
HAL Id: ensl-00086852
https://ens-lyon.hal.science/ensl-00086852

Submitted on 28 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex Square Root with Operand Prescaling
Jean-Michel Muller, Milos Ercegovac

To cite this version:
Jean-Michel Muller, Milos Ercegovac. Complex Square Root with Operand Prescaling. Application-
Specific Systems, Architectures and Processors, 2004., Joseph Cavallaro and Lothar Thiele (general
chairs), Sep 2004, Galveston, Texas, United States. pp.52-62, �10.1109/ASAP.2004.1342458�. �ensl-
00086852�

https://ens-lyon.hal.science/ensl-00086852
https://hal.archives-ouvertes.fr

Complex Square Root with Operand Prescaling

Miloš D. Ercegovac
Computer Science Department, 3732 Boelter Hall

University of California at Los Angeles
Los Angeles, CA 90095, USA

milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire CNRS-ENSL-INRIA-UCBL LIP

Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, FRANCE

Jean-Michel.Muller@ens-lyon.fr

Abstract

We propose a radix-r digit-recurrence algorithm for complex square-root. The operand is prescaled
to allow the selection of square-root digits by rounding of the residual. This leads to a simple hard-
ware implementation. Moreover, the use of digit recurrence approach allows correct rounding of
the result. The algorithm, compatible with the complex division, and its design are described at a
high-level. We also give rough comparisons of its latency and cost with respect to implementation
based on standard floating-point instructions as used in software routines for complex square root.

1 Introduction

1.1 Complex square-root

Complex square-root appears in numerical computations such as complex Givens rotation [3],
complex singular value decomposition [1, 11, 23], and in applications such as principal component
analysis [7], quantum defect theory [17] and wave propagation [21].

Complex square-root operation is commonly implemented in software based on various algo-
rithms developed for reliable and accurate evaluation in languages like FORTRAN 90 [12]. There
are also collections of Fortran routines for multiple-precision complex arithmetic which include
complex square-root [22]. These implementations rely on standard floating-point instructions and,
consequently, their execution time is significantly longer than that of a single arithmetic instruction.
In today’s processors it is quite common to have hardware implementation of all basic operations
on real fixed/floating-point operands. To our knowledge, there are no implementations of complex
square-root at the hardware level on conventional processors. The only hardware implementation
of complex arithmetic, including square-root, we are aware of is an FPGA implementation due to
McIlhenny [14], who used an adaptation of on-line arithmetic to (1). With a rapid increase in ca-
pacity of integrated circuits, it is timely to consider hardware-based implementation of an extended

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

set of operations. In this research we focus on hardware-oriented algorithms and implementations
of operations on operands in the complex domain. In [10] we proposed and developed an algorithm
and its implementation for complex division compatible with a standard radix-r digit-recurrence
division scheme. In this paper we extend our approach to complex square-root operation.

Since a nonzero complex number has two square roots, we will define
√

z as the square root
whose real part is positive when z is not a negative real number.

The simplest algorithm for evaluating a complex square root u + iv of x + iy, based on real
square roots, consists in successively computing

� =
√

x2 + y2

u =
√

(� + x)/2
v = ±√(� − x)/2

(1)

with sign(v) = sign(y) [2]. This algorithm is optimal in the algebraic sense, i.e., in the number of
exact operations +,−,×,÷,

√. However, it suffers from several drawbacks:

• x2 + y2 can overflow or underflow, even if the exact square root is representable, leading to
very poor results;

• 3 real square roots, 2 squares and 3 additions/subtractions are required. Even if this is “alge-
braically optimal”, this is quite costly and one could hope that a direct hardware implemen-
tation of complex square root could be better.

Another solution [19] is to first compute

w =



0 if x = y = 0√|x|
√

1 +
√

1 + (y/x)2

2
if |x| ≥ |y|

√|y|
√

|x/y| +√
1 + (x/y)2

2
if |x| < |y|

and then obtain

u + iv =
√

x + iy =


0 if w = 0
w + i y

2w if w �= 0 and x ≥ 0
|y|
2w + iw if w �= 0 and x < 0 and y ≥ 0
|y|
2w − iw if w �= 0 and x < 0 and y < 0

This avoids intermediate overflows at the cost of more computation including several tests, divi-
sions and real square roots which make the complex square root evaluation quite slow compared to
a single arithmetic instruction. Also, estimating the final accuracy is very difficult.

