high memory
bandwidth and recurrent computation patterns require-
ments, well-known characteristics of multimedia com-
puting, by restricting the coprocessor usage to short
sequences of operations on parallel datastreams. As
a consequence, we consider a row configuration of
the matrix, where each row allows to chain a lim-
ited number of operations. This configuration enables
the execution of several datastreams in parallel, each
row corresponding to the processing of a datastream.
The resulting simplicity achieves faster configuration,
which is expected to be a few number of clock cycles.
To address the compilation problem, we use a simple
ILP approach and we extend the original instruction
set of a GPP with high parallelism instructions based
on common operations in DSP processing (like mul-
tiply/add/sub/accumulate used in FPGA DSP blocks).
Thanks to this, the coprocessor can help the implemen-
tation of a wide class of DSP kernels such as the ones
presented in Table 2.

The resulting instruction set is based on the chaining
of multiply, add, subtract and accumulate operations.

To illustrate the usage potential, a multiply accu-
mulate instruction can be configured to speedup fil-
tering and convolution computations, or an add mul-
tiply add instruction for a lifting scheme process in a
Discrete Wavelett Transform. DCT and FFT execution
can be optimized with butterfly patterns as they are
based on multiply, add and subtract operations. Arith-
metic functions can also be addressed like for instance
a power function using several multiplications in cas-
cade. The great number of possible instructions allows
to maximize the coprocessor usage, thus the achievable
speedup, but also to address the optimization of criti-
cal computation kernels executing on the software part.

This is the case of the function ComputeNorm which is
an important processing bottleneck in MP algorithms.
The numerous arithmetic computations related to the
generating equations (Section 3.1) can be efficiently
addressed using combinations of chained mul/add/sub
operations.

4.2. Processing Requirements

As stated previously, multimedia computing makes
large use of multiplication operations, addition and
subtraction, and summation, all of which are common
arithmetic operations in DSP functions. The process-
ing requirements of MP subfunctions (x axis of Figs. 2
and 3) exhibit such computation patterns at a 32-bit
fixed point arithmetic granularity (e.g. MAC scheme
for function DecodeVideo, FFT butterflies based on
mul/add/sub operations). To cope with this constraint
and to enable transparent interface with the proces-
sor data representation, we consider that PEs are com-
posed of 32-bit execution units (Fig. 4). Setting the
granularity level to 32-bit allows to reduce the com-
plexity of the interconnect that has a great impact on
reconfiguration times and power consumption. As a
result, a PE includes a dedicated multiply unit and an
add/subtract/accumulate unit. The use of dedicated ex-
ecution units (multipliers in particular) is expected to
bring more performance and better energy efficiency.

Embedded memories are used to feed PEs with their
respective operand sets and allows stand alone copro-
cessing. Given this, efficient schemes have to be used
in order to reduce the data transfer overhead which is
known to be a critical issue in multimedia processing.

4.3. Memory Bandwidth

To enable concurrent processing of rows, an efficient
scheme for simultaneous memory accesses is defined
in order to keep the speedup benefits expected. A high
bandwidth bus feeds several PEs in parallel with their
operand sets. A 256-bit bus is used and allows to trans-
fer 8 words simultaneously as we process 32-bit data.
If we allow to chain a maximum of 3 operations, the
resulting matrix structure is set to 8 rows of 3 PEs. As a
result, the matrix may implement any combination pat-
tern in a limit of 3 chained operations max, which have
been shown to be the optimal number of chained oper-
ations in the digital signal processsing domain [15]. A
pipeline schedule of operations can be applied to reach
an optimal hardware acceleration.

232 Bilavarn et al.

Figure 4. Processing Elements are configurable blocks based on 32-bit multiply and add/sub dedicated units. Embedded memories are used to
enable stand alone processing on the coprocessor side. A predefined interconnect path is used to simplify the reconfiguration process.

With this 8×3 configuration, the achievable speedup
can still reach values between 10 and 20 according to
the timing estimations of Fig. 2. To address the data
transfer overhead problem, a Direct Memory Access
(DMA) module is added to allow for efficient bulk data
transfers (Fig. 5). We remove this way the CPU from the
datapath and enable true concurrent execution with the

Figure 5. The coprocessor is based on a reconfigurable matrix of
Processing Elements and embedded memories tightly coupled with
the CPU. The DMA module allows fast data transfers and concurrent
execution of the processors.

coprocessor for even better efficiency. Another DMA
advantage is to provide time for the CPU to perform
reconfiguration during data transfers.

