
Journal of VLSI Signal Processing 48, 271–286, 2007

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0067-4

Exploring New Search Algorithms and Hardware for Phylogenetics:

RAxML Meets the IBM Cell

A. STAMATAKIS

School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

F. BLAGOJEVIC AND D. S. NIKOLOPOULOS

Department of Computer Science, Center for High-end Computing Systems, Virginia Tech,
Blacksburg, VA, USA

C. D. ANTONOPOULOS

Department of Computer and Communications Engineering, University of Thessaly, Volos, Greece

Received: 8 December 2006; Accepted: 17 March 2007

Abstract. Phylogenetic inference is considered to be one of the grand challenges in Bioinformatics due to the

immense computational requirements. RAxML is currently among the fastest and most accurate programs for

phylogenetic tree inference under the Maximum Likelihood (ML) criterion. First, we introduce new tree search

heuristics that accelerate RAxML by a factor of 2.43 while returning equally good trees. The performance of the

new search algorithm has been assessed on 18 real-world datasets comprising 148 up to 4,843 DNA sequences.

We then present the implementation, optimization, and evaluation of RAxML on the IBM Cell Broadband

Engine. We address the problems and provide solutions pertaining to the optimization of floating point code,

control flow, communication, and scheduling of multi-level parallelism on the Cell.

Keywords: phylogenetic inference, maximum likelihood, RAxML, IBM cell

1. Introduction

Phylogenetic trees are used to represent the evolu-

tionary history of a set of n organisms. An alignment

with the DNA or protein sequences representing n
organisms can be used as input for phylogenetic

inference. In a phylogeny the organisms of the input

data are located at the tips (leaves) of the tree and the

inner nodes represent extinct common ancestors. The

branches of the tree represent the time which was

required for the mutation of one species into another,

new one. Phylogenetic trees have many important

applications in medical and biological research (see

[2] for a summary).

Due to the rapid growth of sequence data over the

last years it has become feasible to compute large

trees which often comprise more than 1,000 organ-

isms and sequence data from several genes (so-called

multi-gene alignments). This means that alignments

grow in the number of organisms and in sequence

length.

The basic algorithmic problem computational

phylogeny faces is the immense amount of alterna-

tive tree topologies which grows exponentially with

the number of organisms n, e.g. for n ¼ 50 there exist

2:84 � 1076 alternative trees. In fact, it has only

recently been shown that the ML phylogeny problem

is NP-hard [6]. In addition, ML-based inference of

phylogenies is very memory- and floating point-

intensive. Since phyloinformatics has definitely

entered the HPC era by now, the application of high

performance computing techniques as well as the

assessment of new CPU architectures can significant-

ly contribute to the reconstruction of larger and more

accurate trees. Moreover, typical ML implementa-

tions exhibit different levels of parallelism and are

thus well-suited as example applications for exploit-

ing unconventional and challenging architectures.

The Cell Broadband Engine (BE) has been

developed jointly by Sony, Toshiba and IBM.

Although the Cell was originally designed for the

set-top box market, it has evolved into a general-

purpose processor for high-performance computing,

server and desktop applications. The Cell BE is a

heterogeneous multicore processor with nine pro-

cessing cores: one two-way multithreaded PowerPC

Processor Element (PPE) and eight Synergistic

Processor Elements (SPEs). The Cell is well suited

for data-intensive scientific applications with high

demand for memory bandwidth. It offers a unique

assembly of MIMD and SIMD execution capabilities

and a software-managed memory hierarchy, thus

providing ample flexibility in selecting programming

and parallelization models for a given application.

According to its specifications [1], the Cell is

capable of achieving significant performance im-

provement over conventional multicore CPUs, in-

cluding an improved Flops per Watt ratio. However,

due to its unconventional architecture, the develop-

ment of parallel applications that can exploit all

advantages of the Cell design, is a challenging task.

One of the main difficulties is the management of the

local storage of the SPEs by software. Another

challenge lies in the distribution of work among

SPEs, which can be implemented at multiple degrees

of granularity and with a variety of code and data

distribution schemes. This paper addresses these

problems in the realm of algorithms for phylogenetics

and more specifically RAxML [25]. We present

optimizations and system software support for vecto-

rization, control flow parallelization, scheduling, and

communication on the Cell, along with a stepwise

evaluation of these optimizations in RAxML. The

optimizations are generic enough to be reused across

a wider range of parallel applications.

The remainder of this paper is organized as

follows: First, we review related work on IBM Cell

portings and tools (Section 2). In Section 3 we

provide an overview of RAxML and related work in

the area of phylogenetics. We also introduce new

tree search heuristics that accelerate RAxML by

factor 2.43 while returning equally good trees on real-

world datasets of 148 up to 4,843 DNA sequences.

The following Section 4 gives a step-by-step descrip-

tion of porting and optimizing RAxML on Cell. The

conventional optimizations we used to speedup the

execution time include the use of optimized numer-

ical libraries for the SPEs, double-buffering for

complete communication/computation overlap, vec-

torization of floating point operations, and minimi-

zation of the ratio of PPE–SPE computation via

function off-loading. We also present new Cell-

specific optimizations, including the vectorization of

conditional statements, asynchronous communica-

tion via direct SPE memory accesses and an event-

driven scheduling model, which can selectively

exploit coarse-grain and fine-grain parallelism, in

response to workload variation. In Section 5 we

evaluate performance of RAxML on the IBM Cell

and the IBM Power5 multicore processor. We

conclude with Section 6.

2. Related Work on IBM Cell

Recently, several studies were conducted to measure

performance and develop programming models for

easier porting as well as optimization of parallel

applications on the Cell.

Fatahalian et al. [10] developed Sequoia, a program-

ming language suitable for porting memory-aware

applications to machines with different memory

hierarchy configurations. One of the target architec-

tures in this study is the Cell Broadband Engine. The

authors used Sequoia to port several programs to Cell

and obtained memory throughput exceeding 20 GB/s.

Sequoia currently supports applications which can be

parallelized via recursive block decomposition,

whereas our work focuses on less structured applica-

tions that can be parallelized at multiple layers.

Bellens et al. [3] developed a dependence-driven

programming model for porting sequential applica-

tions to Cell. Their compiler is capable of generating

tasks that can potentially be executed in parallel. The

supporting runtime system creates a dependence

graph of active tasks during execution and deter-

mines which tasks can be scheduled for execution on

the SPEs. This work considers only one layer of

task-level parallelism and does not explore the

272 Stamatakis et al.

implications of task size and available parallelism

within tasks. Both issues are central in the current

paper.

Kunzman et al. [17] are in the process of adapting

Charm++ on Cell. Charm++ is a runtime system for

object-based parallel programming. More specifically,

Charm++ is a library of machine-independent object

abstractions for scheduling and communication on

parallel machines, implemented on both distributed

and shared memory systems. No results that would

enable comparisons with our work are reported as of the

time of writing this paper.

Although Cell has been a focal point in numerous

articles in popular press, published research using

Cell for real-world scientific applications beyond

games and streaming computation is scarce. Besides

our study, Hjelte [15] presents an implementation of

a smooth particle hydrodynamics simulation on Cell.

This simulation requires good interactive perfor-

mance, since it lies on the critical path of real-time

applications such as interactive simulation of human

organ tissue, body fluids, and vehicular traffic.

Benthin et al. [4] present a parallel ray-tracing

algorithm for Cell.