Kahan [13] gives a better solution, that also correctly handles all special cases (infinities, zeros,
NaNs, etc.), also at the cost of much more computation than the naive method (1).

The objective of this paper is to develop an algorithm similar to the usual digit-recurrence real
square-root algorithm [18, 8, 9], suitable for hardware implementation. For computing

√
x, this

algorithm uses the recurrence

w[j + 1] = rw[j] − 2sj+1S[j] − s2
j+1r

−j−1 (2)

2

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

where w[0] = x, and the quotient digits qj’s are chosen in a radix-r redundant digit-set, so that the
residual w[j] is bounded.

The main problem of digit-recurrence algorithms is to find a practical result-digit selection func-
tion for higher radices. Several approaches have been suggested for higher radix square-root digit
selection. In [4] the use of digit selection tables is analyzed and applied to the radix-4 case. The
hardware complexity of this approach grows rapidly with the radix. An alternative, applied to
higher radix digit-recurrence algorithms for division [8, 9], uses prescaling of the operands and
rounding of the truncated residual to achieve a feasible digit-selection function for higher radices.
This approach using prescaling and rounding has been also developed for higher radix square root-
ing [15, 16]. It consists of multiplying x by a constant K so that Kx is close to 1, and using
the standard residual recurrence to compute

√
Kx. The prescaling allows the selection of sj+1 by

rounding the residual w[j] to the nearest integer. For fast implementation, a truncated residual is
used. K is deduced from a few most significant bits of x. To simplify the multiplication K × x, it
is desirable to choose a low-precision value of K.

Throughout the paper, i is
√−1, and if z is a complex number, then �(z) and �(z) denote the

real and imaginary parts of z. The norm ||z||∞ denotes max{|�(z)|, |�(z)|}, whereas |z| denotes
the usual complex absolute value

√
(�(z))2 + (�(z))2.

2 Complex square-root algorithm

2.1 Basic iteration

Assume we wish to compute
√

d, where d is a complex number satisfying ||d||∞ < 2. We
consider a digit-recurrence algorithm that produces a radix-r representation of

√
d in the form

s0.s1s2s3s4 . . . with sj = sRj + sIj , where sRj and sIj are in the redundant digit set S = {−a,−a+
1, . . . , a} , a ≤ r − 1, and r is the radix.

Assume that we have already computed S[j] represented by s0.s1s2s3s4 . . . sj . The jth residual
is defined as

W [j] = rj
(
d − (S[j])2

)
(3)

From (3), we obtain the residual recurrence

W [j + 1] = rW [j] − 2sj+1S[j] − s2
j+1r

−j−1 (4)

which is the same recurrence as in the real case. It is important to note that, from (3), any choice of
the sj’s for which the W [j]’s remain bounded will ensure that S[j]2 → d. After separating the real
and imaginary parts of W [j + 1] in (4), we get

WR[j + 1] = rWR[j] − 2sRj+1S
R[j] + 2sIj+1S

I [j]
−
(
(sRj+1)

2 − (sIj+1)
2
)

r−j−1

W I [j + 1] = rW I [j] − 2sIj+1S
R[j] − 2sRj+1S

I [j]
−2sRj+1s

I
j+1r

−j−1

(5)

Selection of digits sRj+1 and sIj+1 so that WR[j +1] and W I [j +1] remain bounded is not obvious
and we now discuss our approach in obtaining a selection function.

Indeed, Fig 1 shows that, at least in some cases, choosing the “complex digits” sj+1 cannot be
done at a reasonable cost. However, we notice that:

3

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

Figure 1. The domain where the real part sR1 of digit s1 can be chosen equal to 1, assuming
s0 = 1 + 0 × i. This shows that prescaling is needed to simplify the digit selection.

• The terms
(
(sRj+1)

2 − (sIj+1)
2
)

r−j−1 and 2sRj+1s
I
j+1r

−j−1 decrease rapidly as j increases,
so that their influence can be neglected when choosing sj+1 after, possibly, a few first itera-
tions.