4.4. Reconfiguration

A simple scheme is defined for memory configuration:
each memory is made accessible through its address-
able space and always remains connected to the same
PE, except for the result memory that may be con-
nected to the first, second or third PE, according to the
number of chained operations in the current instruction
to configure. This way, we get rid of memory config-
uration problems (how to connect dynamically to the
bus? dynamic memory size configuration? address gen-
eration?) and simplify the reconfiguration process. A
reduced set of predefined path is defined for fast con-
figuration of the interconnect. The predefined path is
designed to enable the combination of any chained op-
erations. This greatly simplifies the coprocessor usage,
the reconfiguration and the instruction design: the co-
processor can be accessed like a memory R/W oper-
ation as each memory always keeps the same address
space and processing is started when writing a specific
address. The coprocessor configuration simply consists

Processor Enhancements for Media Streaming Applications 233

in parameterizing the instructions with the operation to
chain (that may be contained in a configuration word)
which configures the processing resources and number
of data to process.

As we ought to use the coprocessor for regular pro-
cessing (concurrrent sequences of a limited number of
operations), relatively few control is needed. A generic
sequencer for the pipeline schedule of 1, 2 or 3 opera-
tions is easy to derive as we do not need to configure
the memories any more. The sequencer is then simply
parameterized by the number of data to process (loop
index) and the number of chained operations.

Given this, configuration of the matrix consists in
writing the memories with their respective operand
sets, configure PE operations, predifined paths and con-
troller. The configuration steps are expected to be very
fast and can be achieved during the DMA write opera-
tion. Then, operations are executed in the coprocessor
and results are sent back to the processor memory. Dur-
ing that time, the CPU is fully available for software
processing.

5. Conclusion/Future Works

In this paper, we have presented an optimization study
of general purpose processors for future media process-
ing. A thorough application domain study has been per-
formed using representative algorithms in the field of
media delivery and considering typical DSP process-
ing. A fast exploration and estimation methodology for
the codesign of SoCs has been used to analyze the im-
pacts of the hardware functions parallelism. Solutions
have been proposed both for the coprocessor architec-
ture and usage to cope with the application domain and
hardware reconfiguration requirements to achieve an
efficient run time reconfigurable system. With this sys-
tem, speedups are expected to reach values between 10
and 20.

Future research will focus on the implementation of
a working prototype. The environment chosen for pro-
totyping combines an embedded processor core with
reconfigurable hardware [16] that will allow to check
the relevance of such an architecture and to report pre-
cise values about the achievable speedup and power
savings.

References

1. A. Peleg and U. Weiser, “MMX Technology Extension to the
Intel Architecture,” IEEE Micro, vol. 16, no. 4, 1996, pp. 42–50.

2. J. Chaoui, K. Cyr, J.P. Giacalone, S. Gregorio, Y. Masse, Y.
Muthusamy, T. Spits, M. Budagavi, and J. Webb, “OMAP : En-
abling Multimedia Applications in Third Generation (3G) Wire-
less Terminals,” SWPA001, December 2000.

3. C. Heer, C. Miro, A. Lafage, M. Berekovic, G. Ghigo, T.
Selinger, and K.I. Wels, “Design and Architecture of the MPEG-
4 Video Rendering Co-Processor TANGRAM,” ICECS 99,
Cyprus.

4. A. Lodi, M. Toma, F. Campi, A. Cappelli, and R. Guerrieri, “A
Pipelined Configurable Gate Array for Embedded Processors,”
FPGA ’03, Feb. 2003, Monterey.

5. T.J. Callahan, J.R. Hauser, and J. Wawrzynek, “The GARP Ar-
chitecture and C Compiler,” IEEE Computer, vol. 33, no. 4,
2000, pp. 62–69.

6. V. George, Hui Zhang, and J. Rabaey, “The Design of a Low
Energy FPGA,” ISPLED 1999, San Diego, 1999, pp. 188–193.

7. J.M. Rabaey, “Reconfigurable Processing: The Solution to Low-
Power Programmable DSP,” in Proc. Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP ’97), April 1997.

8. S. Keckler and D. Burger, “A Design Space Evaluation of Grid
Processor Architectures,” in 34th Annual International Sympo-
sium on Microarchitecture (MICRO), December 2001.

9. J. Helmschmidt, E. Schüler, P. Rao, S. Rossi, S. di Matteo, and
R. Bonitz, “Reconfigurable Signal Processing in Wireless Ter-
minals,” DATE 2003: PACT XPP Technologies, Accent, ST Mi-
croelectronics.

10. http://chameleon.ctit.utwente.nl/overview/main.html
11. S. Bilavarn, “An Estimation and Exploration Methodology from

System Level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

12. G.T. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” in Proc. AFIPS
Conf., vol. 30, 1967, p. 483.

13. A. Rahmoune, P. Vandergheynst, and P. Frossard, “MP3D:
Highly Scalable Video Coding Scheme Based on Matching Pur-
suit,” to be published IEEE ICASSP, 2004.

14. S. Mallat and Z. Zhang, “Matching Pursuits with Time-
Frequency Dictionaries,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 12, 1993, pp. 3397–3415.

15. M. Arnold and H. Corporaal, “Designing Domain-Specific Pro-
cessors,” in Proceedings of the Ninth International Symposium
on Hardware/Software Codesign, 2001.

16. http://www.altera.com/products/devkits/altera/kit-nios 1S40.
html

Sebastien Bilavarn received the M.S. degree from Rennes
University (France) in 1998 and the PhD degree in Electrical En-
gineering from South Brittany University in 2002. Since June 2002,
he works as a post-doc fellow at Signal Processing Institute, Swiss

234 Bilavarn et al.

Federal Institute of Technology (EPFL). Sebastiens research interests
include design methodologies for embedded systems, reconfigurable
computing and Digital Signal Processing. Currently, his work focuses
on using Adaptive Computing Systems to optimise computer archi-
tectures, which is a collaboration with the Architecture Research Lab
of the System Technology Labs, Intel Corporation.
sebastien.bilavarn@epfl.ch

Eric Debes received a M.S. in Electrical and Computer Engineer-
ing from Supélec, France in 1996, a M.S. in Electrical Engineering
from the Technical University Darmstadt, Germany in 1997 and a
PhD in Signal Processing from the Swiss Federal Institute of Tech-
nology. Since 2001 he has been a Researcher in the Architecture
Research Lab of the System Technology Labs, Intel Corporation,
Santa Clara, California. Erics research interests include image and
video coding and processing algorithms as well as computer archi-
tecture and parallelism. At Intel he has been working together with
different processor teams and microarchitecture research groups on
the definition of new media and communication features (includ-
ing new SIMD and streaming instructions, multicore processors and
low-power architectures) in the CPU and the chipset to provide better
media application performance and end user quality of service with
a given system and processor power envelope and/or energy budget.
More recently Eric has been working on system-on-chip modelling,
processor and system power estimation and architecture design space
exploration for consumer electronics applications. He is a member
of the IEEE, of the ACM and of the SPIE.
eric.debes@intel.com

Pierre Vandergheynst received the M.S. degree in physics and the
Ph.D. degree in mathematical physics from the Université catholique

de Louvain, Belgium, in 1995 and 1998 respectively. From 1998 to
2001, he was a Postdoctoral Researcher with the Signal Process-
ing Laboratory, Swiss Federal Institute of Technology (EPFL), in
Lausanne, Switzerland. He is now an Assistant Professor of Visual
Information Processing at EPFL, where is research focuses on com-
puter vision, data processing and mathematical tools for visual in-
formation processing. Prof. Vandergheynst is Co-Editor-in-Chief of
Signal Processing and member of the IEEE.
pierre.vandergheynst@epfl.ch

Jean-Philippe Diguet received the M.S degree and the PhD degree
from Rennes University (France) in 1993 and 1996 respectively. His
thesis focused on the estimation of hardware complexity and algo-
rithmic transforms for architectural synthesis. Then he joined the
IMEC in Leuven (Belgium) where he worked as a post-doc fellow
on the minimization of the power consumption of memories at the
system-level. From 1997 to 2002, he has been an associated professor
at the South Brittany University and member of the LESTER labora-
tory. In 2003/04, he has initiated and created an innovating company
in the domain of short range wireless communications. In 2004, he
obtains a CNRS researcher position. His current work focuses on
design space exploration of embedded systems, real-time schedul-
ing in the context of hardware/software architecture configurations.
Within the LESTER laboratory, he heads the “Design Trotter” team
focusing on EDA methods and tools.
jean-philippe.diguet@univ-ubs.fr