3. The RAxML Application

Despite the high computational cost, significant

progress has been achieved over the last years in

the field of heuristic ML search algorithms with the

release of programs such as IQPNNI [19], PHYML

[14], GARLI [31] and RAxML [25, 27] to name only

a few.

RAxML-VI-HPC (v2.2.0; Randomized Axelerated

Maximum Likelihood version VI for High Performance

Computing, freely available at http://icwww.epfl.ch/

~stamatak) [25] is a program for large-scale ML-based

[12] inference of evolutionary trees using multiple

alignments of DNA or AA (Amino Acid) sequences.

Some of the largest published ML-based phylogenetic

analyses to date have been conducted with RAxML

[11, 13, 21]. To the best of our knowledge, RAxML

has been used to compute trees on the two largest data

matrices analyzed under ML to date: a 25,057-taxon

alignment of protobacteria (length: 1,463 nucleotides)

and a 2,182-taxon alignment of mammals (length:

51,089 nucleotides).

The current version (v2.2.0) implements the new

search algorithm described in Section 3.2 as well as

the older algorithm (command line switch �f o)

outlined in [25]. A recent performance study [25] on

real world datasets with more than 1,000 sequences

reveals that it is able to find better trees in less time

and with lower memory consumption than other

current ML programs (IQPNNI, PHYML, GARLI).

3.1. Parallel Implementations of ML Programs

RAxML exploits two levels of parallelism: fine-grain

loop-level parallelism and coarse-grain embarrassing

parallelism.

RAxML has been parallelized with OpenMP to

exploit loop-level parallelism. Like every ML-based

program, RAxML exhibits a source of loop-level

parallelism in the likelihood functions which typi-

cally consume over 90% of the overall computation

time. The OpenMP implementation scales particu-

larly well on large multi-gene alignments due to

increased cache efficiency [28].

The MPI version of RAxML exploits the embar-

rassing parallelism that is inherent to every real-

world phylogenetic analysis. In order to conduct

such an analysis (see [13] for an example) a number

of about 20–200 distinct tree searches (multiple

inferences) to find a best-scoring tree on the original

alignment as well as a large amount of 100–1,000

bootstrap analyses have to be conducted. Bootstrap
Analyses are required to assign confidence values

ranging between 0.0 and 1.0 to the inner nodes of the

best-known ML tree. This allows to determine how

well-supported certain parts of the tree are and is

important to draw biological conclusions. Bootstrap-

ping is essentially very similar to multiple inferen-

ces. The only difference is that inferences are

conducted on a randomly re-sampled alignment (a

certain amount of alignment columns is re-weighted)

for every bootstrap run. This is performed in order to

assess the topological stability of the tree under

slight alterations of the input data.

All those individual tree searches, be it bootstrap or

multiple inferences are completely independent from

each other and can thus be exploited by a simple

master-worker scheme. If the dataset is not extremely

large, this represents the most efficient approach to

exploit HPC platforms for production runs.

Most other parallel implementations of ML pro-

grams [7, 19, 26, 29, 31] have mainly focused on the

intermediate level of parallelism (inference parallel-

ism) which is situated between the loop-level

parallelism and coarse-grained parallelism currently

Exploring New Search Algorithms and Hardware for Phylogenetics 273

http://icwww.epfl.ch/~stamatak
http://icwww.epfl.ch/~stamatak

exploited in RAxML. The related work mentioned

above mainly deals with highly algorithm-specific

and mostly MPI-based parallelization of various hill-

climbing, genetic, as well as divide-and-conquer

search algorithms. Finally, Minh et al. [20] recently

implemented a hybrid OpenMP/MPI version of

IQPNNI which exploits loop-level and inference

parallelism.

3.2. Accelerating the Search Algorithm

This Section describes a novel heuristic optimization

of the RAxML search algorithm that is available as

of version 2.2.0. The entire procedure is outlined in

Fig. 1.

The fundamental mechanism that is used to search

the tree space with RAxML is called Lazy Subtree

Rearrangement (LSR, for details see [27]). An LSR

consists in pruning/removing a subtree from the

currently best tree t and then re-inserting it into all

neighboring branches up to a certain distance/radius

(rearrangement distance) of n nodes from the pruning

point (n typically ranges from 5 to 25). For each

possible subtree insertion within the rearrangement

distance, RAxML evaluates the log likelihood score

of the alternative topology. This is done in a lazy

way since only the length of the three branches

adjacent to the insertion point/node will be opti-

mized. Thus, an LSR only yields an approximate log

likelihood allðt0Þ score for each alternative topology

t0 constructed by an LSR from t. However, this allðt0Þ
score can be used to sort the alternative topologies.

After this fast pre-scoring of a large number of

alternative topologies, only a very small fraction of

the best-scoring topologies needs to be optimized

more exhaustively to improve the overall tree score.

One iteration of the RAxML hill-climbing algorithm

consists in performing LSRs on all subtrees of a

given topology t for a fixed rearrangement distance n.

Thereafter, the branches of the 20 best-scoring trees

are thoroughly optimized. This procedure of con-

ducting LSRs on all subtrees and then optimizing the

20 best-scoring trees, is performed until no improved

tree is encountered.

The main idea of the new heuristics is to reduce

the number of LSRs performed. This is done by

using an empirical cutoff-rule that stops the recursive

descent of an LSR into deeper branches at a higher

rearrangement distance from the pruning position if

they do not appear to be promising. Thus, if the

approximate log likelihood allðt0Þ for the current

rearranged tree t0 is worse than the log likelihood

llðtÞ of the currently best tree t and if the difference

�ðallðt0Þ; llðtÞÞ is larger than a certain threshold

lhcutoff the remaining LSRs below that node are

omitted. The threshold lhcutoff is determined as

follows: During the first iteration of the RAxML

search algorithm lhcutoff ¼ 1 which means that no

cutoffs are made. In the course of this first iteration,

the differences �iðallðtiÞ; llðtÞÞ for all those i ¼ 1:::m

subtree

ll(t)

Tree t’

Tree t

prune subtree

rearrangement distance

pruning point

if(d(all(t’), ll(t)) < threshold)
skip remainimg rearrangements
in current clade

LSR: optimize these
three branches only

Figure 1. Outline of lazy subtree rearrangements with cutoff procedure.

274 Stamatakis et al.

alternative tree topologies ti where allðtiÞ � llðtÞ are

stored. The threshold lhcutoff for the next iteration is

set to the average of �i, i.e.~lhcutoff ¼ ð
Pm

i¼1 �iÞ=m. If

the search computes an LSR for which allðt0Þ � llðtÞ
and �ðallðt0Þ; llðtÞÞ � lhcutoff it will simply skip the

remaining LSRs below the current node. Thus, each

iteration k of the search algorithm uses a threshold

value lhcutoff that has been obtained during the

previous iteration k � 1. This allows to dynamically

adapt lhcutoff to the specific dataset and to the

progress of the search. The omission of a large

amount of unnecessary LSRs that have a high

probability not to improve the tree yields substantial

run time improvements and returns equally good

trees at the same time (see Table 1).