• If S[j] is close to 1 (i.e., if SR[j] is close to one and SI [j] close to zero), then WR[j + 1]
would be close to rWR[j]−2sRj+1 and W I [j +1] would be close to rW I [j]−2sIj+1, so that
a “natural” choice for sRj+1 would be the integer closest to 1

2rWR[j], and a “natural” choice
for sIj+1 would be the integer closest to 1

2rW I [j].

To make S[j] close to 1, we perform prescaling of the operand. This allows the iterations (4)
to start at step j0 > 1 and to use for the selection the “natural” choices presented above. For a
fast implementation of the iteration, we will use low-precision estimates of the shifted real and
imaginary residuals.

2.2 Prescaling

The prescaling part of the algorithm is similar to that of complex division [10]. Using an input
number x (for simplicity, we assume 1/2 ≤ ||x||∞ < 1), we obtain from a look-up table a complex
number K such that ||Kx − 1||∞ < 2−q, where q is a parameter of the square-root algorithm. We
then obtain d = Kx and use the digit-recurrence algorithm with selection by rounding to compute√

d. The table stores also precomputed values 1/
√

K, so that at the end of the computation we can
obtain the final result

√
x as √

x =
√

d ×
(
1/
√

K
)

.

The multiplication by 1/
√

K can be performed in parallel with the recurrence: as we compute a
new complex digit sj of

√
d, we accumulate sj × 1/

√
K in two registers, one for the real and

another for the imaginary part.
Using a direct table lookup, the prescaling step requires a table with 2q +1 address bits (see [10]

for details). For larger values of q the use of the bipartite method [5, 20] adapted to complex
functions [10] results in smaller tables.

After the prescaling step, we have d such that ||δ||∞ < 2−q, where δ = d − 1. Let us try to

bound
∣∣∣∣∣∣√d − 1

∣∣∣∣∣∣∞. Recall the Taylor expansion

√
d = 1 +

δ

2
− δ2

8
+

δ3

16
− 5δ4

128
+ · · · (6)

4

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

Define R and θ by δ = Reiθ. From δk = Rkeikθ, one gets ||δk||∞ ≤ Rk, and since R ≤√
2||δ||∞, we finally obtain ||δk||∞ ≤ 2k/2||δ||k∞ ≤ 2k/22−qk. Combining the last result with the

power series (6), we get

||
√

d−1||∞ ≤ 2−q

2
+

2 × 2−2q

8
+

2
√

2 × 2−3q

16
+

5 × 4 × 2−4q

128
+ · · · ≤ 2−q

2
+

2 × 2−2q

8
+2−3q.

In particular, for q > 2: ∣∣∣∣∣∣√d − 1
∣∣∣∣∣∣ < 9

16
2−q. (7)

Hence, there exists a radix-2 representation of
√

d that starts with

• for the real part:
1. 000 · · · 00︸ ︷︷ ︸

q zeros

• for the imaginary part:
0. 000 · · · 00︸ ︷︷ ︸

q zeros

These digits can be used to initialize S[j0] for some j0. More precisely, assume that the digits sj

are radix-r = 2k digits in the set {−a, . . . ,+a}. From (7), one can easily show that there exists a
representation of

√
d in this radix-r system that starts with

• for the real part:
1. 000 · · · 00︸ ︷︷ ︸

j0=�q/k� zeros

• for the imaginary part:
0. 000 · · · 00︸ ︷︷ ︸

j0=�q/k� zeros

if a
∑∞

i=j0+1 r−i ≥ 9
162−q, i.e.,

ar−j0

r − 1
≥ 9

16
2−q. (8)

Assume q = kj0 + �, with 0 ≤ � ≤ k − 1. Eq. (8) gives

a

r − 1
≥ 9

16
2−� (9)

The ratio a/(r− 1) = ρ is the redundancy factor which, for a redundant digit set {−a, . . . ,+a},
satisfies 1/2 < ρ ≤ 1. If � ≥ 1 the condition (9) can be satisfied for any r and a. For � = 0, the
condition requires that a > r/2, i.e., the minimally redundant system cannot be used.