3.2.1. Results. To assess performance of the new

heuristics we analyzed 18 real-world datasets com-

prising 148 to 4,843 sequences from various sources

(see Acknowledgment). The computations were

performed under the CAT approximation of rate

heterogeneity [24], but final tree scores were evalu-

ated with the standard GAMMA model of rate

heterogeneity. For each dataset we generated ten

starting trees and executed the old and new RAxML

search algorithm on each of those starting trees. We

performed a total of 380 ML searches which were

executed on the Infiniband cluster at the TU

München. The cluster is equipped with 36 quad-

CPU 2.4 GHz AMD Opteron nodes.

Table 1 lists the average final log likelihood values

(LH-NEW, LH-OLD) for the old and new versions

of the RAxML search algorithm. In addition, it

provides the average speedup value per dataset. The

average speedup over all datasets is 2.43. The slight

variations in likelihood scores are insignificant.

4. Porting and Optimizing RAxML on Cell

4.1. The Cell BE

The Cell BE is a heterogeneous multicore processor.

The design is inspired by graphics accelerators,

which are commonly used in set-top boxes for data

streaming computations. In contrast to conventional

processors, graphics accelerators typically provide

vast memory bandwidth and vectorization capabili-

ties. Therefore, they are able to execute streaming

computation kernels such as encryption/decryption,

compression, FIR filters and FFTs far more efficient-

ly. The Cell BE integrates eight specialized accel-

erators with a conventional 64-bit host processor on

the same chip. The host processor is a PowerPC

SMT core, which runs Linux in a virtualized setting.

The PowerPC core communicates via a ring network

with eight accelerator cores, called Synergistic

Processor Elements, or SPEs. The SPEs and the

PPE are laid out in equal distances around a ring

called the Element Interconnect Bus (EIB). The EIB

can transmit up to 96 bytes per processor cycle, and

has a maximum bandwidth of 200 GB/s. The PPE is

also connected to the EIB. An overview of the Cell

architecture is provided in Fig. 2.

The SPEs can issue up to two instructions per

cycle, one of which can be a 128-bit SIMD

instruction. Since the SPEs do not include hardware

for branch prediction they rely on software to predict

the outcome of branches. In its current implementa-

tion, the SPE pipeline is optimized for single-

precision floating-point vector operations, for which

the processor can sustain a maximum throughput of

over 230 Gflops. This is an artifact of earlier designs

of the processor for game consoles, in which double

Table 1. Average final log likelihood values and speedups over ten runs on distinct MP starting trees for 18 real-world datasets.

No. of Seq. LH-NEW LH-OLD Speedup No. of Seq. LH-NEW LH-OLD Speedup

148 j69,726.05 j69,725.55 1.83 150 j39,606.06 j39,606.06 2.00

218 j134,195.92 j134,199.30 1.98 404 j156,151.42 j156,147.25 2.00

498 j219,186.90 j219,186.90 2.21 500 j85,794.87 j85,794.87 2.11

628 j50,940.81 j50,938.29 2.68 714 j148,543.21 j148,544.48 2.51

994 j348,936.85 j348,936.85 2.34 1,288 j395,999.61 j395,999.61 1.92

1,512 j273,435.30 j273,443.51 2.74 1,604 j167,398.16 j167,399.43 3.31

1,780 j178,930.53 j178,925.02 2.95 1,908 j149,645.43 j149,645.43 2.89

2,000 j364,916.18 j364,914.44 2.65 2,554 j318,488.01 j318,488.01 2.49

4,114 j325,621.05 j325,620.54 2.70 4,843 j748,075.04 j748,067.23 2.48

Exploring New Search Algorithms and Hardware for Phylogenetics 275

precision floating-point calculations are of lesser impor-

tance than in scientific computing. Nevertheless, double-

precision throughput is still 21 Gflops, which is higher

than the throughput of most high-end homogeneous

multi-core processors. New versions of the processor for

high-performance computing resolve the bottleneck of

double-precision floating point operations.

Each SPE on the Cell has 128 128-bit general-

purpose registers and a software-managed fast local

storage. The use of a software-managed local storage is

unique in the Cell architecture. In the current version of

the processor, each SPE has 256 KB of local storage.

This storage is expandable to up to 4 MB. Local storage

is locally addressable via direct load and store

instructions from the owner SPE and globally accessi-

ble from other SPEs and the PPE via DMA requests.

Software control of the local storage enables the use of

customized cache replacement policies on the SPEs.

The local storage can also be programmed to operate as

a conventional set-associative cache [8].

The SPEs decouple processing from communica-

tion, via the use of a memory flow controller (MFC).

Each SPE can issue up to 16 concurrent DMA

requests, including requests for atomic DMA oper-

ations, which can be used in lieu of locks, and

requests for scatter-gather memory operations.

4.2. RAxML Porting Strategy

We followed a three-step process for porting

RAxML to Cell:

1. We identified and off-loaded the compute inten-

sive parts of RAxML to the SPEs.

2. We optimized the off-loaded code on the SPEs.

We used optimized numerical libraries for the

SPEs, double buffering, vectorization of compu-

tation, vectorization of control flow, and PPE–

SPE communication optimizations.

3. Finally, we developed an event-driven scheduler

for RAxML_s nested parallel code, along with the

necessary system software support.

The first two steps follow the function off-loading

programming model, which arguably provides the

easiest path for porting MPI applications on the Cell

[8, 9]. The last step is a new contribution to support

the execution of parallel programs with multiple

levels of parallelism on the Cell.

In the following Sections we describe the porting

and optimization process, together with speedups

obtained at each optimization step.

4.3. Porting the MPI Code

The version of RAxML that we ported on Cell is

based on the new, improved search heuristics,

described in Section 3.2. We initially executed the

MPI version of RAxML on the PPE. Since the PPE

is a dual-threaded processor, the PPE can execute

two MPI processes simultaneously. These processes

share the resources of the PPE, except from the

register file. Therefore, their parallel execution on

the PPE is not expected to scale as well as on a two-

way SMP. Although it is natural to consider using

the PPE for direct porting of MPI code without

modifications, this approach is clearly suboptimal.

Due to the heterogeneity of the Cell, further steps are

PowerPC

PPE

I/O
Controller

Controller
Memory

Element Interconnect BUS (EIB)

SPE

LS

SPE SPE SPE

SPE SPE SPE SPE

LS LS LS

LS LS LS LS

Figure 2. Outline of the CELL BE architecture.

276 Stamatakis et al.

needed to off-load and optimize most, if not all, of

the computation within each MPI process, in order to

exploit the computational capacity of the SPEs.

We explored two strategies for off-loading code on

the Cell SPEs. The first strategy is pure task-level

off-loading. Each MPI process running on the PPE

off-loads functions on the SPEs and each function

executes from start to finish on the SPE it is assigned

to. The second strategy is a hybrid task-level and

loop-level parallelization scheme. Functions are off-

loaded from the MPI process to some of the SPEs.

The remaining SPEs are used for work sharing of

parallel loops included in the already off-loaded

functions. These parallelization strategies are de-

scribed further in Section 4.7.

4.4. Selecting Functions for Off-loading

In order to find the functions in RAxML that are

suitable for SPE execution, we profiled the code

using gprof . For all the profiling and benchmarking

runs of RAxML presented in this paper, we use the

input file 42 SC, which contains 42 organisms, each

represented by a DNA sequence of 1,167 nucleo-

tides. The number of distinct data patterns in a DNA

alignment is in the order of 250. Profiling the

sequential version of RAxML on the IBM Power5

processor shows that 96.6% of the execution time is

spent in four functions:

& 64.62% of the time is spent in the function

newviewðÞ . This function computes the partial

likelihood vector [12] at an inner node of the

phylogenetic tree.

& 26.88% of the time is spent in makenewzðÞ. This

function optimizes the length of a given branch

with respect to the tree likelihood using the

Newton–Raphson method.

& 2.87% of the time is spent in newviewPartialðÞ,
which optimizes the per-site evolutionary rates for

the GTRCAT approximation (see [24] for details).

& Finally, 2.29% of the time is spent in evaluateðÞ.
This function calculates the Log Likelihood score

of the tree at a given branch by summing over the

partial likelihood vector entries. Note that the log

likelihood value is the same at all branches of the

tree if the model of nucleotide substitution is time-

reversible [12].

The prerequisite for computing evaluateðÞ and

makenewzðÞ is that the likelihood vectors at the

nodes to the right and left of the branch have been

computed. Thus, makenewzðÞ and evaluateðÞ ini-

tially make calls to newviewðÞ before they can

execute their own computation. The newviewðÞ
function at an inner node p calls itself recursively

when the two children r and q are not tips (leaves)

and the likelihood array for r and q has not already

been computed. Consequently, the first candidate

for off-loading is newviewðÞ. Although makenewzðÞ
and evaluateðÞ are both taking a smaller portion

of execution time than newviewðÞ , off-loading

these two functions can also lead to significant

speedup (see Section 4.6). Besides the fact that

each function can be optimized and executed faster

on an SPE, having all four functions off-loaded to

an SPE significantly reduces the amount of PPE–

SPE communication.

The code executed on the SPE has to be compiled

separately (using the SPE specific compiler) from the

code executed on the PPE. We choose to include all

four off-loaded functions in one code module. This

approach has the advantage of having all off-loaded

functions in the SPE_s local storage during the entire

execution of the program. Consequently, an off-

loaded function can be invoked without introducing

the overhead of moving its code from global memory

to local storage. However, this decision imposes a

trade-off, since the extended code segment in the

SPE local storage reduces the available space for the

heap and stack segments. In the case of RAxML, the

total size of all four off-loaded functions is 110 KB.

The remaining space (146 KB) is large enough to

store the heap and stack segments of each of the four

functions, as well as the buffers needed for commu-

nication–computation overlap.

To keep the implementation simple, the call to

each off-loaded function in the original MPI code is

executed with the same signature on the PPE in the

Cell code. We replaced the original body of each

function with communication code needed to transfer

local data used in the function from the PPE to SPEs.

Whenever an off-loaded function is called, the PPE

sends a signal to the SPE thread and waits for the

SPE thread to complete the function and return the

result. While waiting for the SPE code to finish, the

PPE seeks functions for off-loading from other MPI

processes. This process is described in more detail in

Section 4.7.

All four off-loaded functions are executed inside a

single SPE thread. The SPE thread is created at the

Exploring New Search Algorithms and Hardware for Phylogenetics 277

beginning of the program and stays alive during the

entire program execution. Depending on the content

of a triggering signal received from the PPE, the

thread executes one of the four off-loaded functions.

By having a single thread active during the entire

program execution, we avoid excessive overhead

from repeated spawning and joining of threads. The

SPE threads execute a busy wait for a PPE signal.

Data consistency is maintained at the granularity

of off-loaded functions. Each function is individually

responsible for collecting local updates and propa-

gating these updates to global shared memory.

4.5. Optimizing Off-loaded Functions by Example
of newviewðÞ

Since newviewðÞ is the most computationally

expensive function in the code, it becomes the first

candidate for optimization. We found that naı̈vely

off-loading newviewðÞ slows down the sequential

version of the code by a factor of 2.8. Therefore,

exhaustive optimization of the function on the SPE

was necessary. Table 2 summarizes the execution

times of RAxML before and after newviewðÞ is off-

loaded. The first column shows the number of

workers (MPI processes) used in the experiment

and the amount of work done (number of bootstraps).

We profiled the function newviewðÞ using the

decrementer register of the SPE. We identified four

code segments that consume almost the entire

execution time in newviewðÞ:

1. Math library functions, such as expðÞ and logðÞ.
These functions are very expensive if their native

implementations are executed on the SPE. In

newviewðÞ, the expðÞ function is used to compute

the transition probabilities of the nucleotide

substitution matrix for the branches from the root

of a subtree to its descendants. The logðÞ function

is used to scale the branch lengths for numerical

reasons [23].

2. An if ð. . .Þ statement in the code which

determines the value of a conjunction of four

expressions is the second bottleneck. This condi-

tional statement is used to check if small

likelihood vector entries need to be scaled to

avoid numerical underflow (similar operations are

used in every ML implementation).

3. Blocking DMA requests also have a significant

impact on execution time. Whenever data re-

quired for the computation is not in local storage,

the program has to wait for the necessary data to

be fetched from global memory.

4. All double precision floating point arithmetic

used for the likelihood vector calculation is not

natively vectorized or optimized.

In the next few subsections we describe perfor-

mance optimizations for the off-loaded newviewðÞ
function. We applied analogous optimizations to the

remaining off-loaded functions. We do not discuss

the other functions in more detail due to space

limitations.

4.5.1. Mathematical Functions. The first step in

reducing the execution time of the off-loaded

function was to replace the expensive math functions

expðÞ and logðÞ with the mathematical functions

provided by the Cell SDK 1.1. The expðÞ and logðÞ
functions provided by the Cell SDK are implemen-

tations of numerical methods for exponent and

logarithm calculation. The expðÞ and logðÞ functions

represent less than 1% of the total number of floating

point operations executed in the off-loaded function,

however they account for 56% of execution time in

newviewðÞ . Using the implementations of the

exponent and logarithm functions provided by the

Cell SDK improves total execution time by 37–41%.

Table 3 shows the execution times of the four test

runs of RAxML after newviewðÞ is off-loaded and

expðÞ and logðÞ functions are replaced with

Table 2. Execution time of RAxML (in seconds).

Time (s)

(a)

1 worker, 1 bootstrap 28.3

2 workers, 8 bootstraps 152.56

2 workers, 16 bootstraps 309.53

2 workers, 32 bootstraps 622.43

(b)

1 worker, 1 bootstrap 80.52

2 workers, 8 bootstraps 348.36

2 workers, 16 bootstraps 696.12

2 workers, 32 bootstraps 1,375.09

The input file is 42_SC: (a) The application is executed on the

PPE, (b) newviewðÞ, without optimizations, is off-loaded to one

SPE.

278 Stamatakis et al.

optimized implementations. Notice that the off-

loaded code is still 40–47% slower than the non-

off-loaded code.

4.5.2. Optimizing Conditional Statements. Function

newviewðÞ is always invoked at an inner node of the

tree (p) which is at the root of a subtree. The main

computational kernel of newviewðÞ has a switch

statement which selects one out of four paths of

execution. If one or both descendants r and q of p are

tips (leaves) the computations of the main for-loop in

newviewðÞ can be simplified. This optimization leads

to significant performance improvements [25]. Thus,

there are distinct implementations of the main

computational part of newviewðÞ for the case that r

and q are tips, r is a tip, q is a tip, or r and q are both

inner nodes.Each path in the switch statement leads to

a large loop which performs the likelihood vector

calculations. Each iteration of the large loop executes

a large ifðÞ statement which determines the value of a

conjunction of four arithmetic expressions. This

conditional statement checks if likelihood scaling is

required to prevent numerical underflow. On an SPE,

a mispredicted branch incurs a penalty of 20 cycles

(IBM, Cbe_tutorial_v1.1, 2006). Using the decre-

menter register to profile the off-loaded code, and

after optimization of expðÞ and logðÞ), we find that

39% of the execution time of newviewðÞ is spent in

checking the condition of the ifðÞ statement executed

in the likelihood vector calculation loop. The condi-

tional statement is shown in Fig. 3. minlikelihood is

a positive constant and all operands are double

precision floating point values.