2.3 Making the iterations work

We start the iterations from step j0 = �q/k	 since (8) is satisfied in all practical cases. The initial
values are 

SR[j0] = 1
SI [j0] = 0
WR[j0] = rj0(dR − 1)
W I [j0] = rj0(dI)

(10)

5

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

The selection function that returns the sj’s is as follows. We will choose sRj+1 as the integer closest
to the number constituted by 1/2rWR[j] truncated after the σ-th borrow-save position.1 We choose
sIj+1 as the integer closest to the value 1/2rW I [j] truncated after the σ-th borrow-save position.
This implies that ∣∣∣∣∣∣∣∣sj+1 − 1

2

∣∣∣∣∣∣∣∣∞ ≤ 1
2

+ 2−σ. (11)

For convergence of the algorithm, we have to :

1. bound ||W [j + 1]||∞, that is, bound |WR[j + 1]| and |W I [j + 1]|;
2. choose q and σ so that the selection function returns digits in the set {−a, . . . ,+a}.

Let us first bound ||W [j + 1]||∞. Denote S[j] = 1 + ε = 1 + εR + iεI . From (10), we get
||ε||∞ = max{|εR|, |εI |} < r−�q/k�. Since

WR[j + 1] =
(
rWR[j] − 2sRj+1

)
− 2sRj+1ε

R + 2sIj+1ε
I −

(
(sRj+1)

2 − (sIj+1)
2
)

r−j−1

we find
|WR[j + 1]| < 1 + 2−σ+1 + 4ar−�q/k� + a2r−j−1

< 1 + 2−σ+1 + 4ar−�q/k� + a2r−�q/k�−1

Similarly, from W I [j +1] =
(
rW I [j] − 2sIj+1

)
−2sIj+1ε

R−2sRj+1ε
I −2sRj+1s

I
j+1r

−j−1 we find

|W I [j + 1]| < 1 + 2−σ+1 + 4ar−�q/k� + 2a2r−�q/k�−12−q.
Therefore, we get the following bound

||W [j + 1]||∞ < 1 + 2−σ+1 +

(
4a + 2

a2

r

)
r−�q/k� = Ω (12)

Let us now determine conditions to assure that the real and imaginary parts of computed digits
sj+1 belong to {−a, . . . ,+a}. These digits are obtained by rounding to the nearest integer an
estimate with accuracy ±2−σ of a number whose absolute value can be as large as 1

2rΩ. To satisfy
|sj+1| ≤ a we must have

1
2
rΩ + 2−σ ≤ a +

1
2

(13)

Combining (12) and (13), we get:

Property 1 If

r

(
1
2

+ 2−σ +

(
2a +

a2

r

)
r−�q/k�

)
+ 2−σ ≤ a +

1
2

(14)

then the recurrence (5), initialized at step j0 = �q/k	 with the values defined in (10) returns a
representation of

√
d in radix r with digits in {−a, . . . ,+a} which can be selected by rounding the

residual estimate of σ fractional bits.

Table 1 gives parameters q and σ that satisfy (14), depending on r and a. Since the table required
by the prescaling step has 2q + 1 address bits, radices 2 and 4 are feasible. Higher radices will
require bipartite tables as discussed in [10]. The prescaling for the complex square root is the same
as for the complex division algorithm [10], thus simplifying implementation of a combined scheme.

1Adaptation to carry-save notation is straightforward.

6

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

Table 1. Parameters q and σ that satisfy (14), depending on r and a.

r a q σ

2 1 4 4
2 1 6 3
4 2 6 5
4 3 6 3
8 4 9 5
8 5 9 3
8 6 6 5
8 7 6 4
16 8 12 6
16 9 8 9
16 10 8 5
16 11 8 4
16 12 8 3
16 15 8 2

3 Implementation and Comparison with Other Methods

We are considering only the computation of the significand, ignoring exponent handling and
related adjustments to the argument. The argument is x = (xR, xI) and the result is z =

√
x =

(zR, zI) with the real and imaginary components in a fixed-point format. The overall scheme for
computing complex square root is outlined in Figure 2.

There are four main parts in the scheme: prescaling, recurrence evaluation, postscaling, and
on-the-fly conversion with rounding. The prescaling part uses a table lookup of the scaling factor
K = (KR, KI) and of the postscaling factor 1/

√
K = (CR, CI), and a complex multiplier to

obtain the scaled argument d = x × K. The postscaling factor is needed to obtain z from the
computed result as

√
d as z =

√
d × (CR, CI).