The ABSðÞ function increases the number of

condition checking (each ABS() function executes

an additional comparison), therefore the number of

conditions that need to be checked in this statement

is actually eight.

On an SPE, two integer numbers can be compared

significantly faster than two double precision floating

point numbers. The advantage of integers is that they

can be compared using the existing SPE intrinsics.

Current SPE intrinsics support comparison of at most

32-bit integer values. Sixty-four bit integers can also

be compared relatively fast, by combining 32-bit

integer intrinsics. The spu-gcc compiler automatical-

ly optimizes conditional statements that operate on

integer values, by replacing them with suitable SPE

intrinsics.

According to the IEEE standard, all double precision

floating point numbers are Blexicographically ordered.^
In other words, if two double floating point numbers a
and b are ordered (a < b), then their bit patterns will

be ordered in the same way when interpreted as Sign-

Magnitude integers [16] � unsigned long long�ð Það
<� unsigned long long�ð ÞbÞ . However, this rule can

only be applied if both numbers are greater than 0. In

the conditional statement that we are trying to optimize

all parameters are greater than 0 (we know that

minlikelihood is a constant greater than 0). Therefore,

instead of comparing double precision floating point

values, we can optimize the problematic ifðÞ statement

by casting all our operands to unsignedlonglong before

comparing them. To avoid the branch used in the

ABSðÞ function, we transform all our operands to

positive numbers, using a bitwise AND.

This optimization reduces the time spent in the

conditional statement to only 7% of the execution

time of newviewðÞ . The total execution time of

RAxML is reduced by 20%. Table 4 shows the new

execution times of RAxML after optimizing both

Table 3. Execution time of RAxML with no off-loading (a), and

with newviewðÞ off-loaded and optimized to use numerical

functions from the SDK library.

Time (s)

(b)

1 worker, 1 bootstrap 47.94

2 workers, 8 bootstraps 218.17

2 workers, 16 bootstraps 433.94

2 workers, 32 bootstraps 871.49

The input file is 42_SC.

Figure 3. Conditional statement which takes 39% of newviewðÞ execution time, after optimization of numerical functions.

Exploring New Search Algorithms and Hardware for Phylogenetics 279

conditional statements and numerical functions in

newviewðÞ.

4.5.3. Double Buffering and Memory Manage-
ment. The number of iterations in the main loop

of newviewðÞ depends on the input alignment length.

This loop operates on three arrays with equal length

(likelihood vector at current subtree root, and

likelihood vectors at left and right child). The loop

has no loop-carried dependencies and executes as

many iterations as the length of the three arrays.

Since the size of the local storage is only 256 KB,

the arrays cannot be stored permanently in local

storage. Instead, the arrays are strip-mined and

processed in blocks. The block size is selected such

that the computation on a block can overlap

completely with the memory latency for fetching

the next block. We use a 2 KB buffer for caching

each array block, which holds enough data to

execute 16 loop iterations. We also use double

buffering to mask memory latency, which amounts

to 8% of the execution time of the code before

optimization. Table 5 shows the improved execution

times of RAxML after optimization of numerical

operations, optimization of conditionals and memory

latency overlap, which improved total execution time

by 3–5%.

4.5.4. Vectorization. The core of the computation

in newviewðÞ is concentrated in two loops. The first

loop is executed at the beginning of the function and

computes the individual transition probability matri-

ces for each distinct rate category of the CAT model

[24]. The number of iterations is relatively small

(between 1 and 25) and each iteration executes 36

double precision floating point operations. The

second loop calculates the likelihood vector. The

length of this vector corresponds to the number of

distinct alignment patterns. Each iteration of this

loop executes 44 double precision floating point

operations for the CAT model.

The kernel of the first loop in newviewðÞ is shown

in Fig. 4a. In Fig. 4b we show the same code

vectorized for the SPE. The function spu mulðÞ
multiplies two vectors (in this case the arguments are

vectors of doubles). Function exp vðÞ is the vector

version of the exponential function mentioned in

Section 4.5.1. After vectorization, the number of

floating point operations executed in the body of the

first loop drops from 36 to 24. An additional

instruction is required to create a vector from a

scalar element. Due to pointer arithmetic on dynam-

ically allocated data structures, automatic vectoriza-

tion of this code would be particularly challenging

for a compiler.

The second loop is vectorized in a similar way.

Figure 5 shows the core of the second loop before and

after vectorization. The variables x1�> a, x1�> c ,

x1�> g , x1�> t , belong to the same C structure

(likelihood vector) and are stored in contiguous

memory locations. In Fig. 5a we see that only three

of these variables are multiplied with the elements of

array left. Therefore, vectorization cannot be accom-

plished by simply interpreting the members of the

likelihood vector structure that reside in consecutive

memory locations as vectors. We actually need to

create vectors using special intrinsics for vector

creation, such as spu splatsðÞ.
Vectorization decreases the execution time of the

two major loops in newviewðÞ from 12.8 to 7.3 s.

Table 6 summarizes the execution times for RAxML,

after vectorization, optimization of numerical func-

tions, optimization of conditional statements and

optimization for memory latency overlap in

Table 4. Execution time of RAxML after the floating-point

conditional statement is transformed to an integer conditional

statement.

Time (s)

(b)

1 worker, 1 bootstrap 38

2 workers, 8 bootstraps 177.68

2 workers, 16 bootstraps 354.85

2 workers, 32 bootstraps 703.95

The input file is 42_SC.

Table 5. Execution time of RAxML with double buffering

applied to overlap DMA transfers with computation, after

optimization of numerical functions and conditionals.

Time (s)

1 worker, 1 bootstrap 36.29

2 workers, 8 bootstraps 169.50

2 workers, 16 bootstraps 338.24

2 workers, 32 bootstraps 688.04

The input file is 42_SC.

280 Stamatakis et al.

newviewðÞ. After vectorization, the code which off-

loads newviewðÞ on the SPE becomes up to 7%

faster than the code without off-loading.

4.5.5. PPE–SPE Communication. Although

newviewðÞ dominates the execution time of RAxML,

each instance of the function executes for only 82�s

on average. This means that the granularity of the

function is small and function invocation overhead when

the function is off-loaded on the SPE is by no means

negligible, since it requires PPE to SPE communication.

For our test dataset, the function is called 178,244 times.

We originally implemented PPE to SPE commu-

nication using mailboxes, which offer a programma-

ble, high-level interface for communication via

message queues. After further experimentation, we

found that that DMA transfers achieved lower

latency than using mailboxes and improved applica-

tion execution time by a further 2–11% in our test

cases. Table 7 shows the execution times of RAxML

when DMA transfers are used instead of mailboxes

and after all optimizations described so far. The

input dataset is 42_SC.

It is interesting to note that direct memory-to-

memory communication is an optimization which

scales with parallelism on Cell, i.e. the impact on

performance improves as the code uses more SPEs.

As the number of workers and bootstraps executed

on the SPEs increases, the code becomes more

communication-intensive, due to the fine granularity

of the off-loaded functions. Fast communication by

DMA therefore becomes critical.

a b

Figure 4. The body of the first loop in newviewðÞ: a Non-vectorized code, b Vectorized code.

a b

Figure 5. Core of likelihood calculation loop in newviewðÞ: a Non-vectorized code, b Vectorized code.

Exploring New Search Algorithms and Hardware for Phylogenetics 281

4.6. Off-loading Remaining Functions

After off-loading and optimizing the newviewðÞ
function, we proceeded with off-loading the three re-

maining compute-intensive functions: makenewzðÞ,
evaluateðÞ, and newviewPartialðÞ.

Off-loading makenewzðÞ and evaluateðÞ was

straightforward. We repeated the same off-loading

procedure and analogous optimizations as with

newviewðÞ . As described in Section 4.4, all off-

loaded functions are written to the same SPE code

module. In this way the off-loaded code remains in

the local storage during the entire execution of the

application. Consequently, we avoid the cost of

repeatedly loading different code modules into local

storage. Moreover, we reduce PPE–SPE communi-

cation, since each invocation of newviewðÞ by either

makenewzðÞ or evaluateðÞ, can be performed locally

on an SPE without involving the PPE.

Off-loading newviewPartialðÞ was a more chal-

lenging task. This function is used to re-compute the

per-site log likelihood values lli at column i of the

alignment given a rate ri during the per-site

evolutionary rate optimization process (see [24] for

details). Since optimizing the ri implies changes of

the likelihood vector values at position i in the entire

tree, a complete tree traversal (as opposed to a partial

tree traversal induced by LSRs as described in

Section 3.2) must be carried out to obtain the lli for

ri at each alignment position i. Some changes in the

data structures were required to allow for future

parallel execution of newviewPartialðÞ . Instead of

using the likelihood vector arrays allocated for

computations over the whole alignment length with

newviewðÞ , makenewzðÞ , and evaluateðÞ each

recursive invocation of newviewPartialðÞ uses the

heap to create a private local likelihood vector of

length one. These changes enable the concurrent

computation of individual per-site log likelihood

values lli; llj at distinct alignment positions i 6¼ j
with different rates ri; rj.

Due to the fine granularity of newviewPartialðÞ,
which only operates on one single alignment position

and the high amount of calls per alignment position

(the ri are optimized in a Brent-like procedure [24])

we off-loaded the large for-loop that optimizes all ri

in optimizeRateCategoriesðÞ to the SPE. This large

for-loop has already been parallelized in the current

OpenMP version of RAxML using the OpenMP

scheduleðdynamicÞ clause. Dynamic scheduling

avoids potential load imbalance because the optimi-

zation of each ri requires a different number of

iterations until convergence. The parallelization of

newviewPartialðÞ with OpenMP yielded a perfor-

mance improvement of 16% on the 404 sequence

dataset with 7,429 distinct patterns from Table 1 on a

four-way AMD Opteron. This large performance

improvement is due to the fact that newviewPartialðÞ
consumes a significantly larger part of execution time

for long multi-gene alignments.

With all four functions off-loaded and optimized

on the SPE, the application was performing 34–36%

faster. Compared to the initial code which is entirely

executed on the PPE, the optimized code is 29%

faster. When more than one MPI processes is used

and more than one bootstrap is off-loaded to SPEs,

the gains from off-loading reach 47%. Table 8 sum-

marizes the execution times for RAxML when all

four functions are off-loaded and optimized for the

42_SC dataset.

4.7. Scheduling Multilevel Parallelism

The distribution of resources on the Cell often

introduces an imbalance between computation sup-

Table 6. Execution time of RAxML after vectorization, optimi-

zation of numerical functions, optimization of conditionals and

optimization for memory overlap.

Time (s)

1 worker, 1 bootstrap 30.13

2 workers, 8 bootstraps 143.20

2 workers, 16 bootstraps 287.31

2 workers, 32 bootstraps 577.1

The input file is 42_SC.

Table 7. Execution time of RAxML after optimizing commu-

nication to use DMA transfers and all previously described

optimizations.

Time (s)

1 worker, 1 bootstrap 29.9

2 workers, 8 bootstraps 126.87

2 workers, 16 bootstraps 253.67

2 workers, 32 bootstraps 514.89

The input file is 42_SC.

282 Stamatakis et al.

ply and demand. The processor has eight SPEs,

however, at most two threads can off-load code from

the PPE to the SPEs at the same time. To overcome

this limitation, we explored an event-driven

programming model and the associated system

software support. In this model, we allow an

arbitrary number of MPI processes to share the PPE

and implement a context switching strategy which

opts for switching the context of a PPE thread upon

off-loading a function from the current context, in

anticipation of more opportunities for function off-

loading in other contexts. The intuition is that off-

loading a function from a PPE thread is typically

followed by idle time on the PPE thread, which can

be overlapped with computation originating in other

PPE threads.

We have extended our event-driven scheduling

model with an algorithm which tracks SPE utiliza-

tion and assigns SPEs to off-loaded functions based

on utilization. More specifically, each function

receives one or more SPEs, which can be used for

parallelization of loops enclosed in the function, with

mechanisms and policies similar to those of

OpenMP. Parallelization across SPEs assumes that

the work is distributed to the worker SPE threads

involved in the computation. All the communication

among the SPE threads is carried out via their local

storages. When they are created, all SPE threads

exchange the base addresses of their local storages

(this is done through the PPE). As a result, each SPE

thread owns a structure where it keeps the base

addresses of the local storages of all other threads

involved in the computation. A thread running on an

SPE communicates to other SPE threads by issuing

DMA requests to their private local storages.

The assignment of SPEs to functions depends on

the number of SPEs which are idling during a

predefined interval of recent execution. More details

on our event-driven model are provided in [5].

The new scheduling model reduces the execution

time of one bootstrap by 36%, compared to our

original static off-loading scheme, with all SPE-

specific optimizations integrated in the code. The

reason for the high speedup is the ability to distribute

loops inside off-loaded functions across SPEs. When

loop parallelism and task parallelism are exploited

simultaneously in off-loaded functions, the execution

time is reduced by up to 63%. Table 9 summarizes

the execution times of the optimized implementation

of RAxML with our event-driven programming and

scheduling model.

5. Comparison with the IBM Power5

It is useful to compare the performance of the Cell

against other multicore processors, since such a

comparison provides valuable insight both for appli-

cation developers working on adapting their software

to emerging computer architectures, and to computer

architects who are looking into improving their

hardware to address the needs of challenging

applications.

In this Section we compare the performance of

Cell against an IBM Power5, using our test runs of

RAxML. The IBM Power5 is a homogeneous dual-

core processor, where each core is itself a two-way

simultaneous multithreaded processor. Porting the

MPI version of RAxML to the Power5 is straight-

forward, since all that needs to be done is load four

MPI processes (workers) on the four execution

contexts of the processor. The Power5 used for this

experiment runs at 1.65 GHz, and has 32 KB of L1-

D and L1-I cache, 1.92 MB of L2 cache and 36 MB

of L3 cache.

Figure 6 provides the execution times on the two

processor types for up to 128 bootstraps, a scale

Table 8. Execution time of RAxML after off-loading and

optimizing four functions: phvnewviewðÞ, phvmakenewzðÞ,
phvevaluateðÞ and phvevaluatePartialðÞ.