The real and imaginary residual recurrences can be implemented using a modified conventional
square-root recurrence. As discussed in [9], it is convenient to define the residual recurrence as

w[j + 1] = rw[j] + F [j] (15)

where
F [j] = −2S[j]sj+1 − s2

j+1r
−(j+1) (16)

Since s[j] digits are produced in signed-digit form, the partial result S[j] is also in signed-digit
form. Depending on the adder used, S[j] is converted to adapt to the adder. If a carry-save adder is
used, F has to be in two’s complement form. This conversion can be done on-the-fly. In this paper
we will assume that the adder is of a signed-digit type (i.e., borrow-save). We now apply the form
of (15) to the complex residual recurrence 5:

FR[j] = −2sRj+1S
R[j] − (sRj+1)

2r−j−1

GR[j] = 2sIj+1S
I [j] + (sIj+1)

2r−j−1

WR[j + 1] = rWR[j] + FR[j] + GR[j]
F I [j] = −2sRj+1S

R[j + 1]
GI [j] = −2sIj+1S

I [j]
W I [j + 1] = rW I [j] + F I [j] + GI [j]

(17)

7

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

PRESCALING

Re RESIDUAL Im RESIDUAL

Re OFC/RND Im OFC/RND

x
R

x
I

d
R

d
I

C
R

C
I

z
R

zI

s
R
j+1 s

I
j+1

w
R
[j] w

I
[j]

*

#

S
I
[j]#

S
R
[j]*

sr si

Re LR MULTS;

RECODE;ADD

Im LR MULTS;

RECODE;ADD

Figure 2. Overall scheme for computing complex square root.

The real sRj+1 and imaginary sIj+1 digits are selected by rounding of the corresponding shifted

residual estimates ̂rWR[j] and ̂rWR[j], respectively:

sRj+1 = round(̂rWR[j])
sIj+1 = round(̂rW I [j])

(18)

The block-diagram of implementation of the complex recurrence is shown in Figure 3.
The postscaling to obtain z =

√
d × (CR, CI) is performed using four sequential left-to-right

carry-free (LRCF) multipliers without final adders. Each LRCF multiplier produces one product
digit per step. Since these digits are in an over-redundant digit set, they are recoded and added to
produce the real and imaginary digits in signed-digit form. These are then used sequentially by
on-the-fly converters to produce the final real and imaginary parts of the result in a conventional
form. The implementation combines postscaling with on-the-fly conversion. Moreover, as dis-
cussed in [9], the rounding can be integrated with the on-the-fly conversion. These multipliers do
not have final adders since the product digits are used left-to-right in redundant form.

We now discuss the postscaling and conversion in more detail. In step j the following increments
are added to the accumulated real and imaginary partial products:

sRj+1C
R − sIj+1C

I

sRj+1C
I − sIj+1C

R (19)

8

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

S
R
[j]

F
R

s
R

j+1

F
R
[j]

S
I
[j]

G
R

s
I

j+1

G
R
[j]s

R

j+1

round

rw
R
[j]

w
R
[j+1]

SD ADDER

w
R
[j]

registers not shown

S
R
[j]

F
I

s
R

j+1

F
I
[j]

S
I
[j]

G
I

s
I

j+1

G
I
[j]s

I

j+1

round

rw
I
[j]

w
I
[j+1]

SD ADDER

w
I
[j]

registers not shown

Figure 3. Block-diagram of implementation of the real and imaginary residual recurrences.