Time (s)

1 worker, 1 bootstrap 20.4

2 workers, 8 bootstraps 84.41

2 workers, 16 bootstraps 165.3

2 workers, 32 bootstraps 330.62

The input file is 42_SC.

Table 9. Execution time of RAxML with the event-driven

programming and scheduling model (MGPS) is used.

Time (s)

1 bootstrap 14.1

8 bootstraps 26.7

16 bootstraps 53.63

32 bootstraps 107.2

The input file is 42_SC. The number of workers is variable and is

selected at runtime by the scheduler.

Exploring New Search Algorithms and Hardware for Phylogenetics 283

which is more representative of real-world data sets

for RAxML. The Cell outperforms the IBM Power5

by 15% on average. Although the difference seems

small, a number of considerations should be taken

into account. The Power5 has a lower clock

frequency, but significantly more secondary and

tertiary cache space available to each core. Further-

more, double-precision floating point arithmetic is

unoptimized on the Cell_s SPE pipelines, leading to a

markedly large reduction in processor throughput (up

to a factor of 10) compared to single-precision

floating point arithmetic. Furthermore, hardware

studies of the Cell indicate that the processor is

significantly more power-efficient than the Power5,

claiming nominal power consumption in the range of

27–43 W for the 3.2 GHz model used in this study

[30], as opposed to a reported 150 W for the Power5

[18]. Taking these observations into consideration,

we conclude that the Cell provides a leap forward in

performance compared to homogeneous, general-

purpose multicore processors. Our study is the first

to demonstrate this leap using complex, non-trivial

parallel code from the field of computational biology.

6. Conclusion and Future Work

We presented an improved heuristic search algorithm

for RAxML as well as a detailed step-by-step

description of porting RAxML to IBM Cell. The

incremental parallelization and optimization method-

ology presented in this paper can serve as a guideline

for parallelization of non-trivial applications on Cell.

The optimizations and system software for multilevel

parallelization introduced in this paper resolve bottle-

necks which are common to many applications and

even multicore architectures other than the Cell.

The porting strategy and methods developed for

exploiting fine-grain parallelism in RAxML on the

Cell are generally applicable to a broad range of

programs for ML-based (GARLI [31], IQPNNI [19],

PHYML [14]) and Bayesian (MrBayes [22]) phylo-

genetic inference. All these programs spend 90–95%

of their total execution time for the evaluation of the

likelihood function and face similar problems with

respect to memory transfer and function optimiza-

tion. The strategies and scheduling techniques for

coarse–grain parallelism are—with some modifica-

tions—also applicable to the MPI-versions of

GARLI and IQPNNI. In fact, there already exist a

hybrid MPI/OpenMP version of IQPNNI [20] and an

OpenMP parallelization of PHYML (Michael Ott,

personal communication).

Future work will focus on improved ways to

handle recursions on SPEs which will allow for

inference of large real-world datasets.

Acknowledgments

We would like to thank Olaf Bininda-Emonds,

Nicolas Salamin, Josh Wilcox, Daniel Dalevi, Usman

Roshan, Chuck Robertson, and Markus Göker for

letting us use their often tediously hand-aligned

sequence data to assess RAxML performance.

References

1. IBM, BCell broadband engine programming tutorial version

1.0,^ Available at: http://www-106.ibm.com/developerworks/

eserver/library/es-archguide-v2.html.

2. D. A. Bader, B. M. E. Moret, and L. Vawter, BIndustrial

Applications of High-performance Computing for Phylogeny

Reconstruction,^ in Proc. of SPIE ITCom, vol. 4528, 2001, pp.

159–168.

3. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, BCells: A

Programming Model for the Cell be Architecture,^ in Proc. of

SC2006, November 2006.

4. C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, BRay

Tracing on the CELL Processor,^ Technical Report, inTrace

Realtime Ray Tracing GmbH, No inTrace-2006-001, 2006.

5. F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D.

Antonopoulos, BDynamic Multigrain Parallelization on the

Cell Broadband Engine,^ in Proc. of PPoPP 2007, San Jose,

CA, March 2007.

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Number of bootsrtaps

RAxML on IBM
RAxML on Cell

Figure 6. RAxML performance on a multi-core IBM Power5

and the IBM Cell. The number of bootstraps performed covers 1,

8, 16, 32, 64 and 128 runs.

284 Stamatakis et al.

http://www-106.ibm.com/developerworks/eserver/library/es-archguide-v2.html
http://www-106.ibm.com/developerworks/eserver/library/es-archguide-v2.html

6. B. Chor and T. Tuller, BMaximum Likelihood of Evolutionary

Trees: Hardness and Approximation,^ Bioinformatics, vol. 21,

no. 1, 2005, pp. 97–106.

7. Z. Du, F. Lin, and U. Roshan, BReconstruction of Large

Phylogenetic Trees: A Parallel Approach,^ Computational
Biology and Chemistry, vol. 29, no. 4, 2005, pp. 273–280.

8. A. E. Eichenberger et al., BOptimizing Compiler for a Cell

processor,^ Parallel Architectures and Compilation Techni-
ques, September 2005.

9. D. Pham et al., BThe Design and Implementation of a First

Generation Cell Processor,^ Proc. Int_l Solid-State Circuits

Conf. Tech. Digest, IEEE Press, 2005, pp. 184–185.

10. K. Fatahalian et al., BSequoia: Programming the Memory

Hierarchy,^ in Proc. of SC2006, November 2006.

11. R. E. Ley et al., BUnexpected Diversity and Complexity of the

Guerrero Negro Hypersaline Microbial Mat,^ Appl. Environ.
Microbiol., vol. 72, no. 5, 2006, pp. 3685–3695, May.

12. J. Felsenstein, BEvolutionary Trees from DNA Sequences: A

Maximum Likelihood Approach,^ J. Mol. Evol., vol. 17, 1981,

pp. 368–376.

13. G. W. Grimm, S. S. Renner, A. Stamatakis, and V. Hemleben,

BA Nuclear Ribosomal DNA Phylogeny of Acer Inferred with

Maximum Likelihood, Splits Graphs, and Motif Analyses of

606 Sequences,^ Evolutionary Bioinformatics Online, vol. 2,

2006, pp. 279–294.

14. S. Guindon and O. Gascuel, BA Simple, Fast, and

Accurate Algorithm to Estimate Large Phylogenies by

Maximum Likelihood,^ Syst. Biol., vol. 52, no. 5, 2003, pp.

696–704.

15. N. Hjelte, Smoothed Particle Hydrodynamics on the Cell

Broadband Engine. Masters Thesis, June 2006.

16. W. Kahan, BLecture Notes on the Status of IEEE Standard 754

for Binary Floating-point Arithmetic,^ in IEEE, 1997.

17. D. Kunzman, G. Zheng, E. Bohm, and L. V. Kalé, BCharm++,

Offload API, and the Cell Processor,^ in Proc. of the

Workshop on Programming Models for Ubiquitous Parallel-

ism, Seattle, WA, USA, September 2006.

18. Sun Microsystems, Sun UltraSPARC T1 Cool Threads

Technology, December 2005. http://www.sun.com/aboutsun/

media/presskits/networkcomputing05q4/T1Infographic.pdf.

19. B. Q. Minh, L. S. Vinh, A. V. Haeseler, and H. A. Schmidt,

BpIQPNNI: Parallel Reconstruction of Large Maximum

Likelihood Phylogenies,^ Bioinformatics, vol. 21, no. 19,

2005, pp. 3794–3796.

20. B. Q. Minh, L. S. Vinh, H. A. Schmidt, and A. V. Haeseler,

BLarge Maximum Likelihood Trees,^ in Proc. of the NIC

Symposium 2006, 2006, pp. 357–365.

21. C. E. Robertson, J. K. Harris, J. R. Spear, and N. R. Pace,

BPhylogenetic Diversity and Ecology of Environmental Arch-

aea,^ Curr. Opin. Microbiol., vol. 8, 2005, pp. 638–642.

22. F. Ronquist and J. P. Huelsenbeck, BMrBayes 3: Bayesian

Phylogenetic Inference under Mixed Models,^ Bioinformatics,

vol. 19, no. 12, 2003, pp. 1572–1574.

23. A. Stamatakis, Distributed and Parallel Algorithms and

Systems for Inference of Huge Phylogenetic Trees based on

the Maximum Likelihood Method, PhD thesis, Technische

Universität München, Germany, October 2004.

24. A. Stamatakis, BPhylogenetic Models of Rate Heterogeneity:

A High Performance Computing Perspective,^ in Proc. of

IPDPS2006, HICOMB Workshop, Proceedings on CD, Rho-

dos, Greece, April 2006.

25. A. Stamatakis, BRAxML-VI-HPC: Maximum Likelihood-

based Phylogenetic Analyses with Thousands of Taxa and

Mixed Models,^ Bioinformatics, vol. 22, no. 21, 2006, pp.

2688–2690.

26. A. Stamatakis, T. Ludwig, and H. Meier, BParallel Inference

of a 10.000-taxon Phylogeny with Maximum Likelihood,^
in Proc. of Euro–Par 2004, September 2004, pp. 997–1004.

27. A. Stamatakis, T. Ludwig, and H. Meier, BRAxML-III: A Fast

Program for Maximum Likelihood-based Inference of Large

Phylogenetic Trees,^ Bioinformatics, vol. 21, no. 4, 2005, pp.

456–463.

28. A. Stamatakis, M. Ott, and T. Ludwig, BRAxML-OMP: An

Efficient Program for Phylogenetic Inference on SMPs,^
PaCT, 2005, pp. 288–302.

29. C. Stewart, D. Hart, D. Berry, G. Olsen, E. Wernert, and

W. Fischer, BParallel Implementation and Performance of

FastDNAml—A Program for Maximum Likelihood Phylo-

genetic Inference,^ in Proc. of SC2001, Denver, CO,

November 2001.

30. D. Wang, BCell Microprocessor III,^ Real World Technolo-

gies, July 2005.

31. D. Zwickl, Genetic Algorithm Approaches for the Phyloge-

netic Analysis of Large Biologiical Sequence Datasets under

the Maximum Likelihood Criterion. PhD thesis, University of

Texas at Austin, April 2006.

Dr. Alexandros Stamatakis received his Diploma in Com-

puter Science in March 2001 from the Technical University of

Munich. His studies included internships at the Ecole Normale

Superieure de Lyon, France (9 months), at the Eurocontrol

Experimental Center near Paris, France (4 months) and at the

Instituto de Salud Carlos III/Universidad Politecnica de

Madrid, Spain (3 months). In October 2004 he received his

PhD for research on BDistributed and Parallel Algorithms and

Systems for Inference of Huge Phylogenetic Trees based on

the Maximum Likelihood Method’’ from the Technical

University of Munich. From January 2005 to June 2006 he

worked as postdoctoral researcher at the Institute of Com-

puter Science in Heraklion, Greece. In July 2006 he joined

the Laboratory for Computational Biology and Bioinfor-

matics at the Swiss Federal Institute of Technology at

Lausanne, Switzerland as a PostDoc. His main research

Exploring New Search Algorithms and Hardware for Phylogenetics 285

http://www.sun.com/aboutsun/media/presskits/networkcomputing05q4/T1Infographic.pdf
http://www.sun.com/aboutsun/media/presskits/networkcomputing05q4/T1Infographic.pdf

interests are technical and algorithmic solutions for inference

of huge phylogenetic trees and compute-intensive problems

in Bioinformatics.

Filip Blagojevic is a PhD student at the Computer Science

department at Virginia Tech. He received his BS degree in

Mathematics from University of Belgrade (2002) and his MS

Degree in Computer Science from the College of William and

Mary (2005). His research interests include, but are not limited

to the following: process scheduling, memory management,

performance modeling, emerging architectures: CMP- and

SMT-based Multiprocessors and IBM/Sony/Toshiba CELL

processor.

Dimitris Nikolopoulos is an Associate Professor of Computer

Science at the Virginia Polytechnic Institute and State

University (Virginia Tech) since August 2006. Prior to joining

Virginia Tech, he has held a tenure-track faculty position at

the College of William and Mary and a visiting faculty

position at the University of Illinois at Urbana-Champaign.

Nikolopoulos is a recipient of an NSF CAREER award in

2004, a DOE CAREER award in 2005, an IBM Faculty Award

in 2007, and six best paper awards, including awards from the

ACM SIGPLAN Conference on Principles and Practice of

Parallel Programming (PPoPP), the Supercomputing Confer-

ence (SC) and the International Parallel and Distributed

Processing Symposium (IPDPS). Nikolopoulos conducts re-

search on high-end and embedded multi-processor architec-

tures. His current research activities focus on the interface

between multi-core architectures and system software. His

contributions appear in more than 75 authored or co-authored

papers in the leading journals and conferences in the field of

parallel computing and architectures. Nikolopoulos holds a

Ph.D. in Computer Engineering (2000) and a Diploma in

Computer Engineering (1996), both from the University of

Patras. He is a member of ACM, IEEE, and the Technical

Chamber of Greece.

Dr. Christos Antonopoulos received his Diploma in Com-

puter Engineering & Informatics, MSc and PhD from the

Computer Engineering & Informatics Department of the

University of Patras, Greece. Following, he spent 2 years in

U.S. as a Post-Doctoral Research Associate at the College of

William & Mary. He currently serves as Visiting Faculty at

the Computer and Communications Engineering Department

of the University of Thessaly in Volos, Greece. His research

interests include high performance computing architectures,

hybrid architectures based on SMT or CMP processors, system

software, continuous performance-driven run-time optimiza-

tions, memory management, and power management with

software techniques. He has been actively involved in many

national, EU and US research projects.

286 Stamatakis et al.

	Exploring New Search Algorithms and Hardware for Phylogenetics: RAxML Meets the IBM Cell
	Abstract
	Introduction
	Related Work on IBM Cell

	url
	Outline placeholder
	The RAxML Application
	Parallel Implementations of ML Programs
	Accelerating the Search Algorithm
	Results

	Porting and Optimizing RAxML on Cell
	The Cell BE
	RAxML Porting Strategy
	Porting the MPI Code
	Selecting Functions for Off-loading
	Optimizing Off-loaded Functions by Example of {\small\fontfamily{phv}\selectfont newview()}
	Mathematical Functions
	Optimizing Conditional Statements
	Double Buffering and Memory Management
	Vectorization
	PPE–SPE Communication

	Off-loading Remaining Functions
	Scheduling Multilevel Parallelism

	Comparison with the IBM Power5
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