These are implemented using four LRCF multipliers and the corresponding recurrences are

UR[j + 1] = r(frac(UR[j] + CR[j]sRj+1)) = r(frac(UR))
V R[j + 1] = r(frac(V R[j] − CI [j]sIj+1)) = r(frac(V R))
pr1j+1 = int(UR)
pr2j+1 = int(V R)
UI [j + 1] = r(frac(UI [j] + CI [j]sRj+1)) = r(frac(UI))
V I [j + 1] = r(frac(V I [j] − CR[j]sIj+1)) = r(frac(V I))
pi1j+1 = int(UI)
pi2j+1 = int(V I)

(20)

where frac(g) and int(g) are the fractional and integer parts of g, respectively. Since

|UR| ≤ r + (r − 1) × a (21)

the range of pr1j+1 exceeds one radix r digit. Similarly for the other output digits. Dividing the
postscaling factors by r, we obtain the output digits in the set {−(r+a−1), . . . , (r+a−1)} which
are recoded to the set {−(r − 1), . . . , r − 1} to simplify the remaining modules. After recoding
the digits are added using on-line addition to produce the real (imaginary) radix-r signed-digits of
the result. These digits are then converted using on-the-fly conversion to obtain the final result in
conventional radix-r representation. The design details are omitted.

The proposed scheme has an estimated latency

Tproposed = tprescal + titer + tpostscale + trecode + tOL−add + tconvert−rnd (22)

9

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

For r ≤ 16 we estimate the delays of the terms in the expression for Tprop as follows. tprescal is the
time to perform the table lookup to get K and C and perform d = x · K which we estimate to be
≤ 2tcycle. The iteration time is titer = (n− j0)tcycle. The postscaling and conversion/rounding are
overlapped with the residual recurrence: trecode = 2tcycle because of the scaling of C as discussed
above; the remaining stages have single cycle delay. We estimate that the cycle time tcycle of the
recurrence loop (see Figure 3), measured in full-adder delays (tFA), is

tcycle = tSEL + tF,G + t[6:2] + treg = 6tFA (23)

where tSEL = 1.5tFA is the delay of the selection function, tF,G = 1.5tFA is the delay of the F
(G) network, t[6:2] = 3tFA is the delay of the redundant adder, and treg = 0.5tFA. For example,
for r = 16 and 54-bit significand, we estimate that Tproposed = (2 + 11 + 2 + 1 + 1 + 1)tcycle =
18tcycle = 108tFA.

To get a rough comparison of the latency of the proposed scheme with a conventional com-
plex square-root software implementation, we consider the algorithm defined in [19] which uses 3
real square-root and 2 real division operations in the floating-point format. There are also several
comparison and absolute value operations. The estimated latency of this implementation is

Tconv = tDIV + 2tSQR + tDIV ≈ 4tSQR (24)

To achieve this latency two square-root units in parallel are required. We ignore exponent pro-
cessing and rounding delays. Moreover, assuming a radix-16 digit-recurrence implementation of
significand computation, we estimate

tSQR ≈ tprescal + (n/4) × tcycle + t + postcale + tround (25)

where tcycle ≈ tSEL + tF−net + t[4:2] + treg = 4tFA. We assume that prescaling and postscaling is
done for radix 16 so that the selection function is simplified. For a 54-bit significand, we estimate
that Tconv = 4 × (2 + 14 + 1 + 1)tcycle = 288tFA without taking into account comparison and
absolute value operations. We conclude that the proposed scheme is at least 2.5 times faster than a
conventional one.

To implement the real part of the proposed scheme we use the following main components: 2
multiple generators in F and G networks, a [6:2] adder, two registers, two sequential left-to-right
multipliers without final adder, one on-line adder, and three registers for on-the-fly conversion with
rounding. Similarly for the imaginary part. In addition we need a lookup table of 2q + 1 inputs and
a complex rectangular multiplier. We estimate that the cost of a conventional implementation using
two FLPT square-units and a FLPT divider would be no less than the cost of the proposed scheme.
A detailed design remains to be done.

4 Summary

We proposed a new algorithm for complex square root. It uses two digit-recurrences and prescal-
ing of the operand to allow result-digit selection by rounding. This makes the proposed scheme suit-
able for higher radices. The prescaling is more complicated than in the real case leading to larger
lookup tables. Since the same prescaling is applicable to the digit-recurrence complex division
proposed in [10], these two algorithms can be combined. A rough comparison with a conventional
implementation based on floating-point instructions indicates a significant speedup of the proposed
scheme at a similar cost. Moreover, the proposed scheme allows correct rounding.

10

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

References

[1] G. Adams, A.M. Finn, and M.F. Griffin. A fast Implementation of the Complex Singular Value Decomposition on
the Connection Machine. IEEE Transactions on Acoustics, Speech and Signal Processing, pp.1129-1132, 1991.

[2] T. Ahrendt. Fast High-Precision Computation of Complex Square Roots. In Proceedings of ISSAC’96, Zurich,
Switzerland, 1996.

[3] D. Bindel, J. Demmel, W. Kahan, and O. Marques. On Computing Givens Rotations Reliably and Efficiently.
ACM Transactions on Mathematical Software, 28(2):206-238, June 2002.

[4] L. Ciminiera and P. Montuschi. Higher Radix Square Rooting. IEEE Transactions on Computers, 30(10):1220-
1231, October 1990.

[5] D. Das Sarma and D. W. Matula. Faithful bipartite ROM reciprocal tables. In S. Knowles and W. McAllister,
editors, Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath, UK, July 1995. IEEE Computer
Society Press, Los Alamitos, CA.

[6] F. de Dinechin and A. Tisserand. Some Improvements on Multipartite Table Methods. In L. Ciminiera and
N. Burgess, editors, Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, June
2001. IEEE Computer Society Press, Los Alamitos, CA.

[7] M.A. Elliot, G.A. Walker, A. Swift, and K. Vandenborne. Spectral Quantitation by Principal Component Analysis
using Complex Singular Value Decomposition. Magnetic Resonance in Medicine, 41:450-455, 1999.

[8] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms and Implementations.
Kluwer Academic Publishers, Boston, 1994.

[9] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers, 2004.

[10] M. D. Ercegovac and J.-M. Muller. Complex Division with Prescaling of the Operands. In Proc. Application-
Specific Systems, Architectures, and Processors (ASAP’03), The Hague, The Netherlands, June 24-26, 2003.

[11] N. Hemkumar and J. Cavallaro. A Systolic VLSI Architecture for Complex SVD. Proc. of the IEEE International
Symposium on Circuits and Systems, pp.1061-1064, 1992.

[12] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing Complex Elementary Functions Using Exception
Handling. ACM Transactions on Mathematical Software, 20(2):215-244, 1994.

[13] W. Kahan. Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s Sign Bit. In The State
of the Art in Numerical Analysis, Clarendon Press, Oxford, 1987.

[14] R.D. Mcilhenny. Complex Number On-line Arithmetic for Reconfigurable Hardware: Algorithms, Implementa-
tions, and Applications. PhD thesis, University of California at Los Angeles, 2002.

[15] T. Lang and P. Montuschi. Higher Radix Square Root with Prescaling. IEEE Transactions on Computers,
41(8):996–1009, 1992.

[16] T. Lang and P. Montuschi. Very High Radix Square Root with Prescaling and Rounding and A Combined
Division/Square Root Unit. IEEE Transactions on Computers, 48(8):827–841, 1999.

[17] J. Mitroy and I.A. Ivallov. Quantum Defect Theory for the Study of Hadronic Atoms. Journal of Physics, G:
Nuclear and Particle Physics, 27, pp. 1-13, 2001.

[18] P. Montuschi and M. Mezzalama. Survey of Square Rooting Algorithms. IEE Proceedings E: Computers and
Digital Techniques, 137(1): 31–40.

[19] W. Press and S. A. Teukolski and W. T. Vetterling and B. F. Flannery. Numerical Recipes in C, 2nd Edition.
Cambridge University Press, 1992.

[20] M.J. Schulte and J.E. Stine. Approximating elementary functions with symmetric bipartite tables. IEEE Transac-
tions on Computers, 48(8):842–847, Aug. 1999.

[21] J. Salo and J. Fagerholm and A. T. Friberg and M. M. Salomaa. Unified description of nondiffracting X and Y
waves. Phys. Rev. E 62, pp. 42614275, 2000.

[22] D. M. Smith. Algorithm 768: Multiple-Precision Complex Arithmetic and Functions. ACM Transactions on
Mathematical Software, 24(4):359-367, December 1994.

[23] R.D. Susanto, Q. Zheng, and X-H. Yan. Complex Singular Value Decomposition. Journal of Atmospheric and
Oceanic Technology, 15(3):764-774, 1998.

11

Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP’04)
1063-6862/04 $ 20.00 IEEE

	footer1:

