
Journal of Signal Processing Systems 50, 137–161, 2008

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0086-1

Scenario Selection and Prediction for DVS-Aware Scheduling

of Multimedia Applications

S. V. GHEORGHITA, T. BASTEN AND H. CORPORAAL

EE Department, Electronic Systems Group, Eindhoven University of Technology, PO Box 513, 5600 MB,
Eindhoven, The Netherlands

Received: 21 January 2007; Revised: 30 April 2007; Accepted: 23 May 2007

Abstract. Modern multimedia applications usually have real-time constraints and they are implemented using

application-domain specific embedded processors. Dimensioning a system requires accurate estimations of

resources needed by the applications. Overestimation leads to over-dimensioning. For a good resource

estimation, all the cases in which an application can run must be considered. To avoid an explosion in the

number of different cases, those that are similar with respect to required resources are combined into, so called

application scenarios. This paper presents a methodology and a tool that can automatically detect the most

important variables from an application and use them to select and dynamically predict scenarios, with respect

to the necessary time budget, for soft real-time multimedia applications. The tool was tested for three

multimedia applications. Using a proactive scenario-based dynamic voltage scheduler based on the scenarios

and the runtime predictor generated by our tool, the energy consumption decreases with up to 19%, while

guaranteeing a frame deadline miss ratio close to zero.

Keywords: dynamic voltage scheduling, soft real-time, application scenarios, embedded systems

1. Introduction

Embedded systems usually contain processors that

execute domain-specific programs. Many of their

functionalities are implemented in software, which is

running on one or multiple processors, leaving only

the high performance functions implemented in

hardware. Typical examples of embedded systems

include TV sets, cellular phones and printers. The

predominant workload on most of these systems is

generated by stream processing applications, like video

and audio decoders. Because many of these systems

are real-time portable embedded systems, they have

strong non-functional requirements regarding size,

performance and power consumption. The require-

ments may be expressed as: the cheapest, smallest and

most power efficient system that can deliver the

required performance. During the design of these

systems, accurate estimations of the resources needed

by the application to run are required. Examples of

resources include the number of execution cycles,

memory-usage, and communication between applica-

tion components.

Typical multimedia applications exhibit a high

degree of data-dependent variability in their execution

requirements. For example, the ratio of the worst case

load versus the average load on a processor can be

easily as high as a factor of 10 [27]. In order to save

energy and still meet the real-time constraints of

multimedia applications, many power-aware tech-

niques based on dynamic voltage scaling (DVS) and

dynamic power management (DPM) exploit this

variability [17]. They scale the supply voltage and

frequency of the processors at runtime to match the

changing workload. Taking into account that the

processor energy consumption depends quadratically

on the supply voltage (E / V2
DD), whereas its execu-

tion speed (frequency) depends linearly on the supply

voltage (fCLK / VDD), by reducing the processor

speed to half, the energy consumption can be reduced

to around a quarter.

Two main broad classes of voltage and frequency

scaling techniques have been developed: (1) reactive
techniques: after a part of the application is executed,

the number of unused processor cycles1 is detected

and the processor frequency/voltage is reduced to

take advantage of the unused computation power and

(2) proactive techniques: detect or predict in advance

that there will be unused cycles and set the processor

frequency/voltage adequately. The proactive ap-

proaches are more efficient than the reactive ones,

but they need a-priori derived knowledge about the

input bitstream and/or the application behavior. This

information can be included into the application itself

as a future case predictor together with statically

derived execution bounds for specific cases [10, 29],

or it may be encoded like meta-data into the input

bitstream during an offline analysis [2, 26]. To

avoid an explosion in the number of different cases

that are considered and in the amount of information

inserted into the application or bitstream, not all

different workloads are treated separately. Those that

are similar with respect to required execution cycles

are combined together into, so called, application
scenarios.

Usually, to define scenarios for an application, its

parameters (i.e., variables that appear in the source

code) with the highest influence on the application

workload are used. To the best of our knowledge, there

is no way of automatically detecting these parameters,

except for our previous work presented in [12, 13]. In

this paper:

– We describe a method and a tool that can auto-

matically identify the most important scenario

parameters and use them to define and dynamically

predict scenarios for a single-task soft real-time

multimedia applications. When applied to three

real-life benchmarks, the tool-flow identifies param-

eter sets that are similar to manually selected sets.

– We show how the method can be applied in a

proactive DVS-aware scheduler, which, when ap-

plied to the three mentioned benchmarks, yields

energy reductions up to 19%.

This method extends our previous work, overcom-

ing the limitations of the static analysis for hard real-

time systems used in [13], but it can not be applied to

hard real-time applications, as the scenario detection

and prediction is not always conservative. An earlier

version of the current paper appeared as [12]. Com-

pared to this, the current paper explains the automa-

tion of scenario selection, which was a manual step in

[12], at the same time slightly generalizing the

scenario concept. Moreover, to overcome the fact

that our approach is not conservative, we describe a

runtime mechanism that guarantees the application

quality, as given by the percentage of deadline misses.

Finally, we evaluate our tool-flow on a larger set of

benchmarks and we quantify the amount of energy

that was saved by using our approach in a proactive

DVS-aware scheduler.

The paper is organized as follows. Section 2 surveys

related work on scenarios and different power-aware

approaches for saving energy for real-time systems,

and presents how our current work is different.

Section 3 presents how our approach fits in a general

scenario based design methodology and the kind of

multimedia applications that it can be applied to.

Sections 4, 5, and 6 describe the three main steps of

our approach of which an overview is given in Fig. 1.

Section 7 presents the runtime calibration mechanism

that is used for controlling the quality of the resulting

application. In Section 8, our scenario detection and

prediction method is evaluated on three realistic

multimedia decoders. Conclusions and future research

are discussed in Section 9.

2. Related Work

Scenarios have been in use for a long time in different

design approaches [4], including both hardware [24]

and software design [9] for embedded systems. In

these cases, scenarios concretely describe, in an

early phase of the development process, the use of a

future system. Moreover, they appear like narrative

descriptions of envisioned usage episodes, or like

unified modeling language (UML) use-case diagrams

that enumerate, from a functional and timing point

of view, all possible user actions and system reactions

that are required to meet a proposed system function-

ality. These scenarios are called use-case scenarios,

and characterize the system from the user perspec-
tive. In this work, we concentrate on a different kind

of scenarios, so-called application scenarios, that

138 Gheorghita et al.

characterize the system from the resource usage
perspective.

The application scenario concept was first used in

[33] to capture the data-dependent behavior inside a

thread, to better schedule a multi-threaded applica-

tion on a heterogenous multi-processor architecture,

allowing the change of voltage level for each

individual processor. Other approaches that consider

application scenarios to optimize a design include [22,

23, 28]. In [28], the authors concentrate on saving

energy for a single task application. For each

manually identified scenario, they select the most

energy efficient architecture configuration that can

be used to meet the timing constraints. The archi-

tecture has a single processor with reconfigurable

components (e.g., number and type of function units),

and its supply voltage can be changed. It is not clear

how scenarios are predicted at runtime. To reduce the

number of memory accesses, in [23], the authors

selectively duplicate parts of application source

code, enabling global loop transformations across

data dependent conditions. They have a systematic

way of detecting the most important application

behaviors based on profiling and of clustering them

into scenarios based on a trade-off between the number

of memory accesses and the code size increase. The

final application implementation, including scenarios

and the predictor, is done manually. In [22], each

scenario is characterized by different communication

requirements (e.g., bandwidth, latency) and traffic

patterns. The paper presents a method to map a multi-

task application communication to a network on chip

architecture, satisfying the design constraints of each

individual scenario. Most of the mentioned papers

(except [23]) emphasize on how the scenarios are

exploited for obtaining a more optimized design and

do not go into detail on how to select and predict sce-

narios. Our work focuses on these last two problems.

In the context of energy saving based on DVS/DPM

techniques, two different approaches exist: reactive

and proactive. The proactive approaches are more

efficient than the reactive ones, as they can make

decisions in advance based on the knowledge about the

future behavior. In order to have this knowledge avail-

able at the right moment in time, several approaches

propose to a-priori process the input bitstream of a

multimedia application and add to it meta-information

that estimates the amount of resources needed at

runtime to decode each stream object (e.g., a frame).

This information is used to reconfigure the system

(e.g., using DVS) in order to reduce the energy

consumption, while still meeting the deadlines. In [2,

15, 26] the authors propose a platform-dependent

annotation of the bitstream, during the encoding or

before uploading it from a PC to a mobile system. As

it is too time expensive to use a cycle-accurate

simulator to estimate the time budget necessary to

decode each stream object, the presented approaches

use a mathematical model to derive how many cycles

are needed to decode each stream object. All these

works aim at a specific application, with a specific

implementation, and require that each frame header

contains a few parameters that characterize the

computation complexity. None of them presents a

way of detecting these parameters, all assuming that

the designer will provide them.

The other class of proactive approaches inserts

into the application a workload case detector togeth-

er with statically derived execution bounds for

specific cases. The first approach for hard real-time

systems was presented in [29]. It tries to predict in

advance the future unused cycles, using the com-

bined data and control flow information of the

program. Its main disadvantage is the runtime

overhead (which sometimes is big) that can not be

controlled. In [10], we proposed a way to control this

overhead, by using scenarios. We automatically

detect the parameters with the highest influence on

the worst case execution cycles (WCEC), and they

are used to define scenarios. The static analysis used

S
ce

n
ar

io

A
n

al
yz

er

S
ce

n
ar

io

se
le

ct
io

n

Program
trace

Control
variables

A
p

p
lic

at
io

n

p
ar

am
et

er

d
is

co
ve

ryOriginal
application

source code

Adapted
application

source code

Promising
scenario sets

Section 4 Section 5 Section 6

Figure 1. Tool-flow overview.

Scenario Selection and Prediction for DVS-Aware Scheduling 139

in [10] is not very powerful, as it works for some

specific cases only. It is also not really suitable for

soft real-time systems, as the difference between the

estimated WCEC and the real number of execution

cycles may be quite substantial due to the unpredict-

ability of hardware and WCEC analysis limitations.

To overcome this issue, in [12], a profiling driven

approach is used to detect and characterize scenarios.

It solves the issue of manually detecting parameters

in the soft real-time frame-based dynamic voltage

scaling algorithms, like the one presented in [25]. In

this paper, we extend the approach from [12] by

making the tool-flow fully automatic and more robust,

and by introducing into the resulting application a

runtime mechanism that controls the application quality

by keeping the number of deadline misses under a

required bound. Moreover, instead of only quantifying

the amount of cycle-budget over-estimation reduction,

we look at energy saving for a larger set of benchmarks.

3. Overview of our Approach

This section starts by describing the characteristics

of multimedia applications considered by our ap-

proach, and then details how our approach fits in the

scenario methodology described in [11].

3.1. Multimedia Applications

Many multimedia applications are implemented as a

main loop that reads, processes and writes out

individual stream objects (see Fig. 2). A stream

object might be a bit belonging to a compressed

bitstream representing a coded video clip, a macro-

block, a video frame, or an audio sample. For the sake

of simplicity, and without loss of generality, from now

on we use the word frame to refer to a stream object.

The read part of the application takes the frame

from the input stream and separates it into a header

and the frame_s data. The process part consists of

several kernels. For the processing of each frame,

some of these kernels are used, depending on the frame

type. The write part sends the processed data to the

output devices, like a screen or speakers, and saves the

internal state of the application for further usage (e.g., in

a video decoder, the previous decoded frame may be

necessary to decode the current frame). The dynamism

existing in these applications leads to the usage of

different kernels for each frame, depending on the frame

type. The actions executed in a particular loop iteration

form an internal operation mode of the application.

Moreover, these applications have to deliver a given

throughput (number of frames per second), which

imposes a time constraint (deadline) for each loop

iteration. In case of soft real-time applications, a given

percentage of deadline misses is acceptable.

3.2. Scenario-aware Energy Reduction

The scenario methodology described in [11] consists

of three main steps, presented in Fig. 3, each of them

answering to a specific question:

1. Identification: given an application, how is it

classified into scenarios?

2. Prediction: given an operation mode, to which

scenario does it belong?

3. Exploitation: given a particular scenario, what

can be done to optimize the application cost in

term of resource usage?

Our approach follows this methodology, in the

context of saving energy using a coarse grain frame-

based DVS-aware scheduling technique for soft real-

time applications. In the first part of the identification
step (Operation mode identification and character-
ization, Section 4) the common operation modes are

identified and profiled. As we are interested in

Figure 2. Typical multimedia application decoding a frame.

140 Gheorghita et al.

reducing energy by exploiting the different amounts of

required computation cycles of different operation

modes, we identify the application variables of which

the values influence the application execution time the

most, and we use them to characterize the operation

modes. As the number of the operation modes depends

exponentially on the number of control instructions in

the application, the second part of the identification
step (operation mode clustering, Section 5) aims to

cluster the modes into application scenarios. The

described clustering algorithm takes into account

factors like the cost of runtime switching between

scenarios, and the fact that the amount of computation

cycles for the operation modes within a scenario

should always be fairly similar.

In the scenario prediction step (Section 6) a pro-

active predictor is derived. Based on the parameters

used to characterize the operation modes, it predicts at

runtime in which scenario the application currently

runs. As we aim to reduce the average energy con-

sumption, in the scenario exploitation step, for each

scenario, we compute the minimum processor fre-

quency at which it can execute without missing the

application_s timing constraints. At runtime, when the

predictor selects a new scenario, the processor frequen-

cy and supply voltage is adapted adequately. It leads to

a coarse-grain schedule, as the processor frequency

(and voltage) is changed once per scenario occurrence.

All the mentioned steps are based on profiling

collected information, with the well-known limita-

tion that the profiled information might not cover all

operation modes that might occur. To overcome this

limitation, a quality preservation mechanism is

added to the final implementation of the application

(Section 7). Its role is to keep the number of deadline

misses under a required threshold.

4. Application Parameter Discovery

This section describes the first step of our method.

The method is visualized in Fig. 1. As explained in

the previous section, it is a concrete instance of the

first two steps of the methodology shown in Fig. 3,

where the application parameter discovery step

corresponds to the first part of step 1 in Fig. 3. This

section first explains how application parameters

could be used to estimate the necessary cycle budget.

The remaining parts of the section detail how these

parameters are discovered by our method.

4.1. Cycle Budget Estimation

During system design, accurate estimations of the

resources needed by the application in order to meet

the desired throughput are required. This paper

focuses on the cycle budget needed to decode a

frame in a specific period of time (pframe) on a given

single-processor platform. This budget depends on

the frame itself and the internal state of the

application. In relevant related work [2, 15, 26], it

is typically assumed that the cycle budget cðiÞ for

frame i can be estimated using a linear function on

data-dependent arguments with data-independent,

possibly platform dependent, coefficients:

c ið Þ ¼ Co þ
Xn

k¼1

Ck�k ið Þ; ð1Þ

where the Ck are constant coefficients that usually

depend on the processor type, and the �kðiÞ are n
arguments that depend on the frame i from the input

bitstream.2 Using for each frame its own transforma-

tion function with all possible source-code variables

Operation Mode
Identification &

Characterization

Operation Mode
Clustering

Original
application

Operation
modes

Application
Scenarios

2. Scenario
Prediction

1. Scenario Identification

Application
Scenarios +

Predictor

3. Scenario
Exploitation

Final
System

Context

Figure 3. Application scenario usage methodology [11].

Scenario Selection and Prediction for DVS-Aware Scheduling 141

as data-dependent arguments, gives the most accurate

estimates. However, this approach leads to a huge

number of very large functions. To reduce the

explosion in the number of functions, the frames with

small variation in decoding cycles are treated togeth-

er, being combined in application scenarios. To

reduce the size of each function, only the variables

whose values have a large influence on the decoding

time of a frame should be used. The following

subsections present a method to identify these

variables.

4.2. Control Variable Identification

The variables that appear in an application may be

divided into control variables and data variables.

Based on the control variable values, different paths

of the application are executed, as they determine,

for example, which conditional branch is taken or

how many times a loop will iterate. The data

variables represent the data processed by the appli-

cation. Usually, the data variables appear as elements

of large arrays, implicitly or explicitly declared.

Attached to each array, there can be a control variable

that represents the array size. Considering that each

element of a data array is one data variable, it can be

easily observed that, usually, there are a lot more data

variables than control variables in a multimedia

application.

The control variables are the ones that influence

the execution time of the program the most, as they

decide how often each part of the program is

executed. Therefore, as our scope is to identify a

small set of variables that can be used to estimate the

amount of cycles required to process a frame, we

separate the variables into data and control, based on

application profiling. Moreover, we identify a subset

of the control variables that do not influence the

execution time and hence are not of interest to us.

Both aspects are handled by the trace analyzer

discussed in the next subsection.

The large gray box in Fig. 4 shows the work-flow

for control variable identification. It starts from the

application source code which is then instrumented

with profile instructions for all read and write

operations on the variables. The instrumented code

is compiled and executed on a training bitstream and

the resulting program trace is collected and analyzed.

To find a representative training bitstream that covers

most of the behaviors which may appear during the

application life-time, particularly including the most

frequent ones, is in general a difficult problem.

However, an approach similar to the one presented

in [19], where the authors show a technique for

classifying different multimedia streams, could be

used. The analysis performed on the collected trace

information aims to discover if the trace contains data

variables. If any are discovered, the profile instruc-

tions that generate this information are removed from

the source code, and the process of compiling,

executing and analyzing is repeated until the trace

does not contain data variables anymore. As our

method generates a huge trace if it is applied from the

beginning on a large bitstream, we start with a few

frames of the bitstream in the first iteration. At each

iteration, we increase the number of considered

frames as the size of trace information generated per

frame reduces. The process is complete if the entire

Figure 4. Tool-flow details for deriving application parameters.

142 Gheorghita et al.

training bitstream is processed and the resulting trace

does not contain any data variables.

4.3. Trace Analyzer

The trace analyzer has two roles: (1) at each iteration

of the flow for control variable identification, it

identifies data variables and control variables that do

not affect execution time substantially; and (2) when

the process is complete, it generates the data

necessary for the scenario selection step explained in

Section 5 and a list of the remaining control variables.

The data variables that are declared as explicit arrays

can be found via a straightforward static analysis of the

source code. For the rest of the data variables, stored in

implicitly declared arrays (e.g., the variable a from the

source code of Fig. 5), the trace analyzer applies the

following rule: if in the trace information generated

for each frame, there is a program instruction that

reads or writes a number of different memory

addresses (e.g., the instructions from lines 3 and 4 in

Fig. 5) larger than a threshold, we consider that all

these memory addresses are linked to data variables,

as this operation looks like accessing a data array. For

this decision, we do not look for a specific array

access pattern (e.g., a sequential access pattern as in

line 3 or a random access pattern as in line 4 of our

example). The profiling in combination with a

threshold allows to differentiate between implicitly

declared arrays that store data or control variables.

This can not be obtained only by inspecting the

source code, due to the complexity of the C language

and the limitation of existing static analysis tech-

niques, like pointer alias analysis [14]. Based on

practical experience, we observed that the threshold is

quite low. It is a configuration parameter for our tool,

and its default value is four, as it is the appropriate

value found by us in practice.

Loop iterators are the control variables that we con-

sider to have only a small influence on the application

execution time and that are easy to identify based on the

trace information generated for each frame. These

variables are not used to decide how many times a loop

iterates; they just count the number of iterations. For

example, in the piece of code of Fig. 5, the variable n
bounds the number of iterations, while the loop

iterator i counts them. Variable n might be of interest,

but i is not. If there is a program instruction that writes

the same variable more than once, this variable can be

considered a loop iterator.3

When the trace analyzer finishes, all data variables

and loop iterators are removed. The trace analyzer

generates a list with the remaining variables from the

trace which are candidates for the �k used in Eq. (1).

During the scenario analyzer step (Section 6), their

number is further reduced. Figure 6 shows the

categories into which the application variables are

divided, where category (b) covers the variables

removed during the scenario analyzer step.

Besides the write and read operations, the program

trace contains also the number of cycles needed to

decode each frame (part of the operation mode

characterization in step 1 of Fig. 3). This information

is used in the scenario selection step, discussed in the

next section.

5. Scenario Selection

This section presents our scenario selection approach

(the second step in Fig. 1 and part 2 of step 1 in Fig. 3).

It first details the scenario selection problem. It then

continues in Section 5.2 by introducing the frame and

scenario signatures that capture all the relevant

information needed for scenario selection and predic-

tion. The remaining part of the section describes the

actual scenario selection step, which is detailed in the

left gray box of Fig. 7. It consists of two main

processes: (1) using a heuristic approach, multiple

scenario sets are generated from the information

previously derived by profiling the training bitstream

(Section 5.3), and (2) from the generated scenario sets

the most promising ones from an energy saving point

of view are selected (Section 5.4).

5.1. The Scenario Selection Problem

In [12], scenarios are manually identified based on a

graphically depicted distribution histogram that

shows on the horizontal axis the number of cycles

needed to decode a frame and on the vertical axis

how often this cycle budget was needed for the

training bitstream. Each identified scenario j isFigure 5. An educational example.

Scenario Selection and Prediction for DVS-Aware Scheduling 143

characterized by a cycle budget interval ðclbðjÞ; cubðjÞ�
that bounds the number of cycles needed to decode

each frame that is part of the scenario. The set of

identified scenarios covers all the frames that appear

in the training bitstream.

In the final application source code generated by

our method, for each frame of a scenario, cub is used

as an estimate for the required cycle budget for

processing it. So, each scenario introduces an over-

estimation that is determined by the difference

between cub and the average amount of cycles

needed to process the frames belonging to it. As

the aim is to exploit DVS, for each scenario the

targeted processor frequency is set to the lowest

frequency that can deliver at least cub cycles within a

pframe period of time. An overhead of maximum

tswitch seconds4 is taken into account for changing the

processor frequency at runtime, when the application

switches between scenarios. So, tight bounds cub and

limited switching frequency are important.

Manual scenario selection is a time-consuming

iterative job. The process starts by deriving an initial

set of scenarios from the distribution histogram.

Then, its quality in prediction and over-estimation is

evaluated. It might not be straightforward to unam-

biguously characterize the manually selected sce-

narios by means of the variables identified in the

previous section. Based on the obtained results, the

set can be adapted and re-evaluated as often as

necessary. A manual selection approach, similar to

the one presented in [12], can easily exploit the

information that can be extracted from the distribu-

tion histogram: (1) how often scenarios occur at

runtime and (2) the introduced cycle-budget over-

estimation. However, it is very difficult, even impos-

sible, to take into account other necessary ingredients

for selecting the best set of scenarios that are runtime

detectable and introduce the lowest over-estimation,

such as: (1) whether it is possible to distinguish at

runtime between scenarios based on the considered

control variables, (2) the possible overlap in the cycle

budget intervals of identified scenarios, (3) how many

switches appear between each two scenarios, and (4)

the runtime scenario prediction and system reconfig-

uration (i.e., voltage/frequency scaling) overhead. All

this information is taken into account in the heuristic

algorithm presented in the following subsections. A

running example, a simplified MPEG-2 motion

compensation (MC) task, is used throughout the

section for easier understanding.

5.2. Scenario Signatures

It is our aim to derive scenarios and scenario

predictors from the knowledge that can be extracted

from the training bitstream. To this end, we first

characterize each frame from the training bitstream

in terms of the control variables and its cycle count.

This information is used in both the scenario

selection and analyzer steps.

Let C be the set of control variables �k obtained

through the trace analyzer. Frame signatures are

obtained by processing the trace generated for the

training bitstream. For a frame i its signature Sf ðiÞ is

defined as a pair:

Sf ið Þ ¼ Vf ið Þ ¼ �k; �k ið Þð Þ �kj 2 Cf g; c ið Þ
� �

; ð2Þ

where �kðiÞ is the value of control variable �k for

frame i, and cðiÞ represents the number of cycles used

to process frame i. For each frame, there can be some

variables �k that are not accessed during its processing,

so they have undefined values. An example of a sequence

of frame signatures for a training bitstream is shown in

Fig. 7, where � represents an undefined value.

Assume, for the moment, that all frames in the

training bitstream have been partitioned into a set of

scenarios. Let Fj be the set of all frames that belong

to scenario j. A scenario signature can then be

computed from the signature of all the frames in the

training bitstream that are part of the scenario.

Scenario signatures quantify the aspects of a scenario

that are used in the scenario selection. For a scenario

j, its scenario signature SsðjÞ is defined as a 4-tuple:

SsðjÞ ¼ ð½clbðjÞ; cubðjÞ�; oðjÞ; f ðjÞ; sðjÞÞ; ð3Þ

where clbðjÞ ¼ mini2Fj
ðcðiÞÞ and cubðjÞ ¼ maxi2Fj

ðcðiÞÞ bound the number of cycles needed to process

each frame part of the scenario; oðjÞ ¼
P

i2Fj
ðcubðjÞ�

(a) Control variables used
in scenario prediction
(b) Removed control
variables
(c) Loop iterators

(d) Data variables

Figure 6. Variable distribution for MP3.

144 Gheorghita et al.

cðiÞÞ represents the accumulated cycle budget over-

estimation that this scenario introduces for the

training bitstream; f ðjÞ counts how often the scenario

appears (i.e., f ðjÞ equals the cardinality of Fj); and

sðjÞ counts how many times the application switches

from this scenario to other scenarios (i.e., it counts in

the training bitstream the number of frame intervals

that consist of frames in scenario j). Figure 9a gives

an example of two scenarios that contain some of the

frames presented in Fig. 8.

The scenario selection algorithm repeatedly considers

scenario candidates for clustering into one new scenario.

To derive the signature for the scenario resulting from

clustering a pair of scenarios ðj1; j2Þ, we introduce:

– sðj1; j2Þ is the number of times that the application

switches from scenario j1 to scenario j2 while

processing the training bitstream, with sðj1; j2Þ ¼ 0
if j1 ¼ j2;

– oðj1; j2Þ is the over-estimation introduced by clus-

tering the two scenarios into a single one, where

o j1; j2ð Þ ¼ o j1ð Þ þ o j2ð Þþ
cub j1ð Þ � cub j2ð Þð Þ � f j2ð Þ; if cub j1ð Þ > cub j2ð Þ

cub j2ð Þ � cub j1ð Þð Þ � f j1ð Þ; if cub j1ð Þ � cub j2ð Þ

(

ð4Þ

Figure 9b gives a numerical example of how these

functions are computed for the scenarios from Fig. 9a

and the frame sequence given in Fig. 8.

Given two scenarios j1 and j2, with signatures Ssðj1Þ
and Ssðj2Þ, their clustering is a scenario clsðj1; j2Þ
with the signature:

Ssðclsðj1; j2ÞÞ ¼
ð½minðclbðj1Þ; clbðj2ÞÞ;maxðcubðj1Þ; cubðj2ÞÞ�;
oðj1; j2Þ;
f ðj1Þ þ f ðj2Þ;
sðj1Þ þ sðj2Þ � sðj1; j2Þ � sðj2; j1ÞÞ:

ð5Þ

Figure 9c displays the scenario resulting from

clustering the scenarios in Fig. 9a.

5.3. Scenario Sets Generation

This step, of which pseudo-code is shown in Fig. 10,

represents the first part of the scenario selection
algorithm. Its role is to divide the execution cases of

the application in a number of scenarios. It receives

as parameter the vector of frame signatures for the

training bitstream. The algorithm returns multiple

scenario sets, each of them covering all the given

frames and being a potentially promising solution

that represents a trade-off between the number of

scenarios and the introduced over-estimation. More

scenarios lead to less over-estimation. However,

more scenarios lead to more switches and a larger

predictor, which may increase the cycle overhead

and enlarge the application source code too much.

Σ f (1) = (Vf (1) = {(ξ1, 1), (ξ2, ~), (ξ3, 2)}, 40)

Σ f (2) = (Vf (2) = {(ξ1, 2), (ξ2, 352), (ξ3, 2)}, 39)

Σ f (3) = (Vf (3) = {(ξ1, 1), (ξ2, ~), (ξ3, 12)}, 110)

Σ f (4) = (Vf (4) = {(ξ1, 2), (ξ2, 352), (ξ3, 12)}, 112)

Σ f (5) = (Vf (5) = {(ξ1, 2), (ξ2, 352), (ξ3, 4)}, 42)

Σ f (6) = (Vf (6) = {(ξ1, 2), (ξ2, 704), (ξ3, 2)}, 39)

Σ f (7) = (Vf (7) = {(ξ1, 2), (ξ2, 704), (ξ3, 12)}, 108)

Σ f (8) = (Vf (8) = {(ξ1, 2), (ξ2, 704), (ξ3, 4)}, 41)

Figure 8. A sequence of frame signatures.

Figure 7. Tool-flow details for scenario selection and analyzer steps.

Scenario Selection and Prediction for DVS-Aware Scheduling 145

In the initialization phase (line 2), the algorithm

generates an initial set of scenarios. It takes into

account that there is no way to differentiate at runtime

between two frames i1 and i2 if their signatures are

such that Vf ði1Þ ¼ Vf ði2Þ. So, in the initialization phase,

all the frames i that have in the signature the same set

Vf ðiÞ are clustered together in the same scenario.

The processing part of the algorithm starts with the

initial set of scenarios and it is repeated until the

scenario set contains only one scenario that clusters

together all frames. At each iteration, the two most

promising scenarios to be clustered are selected

using a heuristic function, discussed in more detail

below, and they are replaced in the scenario set by

the scenario resulting from their clustering.

After the processing part, for each scenario j from

each set of scenarios (lines 11–13), the upper bound

of the cycle budget interval cubðjÞ is adapted to

accommodate, on average, the cycles spent to switch

from this scenario to other scenarios. The maximum

number of cycles used to switch from j is given by:

swðjÞ ¼ dðcubðjÞ=pframeÞ � tswitche; ð6Þ

where pframe is the frame period, cubðjÞ=pframe is the

processor frequency at which the scenario j is executed

and tswitch is the maximum time overhead introduced by

a frequency switching. In principle, the over-estimation

introduced by a scenario can be used to accommodate

for switching cycles. However, this over-estimation

may be too small. Thus, if the over-estimation oðjÞ
introduced by the scenario is smaller than the total

number of processor cycles needed to switch from it to

other scenarios (sðjÞ � swðjÞ), then cubðjÞ is incre-

mented. Otherwise, it remains unchanged. The follow-

ing formula computes the incrementing value:

uubðjÞ ¼ max
sðjÞ � swðjÞ � oðjÞ

f ðjÞ

� �
; 0

� �
: ð7Þ

In Fig. 9d the cycle budget upper bound is recomputed

for the scenario defined in Fig. 9c.

Recall that the aim of this work is to save energy.

The tested heuristic functions for selecting which

scenarios to cluster are based on cost functions that

take into account: (1) the over-estimation of the

resulting scenario, (2) the cycle budget upper bound

adaptation that should be done for each scenario, and

(3) the number of switches between scenarios and

the switching overhead. Via the aspects (1) and (2),

it is taken into account that the over-estimation

introduced by a scenario could be used to compen-

sate for the switching overhead from this scenario to

other scenarios. There is a one-to-one correspon-

dence between cost incurred by over-estimation

cycles and cycles lost or gained via budget adapta-

tion. Switching cost (aspect 3) will generally decrease

when clustering scenarios. However, switching cost

given in cycles should be weighted because the

energy cost of these cycles depends on the ratio

between the energy consumed during the frequency

switching, information that can be taken from the

processor datasheet, and the amount of energy used by

normal processor operation during a period of time

equal to tswitch. Considering all these aspects, the most

promising clustering heuristic function that we found

selects the pair of scenarios with the lowest cost taken

as over-estimation minus weighted switching plus
adaptation. Our experiments show that this cost

function gives good results, while dropping any of

Figure 10. The scenario sets generation algorithm.

Figure 9. Example of scenarios. a Signatures, b functions, c clustering, d upper bound adaptation, and e clustering cost.

146 Gheorghita et al.

the three main aspects gives worse results. Formally,

for scenarios j1 and j2 the clustering cost is given by:

costðclsðj1; j2ÞÞ ¼ oðj1; j2Þ � oðj1Þ � oðj2Þ
� � � ðsðj1; j2Þ � swðj1Þ þ sðj2; j1Þ � swðj2ÞÞ
þ uubðclsðj1; j2ÞÞ � ðf ðj1Þ þ f ðj2ÞÞ

� uubðj1Þ � f ðj1Þ � uubðj2Þ � f ðj2Þ;

ð8Þ

where � is a weighting coefficient for the number of

cycles gained by reducing the number of switches.

Figure 9e shows how the cost is computed for the two

scenarios defined in Fig. 9a.

5.4. Scenario Sets Selection

This second and last step of the scenario selection
algorithm aims to reduce the number of solutions

that should be further evaluated, as the evaluation of

each set of scenarios is a time-consuming operation.

It chooses from the previously generated sets of

scenarios the most promising ones. The goal is to

find interesting trade-offs in cost (code size and run-

time overhead) and gains (cycles and energy).

Therefore, for making this decision, for each scenario

set, the amount of introduced over-estimation and the

number of runtime scenario switches are taken into

account. Each solution is considered as a point in two

two-dimensional trade-off spaces: (1) the number of

scenarios (m) versus introduced over-estimation

(
Pm

j¼1 oðjÞ), and (2) the number of scenarios versus

the number of runtime switches (
Pm

j1¼1

Pm
j2¼1 sðj1; j2Þ).

In the example given in Figs. 11 and 12 these points

are called generated solutions. Each of the two charts

is independently used to select a set containing

promising solutions, and finally the two sets are

merged. The selection algorithm consists of five steps:

1. For each chart, the sequence of solutions, sorted

according to the number of scenarios, is approximat-

ed with a set of line segments, each of them linking

two points of the set, such that the sum of the squared

distances from each solution to the segment used to

approximate it is minimized. This problem is an

instance of the change detection problem from the

data mining and statistics fields [5]. To avoid the

trivial solution of having a different segment linking

each pair of consecutive points, a penalty is added

for each extra used segment. In Figs. 11 and 12, the

selected segments and their end points are called

approximation segments/points.

2. For each chart, we initially select all the approx-

imation points to be part of the chart_s set of

promising solutions. These points are potentially

interesting because they correspond to solutions

in the trade-off spaces where the trends in the

development in over-estimation (Fig. 11) and

number of runtime switches (Fig. 12) change.

3. For each approximation segment from the over-

estimation chart, its slope is computed. If it is

very small compared to the slope of the entire

sequence of solutions,5 its right end point is

removed from the set of promising solutions, as

for similar over-estimation, we would like to have

the smallest number of scenarios because that

reduces code size and switches. In Fig. 11, for the

segment between the solutions with four respec-

tively six scenarios, the solution with six sce-

narios is discarded. The same rule does not apply

for the switches chart because both end points are

of interest. For a similar number of switches, the

right end point represents the solution with the

lowest over-estimation, and the left end point is

the solution with the smallest predictor.

4. For each approximation segment from each chart,

if its slope is larger than the slope of the entire

sequence of solutions, intermediate points, if they

exist, may be selected. They represent an inter-

esting trade-off between the number of scenarios

and the potential gains in over-estimation or

number of switches. The percentage of selected

points is chosen to depend on the ratio between

the two slopes. In Fig. 12, the solutions with 28

and 29 scenarios are selected as intermediate

points.

5. The sets of promising solutions generated for the

trade-off spaces are merged, and the resulting

union represents the set of the most promising

solutions that will be further evaluated.

6. Scenario Analyzer

The scenario analyzer step is detailed in the right

gray box from Fig. 7. It corresponds to the third step

in Fig. 1, and it is an instance of step 2 of the general

methodology of Fig. 3. It starts from the previous

selected set of solutions, each solution being a set of

scenarios that covers the whole application. For each

solution, it generates: (1) for each scenario, an

equation that characterizes the scenario depending

Scenario Selection and Prediction for DVS-Aware Scheduling 147

on the application control variables; (2) the source

code of the predictor that can be used to predict at

runtime in which scenario the application is running;

and (3) the list of the variables used by this predictor.

The predictor together with the runtime quality

calibration mechanism described in Section 7 is used

to generate the source code for each solution. The

best application implementation is selected by

measuring the energy saving of each generated

version of the source code on the training bitstream.

Scenario lcharacteristic function For each frame i,
using its signature as defined in Section 5.2, a

Boolean function �f ðiÞ over variables �k character-

izing the frame is defined:

�f ðiÞð�k
!Þ ¼

^

k

ð�k ¼ �kðiÞÞ: ð9Þ

By using these functions, for each scenario j, a

boolean function �sðjÞ over variables �k characteriz-

ing the scenario is defined. Recall that Fj denotes the

set of frames belonging to scenario j.

�sðjÞð�k
!Þ ¼

_

i2Fj

�f ðiÞð�k
!Þ: ð10Þ

The canonical form of this Boolean function is

obtained using the Quine McCluskey algorithm [20].

These functions can be used at runtime to check for each

frame in which scenario the application should execute.

Based on the initial clustering from the scenario
selection step, at most one of these functions evaluates

to true when applied to the control variable values of a

frame. However, because these functions are computed

based on a training bitstream, a special case may

appear when a new frame i is checked against them: no

scenario j for which �sðjÞð�kðiÞ
��!
Þ evaluates to true

exists. In this case, the frame is classified to be in the

so-called backup scenario, which is the scenario j with

the largest cubðjÞ among all the scenarios.

Runtime predictor The operations that change the

values of the variables �k are identified in the source

code. Using a static analysis, for each of the possible

paths within the main loop of the multimedia

application, the instruction that is the last one to

change the value of any variable �k is identified.

After this instruction, the values of all required

variables are known. An identical runtime predictor

is inserted after each of such instructions. This leads

to multiple mutually exclusive predictors, from

which precisely one is executed in each main loop

iteration to predict the current scenario. An extension

is to consider refinement predictors active at multiple

points in the code to predict the current scenario: the

first one will detect a set of possible scenarios, and

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32

B
il

li
o

n
s

Number of Scenarios

O
v

e
r-

E
s

ti
m

a
ti

o
n

 [
c

y
c

le
s

]

Selected Solutions Approximation Segments Approximation Points Generated Solutions

Figure 11. Scenario sets selection for MPEG-2 MC based on over-estimation.

148 Gheorghita et al.

the following will refine the set until only one

scenario remains. This extension might save more

energy, as earlier switching between scenarios may

be done. However, we leave this point open for

future research.

We can use as the runtime predictor the scenario

equations derived above. However, for a faster

runtime evaluation, code optimization and the possi-

bility of introducing more flexibility in the predic-

tion, a decision diagram is more efficient. So, we

derive the runtime predictor as a multi-valued
decision diagram [32], defined by a function

f : W1 �W2 � :::�Wn ! f1; ::;mg; ð11Þ

where Wk is the set of all possible values of the

type of variable �k (including � that represents

undefined) and m is the number of scenarios in which

the application was divided. The function f maps

each frame i, based on the variable values �kðiÞ
associated with it, to the scenario to which the frame

belongs. The decision diagram consists of a directed

acyclic graph G ¼ ðV;EÞ and a labeling of the nodes

and edges. The sink nodes get labels from 1; ::;m and

the inner (non-sink) nodes get labels from �1; :::; �n.

Each inner node labeled with �k has a number of

outgoing edges equal to the number of the different

values �kðiÞ that appear for variable �k in all frames

from the raining bitstream plus an edge labeled with

other that leads directly to the backup scenario. This

edge is introduced to handle the case when, for a

frame i, there is no scenario j for which �sðjÞð�kðiÞ
��!
Þ

evaluates to true. Only one inner node without

incoming edges exists in V, which is the source

node of the diagram, and from which the diagram

evaluation always starts. On each path from the

source node to a sink node each variable �k occurs at

most once. An example of a decision diagram

for the sequence of frames of Fig. 8 is shown in

Fig. 13a.

When the decision diagram is used in the source

code to predict the future scenario, it introduces two

additional cost factors: (1) decision diagram code
size and (2) average evaluation runtime cost. Both

can be measured in number of comparisons. To

reduce the decision diagram size, a tradeoff with the

decision quality is done. All the optimization steps

done in our decision diagram generation algorithm

(Fig. 14) are based on practical observations. The

algorithm consists of five main steps:

1. Initial decision diagram construction (lines 1–21):

For each scenario, a node is created and intro-

duced in the decision diagram, and the node for

the backup scenario is saved for future use (lines

2–4). For each node, the following information is

stored: (1) the set of frames of the training

bitstream for which the scenario prediction

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 4 8 12 16 20 24 28 32

Number of Scenarios

N
u

m
b

e
r

o
f

S
w

it
c

h
e

s

Selected Solutions Approximation Segments Approximation Points Generated Solutions

Figure 12. Scenario sets selection for MPEG-2 MC based on number of switches.

Scenario Selection and Prediction for DVS-Aware Scheduling 149

process passes through the node, (2) its label (a

control variable or a scenario identifier), (3) its type

(SOURCE; SINK; and INNER) and (4) the variables

that were not used as labels for the nodes on the

path from the source node. For SINKÞð nodes, the

latter is irrelevant, and hence these nodes are

assigned the empty set (line 3). A list with nodes

that have to be processed is kept, and initially this

list contains only the source node, unlabeled at

this point (lines 5–6). While the list is not empty,

the first node is extracted from it, and a variable

that was not used on the path from the source to it

is selected to label this node (lines 9–10). For

each possible value for the selected variable that

appears in the set of frames associated with the

node (line 12), an edge is added in the decision

diagram (line 19). In line 13, the set of frames for

which the prediction process goes through node n
and for which the value of � matches v is saved.

The new edge is added either to a new inner node

that will go in the list of nodes to be processed

(lines 16–16), or to a scenario node, in which case

the list of frames of the scenario node is updated

(lines 17–18). The decision is made in line 14 by

checking if the list of variables that were not used

for deciding the path from the source to the

current node contains only the variable selected

for labeling the currently processed node. Finally,

the node is inserted into the decision diagram and

an edge from it to the backup scenario node is

created (lines 20–21).

2. Node merging (line 22): Two inner nodes are

merged if they have the same label and the set of

the outgoing edges of one is included in the set of

the other one. To understand the reason behind

this decision, consider the decision diagram of

Fig. 13a. It can be assumed that if �1 ¼ 1 and

�3 ¼ 4 the application is, most probably, in

scenario 2. This case did not appear for the

training bitstream, but except for it the two �3

labeled nodes imply the same decisions. If this

assumption is made, the decision diagram can be

reduced to the one shown in Fig. 13b.

3. Node removal (lines 23–24): The diagram is

traversed and each node is checked to see if it

really influences the decision made by the

diagram. If it does not, it can be removed. An

example of this kind of node can be found in Fig.

13b. In this diagram, it can be observed that

whatever the values of �1 and �2 are, the current

scenario is decided based on the value of �3

(except for the values of �1 and �2 that did not

occur in the training bitstream). This means that

we can remove the nodes labeled with �1 and �2

from the diagram (see Fig. 13c). Note that if the

values of �1 and �2 for a frame did not appear in

the training bitstream, a scenario is selected based

on the reduced diagram instead of the conserva-

tive backup scenario that would have been

selected based on the original diagram.

4. Interval edges (lines 25–26): If a node has two or

more outgoing edges associated to values

Figure 13. Simplified MPEG-2 MC decision diagrams: a original; b merging �3; c removal of �1 and �2; d intervals; e reorder.

150 Gheorghita et al.

v1 < v2 < :: < vn that have the same destination,

and there is no other outgoing edge associated with

v; v1 < v < vn, then these edges may be merged in

only one edge. In Fig. 13c, for both �3 ¼ 2 and

�3 ¼ 4, scenario 2 is selected and there is no other

value for �3 2 ½2; 4� for which another scenario is

selected. The assumption that if a value

�3 2 ½2; 4� appears for a frame, scenario 2 should

be selected with high probability, leads to the

diagram Fig. 13d.

5. Edge reordering (lines 27–28): To decrease the

average runtime evaluation cost, the outgoing

edges of each inner node are sorted in descending

order based on the occurrence ratio of the values

that label them. In Fig. 13e, the edges for the

node labeled with �3 were reordered, based on the

observation that �3 2 ½2; 4� appears most often.6

Different optimization steps of our tool may be

disabled, so the tool may produce different decision

diagrams, from the one created only based on the

training bitstream (only steps 1 and 5 of the above

algorithm) to the one on which all possible size

reductions were applied (all five steps). Also, in

each step of the algorithm, for example, the

selection of variables for labeling nodes (line 9),

different heuristics may be used. However, it might

be possible that by applying all steps the prediction

quality becomes bad. This may happen as the

decisions made in our diagram generation algo-

rithm are based on practical observations, and the

application at hand might not conform to these

observations. In this case, the steps that negatively

affect the prediction quality should be identified

and disabled.

For each predictor, the average amount of cycles

needed at runtime to predict the scenarios is profiled

on the training bitstream and the scenario bounds are

updated to accommodate for this prediction cost.

The process is similar to the one used in the

previous section for accommodating for the scenario

switching cost.

In the experiments presented in Section 8, we

generated four fully optimized predictors, differenti-

ated by:

– The variable selection heuristic for each node in step

1 of the algorithm (GETVAR, line 9 in Fig. 14): the

variables with the most/least number of possible

values are selected first. By selecting the one with

most values first a lower runtime decision overhead

might be introduced, as multiple small subtrees are

created for each node and the decision height is

reduced. On the other hand, by selecting the variable

with the least possible values first, more freedom is

given to the interval edges optimization step.

– The tree traversal in step 3 (TRAVERSENODE, line

23 in Fig. 14): breadth-/depth-first. Breadth-first

tries to remove first the node, and then its children.

Depth-first is doing the opposite.

All these four predictors can be used to achieve

energy reduction, but there is no best one for all

applications. Hence, in order to select the most efficient

heuristics for an application, we generate the applica-

tion source code for each of them. The structure of the

generated source code is similar to the one presented in

Fig. 15. It is derived from the original application, by

introducing in it the predictor and the runtime quality

preservation mechanism, which is described in the

next section. Also, it contains the source code for

adapting the processor frequency, which is activated

only when the application switches from one scenario

Figure 14. The decision diagram construction algorithm.

Scenario Selection and Prediction for DVS-Aware Scheduling 151

to another one. All the generated source codes are

evaluated on the training bitstream and the one that

gives the largest energy reduction is chosen. The

variables used by its predictor are considered to be the

most important control variables (Fig. 6).

7. Quality Preservation Mechanism

Because of the variation in the time spent in

processing a frame, usually, in real-time embedded

systems, an output buffer is implemented (see the

right part of Fig. 15). The smallest possible buffer

has a size equal to the maximum size of a produced

output frame. The buffer is used to avoid the stalling

of the process until the periodic consumer (e.g. a

screen) takes the produced frame, allowing the start

of the next frame processing before the current frame

is consumed. To implement this parallelism, the

conflict situation of producing a new frame before

the previous one was consumed should be handled.

This can be done (1) by using a semaphore

mechanism that postpones the writing until the frame

is consumed, or (2) by postponing the start moment

of processing a new frame until it is sure that when

the processing would be ready, the previous frame is

already consumed.

We considered the second implementation, as

there is no need for any synchronization mechanism.

This gives more freedom in the consumer imple-

mentation and simplicity in output buffer implemen-

tation, for which a simple external memory may be

used. Figure 16 explains how the start moment for

frame processing is computed. For each frame i, Si is

defined as the earliest moment in time when the

processing of frame i can start. It is equal to the

moment when frame i� 1 is consumed (Di�1) minus

the minimum possible processing time for each

frame, estimated using static analysis as the best

case execution time (BCET) or measured. The

proactive DVS-aware scheduler that we used in our

experiments makes sure that a frame i does not start

earlier that Si. The processing of frame i can

however also not start until frame i� 1 is ready

(Ri�1). If the deadline of frame i� 1 is missed, so

Ri�1 > Di�1, depending on the application, one of

the following two decisions can be made: (1) the

processing of frame i� 1 might be stopped at Di�1,

so the processing of frame i can start or (2) the

application continues with the frame i� 1 until it is

ready, and then it starts with frame i. In the first case,

which can for example be applied in an audio decoder,

the processing of frame i actually starts at

minðmaxðSi;Ri�1Þ;Di�1Þ. In the second one, typically

used in video decoders that need a frame as a reference

for the future, the processing of frame i starts at

maxðSi;Ri�1Þ. For both ways to handle deadline

misses, the consumer should not delete the frame from

the output buffer when reading it, so it can read it

again in case of a missed deadline. In our experiments

from Section 8 we consider the first case, as it fits the

best with the selected benchmarks.

As in our approach the cycle budget required by

the application for a specific frame is predicted based

on the information collected on a training bitstream,

it is possible that the quality of the resulting system

is lower than the required one, even when the above

presented output buffer is exploited. This effect

could appear because the training bitstream did not

cover all the possible frames, so the scenario upper

bounds might not be conservative. To keep the

system quality under control, we introduce in the

generated application source code a calibration

mechanism (Fig. 15). This mechanism should be

cheap in number of computation cycles and stored

information size. We implemented it as in Fig. 17,

and it adapts the table containing the scenario

signatures used by the predictor. It counts the

number of processed frames and the misses that

appear in the system and for each scenario separately

(lines 1–4). Also, for each scenario it stores (line 5)

the maximum number of cycles that were used for

processing a frame predicted to be in it. If the

percentage of missed deadlines of the system is

larger than a given threshold, the scenario with the

largest number of misses is determined, and its cycle

budget upper bound is updated (lines 6–11). As it

was done also for the scenario switching mechanism

and the predictor, the scenario bounds are updated to

accommodate for the calibration mechanism too.

Moreover, the overhead introduced by these three

entities is taken into account when the cycle budget

upper bound is updated at runtime (line 11).

8. Experimental Results

All the steps of the presented tool-flow were

implemented on top of SUIF [1], and they are

applicable to applications written in C, as C is the

most used language to write embedded systems

software. The resulting implementation for the appli-

152 Gheorghita et al.

cation is written in C, and has a structure similar to

the one presented in Fig. 15.

We tested our method on three multimedia

applications, an MP3 decoder [18], the motion

compensation task of an MPEG-2 decoder [21] and

a G.72� voice decompression algorithm [30]. The

energy consumption was measured on an Intel

XScale PXA255 processor [16], using the XTREM

simulator [7]. We consider that the processor fre-

quency (fCLK) can be set discretely within the opera-

tional range of the processor, with 1MHz steps. The

supply voltage (VDD) is adapted accordingly, using

the following equation:

fCLK ¼ k � ðVDD � VTÞ2

VDD
; ð12Þ

where VT ¼ 0:3V and the value of the constant k is

computed for VDD ¼ 1:5V and fCLK ¼ 200MHz. A

frequency/voltage transition overhead tswitch ¼ 70�s
was considered, during which the processor stops

running. The energy consumed during this transition

is equal with 4�J [3]. When the processor is not

used, it switches to an idle state within one cycle,

and it consumes an idle power of 63mW. This

situation occurs if the start of a frame needs to be

delayed, as explained in the previous section.

In the remaining part of this section, besides the

main experiments that measure how much energy

was saved by applying our approach, we quantify

also the effect on energy of different steps of the

decision diagram construction algorithm. Moreover,

we investigate how the runtime calibration mecha-

nism, different buffer sizes and different frequency/

voltage switching costs influence the energy con-

sumption and deadline miss ratio.

8.1. MP3 Decoder

The MPEG-I Layer III (MP3) decoder is a frame-

based algorithm, which transforms a compressed

bitstream in normal pulse code modulation data. A

frame consists of 1,152 mono or stereo frequency-

domain samples, divided into two granules. The

standard specifies a fixed decoding throughput: a

frame at each 26ms. Details about the application

structure and the source code are presented in [18].

To profile the application, we have chosen, as the

training bitstream, a set of audio files consisting of:

(1) the ones taken from [8], which were designed to

cover all the extreme cases, and (2) a few randomly

selected stereo and mono songs downloaded from the

internet, in order to cover the most common cases.

After removing the data variables and loop iterators,

the number of remaining control variables �k to be

considered for scenario prediction is 41. This set of

variables is far more complete than the one detected

using the static analysis from [13]. The scenario sets

generation algorithm of Section 5.3 leads to 2111

potential solutions (sets of scenarios). Using the

method presented in Section 5.4, we reduced the size

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Read
frame

Write
frame

 header

internal state

Input bitstream:

header dataheader data …

frame

Scenario Signature Table
P

re
d

ic
to

r

C
al

ib
ra

ti
o

n

buffer

Periodic
Consumer

fr
eq

sw
it

ch

bypass

Figure 15. Final implementation of the application.

BCET

Ri

time
Di-2 Di-1 DiSi Si+1

Ri : frame i is ready Di : deadline frame i
Si : the earliest moment when the processing of frame i can start

Missed Deadline

Figure 16. Output buffer impact on processing start time. Figure 17. Runtime scenario quality control mechanism.

Scenario Selection and Prediction for DVS-Aware Scheduling 153

of the pool of solutions for which the predictor was

generated to 34. This decreases the execution time of

the scenario analysis (Section 6) from approxima-

tively 4 days to less than 5 h. For each of the eval-

uated scenario sets, four fully optimized predictors

were generated, as outlined in Section 6.

To quantify the energy saved by our approach, we

measured the energy consumed by the resulting

application via three experiments, by decoding (1)

20 randomly selected stereo songs, (2) 20 mono

songs and (3) all these 40 songs together. These three

categories are the most common combinations of

songs that appear during an MP3 decoder usage.

The three groups of bars of Fig. 18 present the

normalized results of our approach, evaluated for

two miss ratio thresholds as used in the calibration

mechanism: 1% and 0.1%. The energy improvement

is given relatively to the energy measured for the

case when no scenarios knowledge was used. In this

case, the frame cycle budget is the maximum number

of cycles measured for all input frames. In each

decoding period, first the frame is processed, and

then the processor goes in the idle state for the

remaining time until the earliest possible start time

for the next frame is reached.

We also compared our energy saving with the one

given by an oracle (last bar of each group in Fig. 18),

which is the smallest energy consumption that may

be obtained. To compute it for a stream, all possible

combinations of processor frequencies for decoding

each frame from the stream were considered. The

large difference between the energy reduction

obtained by our approach and the oracle case is

mostly due to the fact the oracle has a perfect

knowledge of the remaining stream, based on which

it may select different processor frequencies for the

same scenario. Moreover, the oracle obtains an

infinite accuracy without any cost, as it essentially

considers any number of scenarios and variables for

prediction, but has no prediction and calibration

overhead. However, part of the energy difference is

also due to the profiling drawbacks (e.g., not all

possible samples were covered) and due to the lack

of a better scenario bound adaptation mechanism

(e.g., a mechanism that allows the reduction of a

scenario cycle upper bound). These problems may be

overcome by using a more efficient runtime calibra-

tion algorithm that may also decrease the scenarios

bounds and even modify the decision diagram. This

topic is left for future work.

An important evaluation criterion for our approach is

the percentage of missed deadlines. As the energy

savings may lead to a miss ratio that is too high, we use

a runtime calibration mechanism that allows us to set a

threshold for the miss ratio. To evaluate the effective-

ness of the calibration mechanism and the overall

approach, we measured the miss ratio in the experi-

ments. Figure 19 shows the results for the two selected

0.876

0.811

0.881

0.814
0.779

0.649 0.650

0.445

0.659

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stereo Mono Mixed

Evaluated bitstream type

R
a
ti

o

No Scenarios Scenarios [Threshold = 1%] Scenarios [Threshold = 0.1%] Oracle

Figure 18. Normalized energy consumption for the MP3 decoder.

154 Gheorghita et al.

thresholds. There is a relatively large difference

between the imposed threshold and the measured

miss ratio. This is because the threshold is constrained

before the output buffer, and the miss ratio is

measured after it. The output buffer effect on miss

ratio is hard to predict, but it will generally reduce the

miss ratio. It can be observed that the combination of

calibration and buffering is very effective.

Summarizing the main conclusions, for an MP3

player that is mainly used to listen mixed or stereo

songs, the energy reduction that can be obtained by

applying our approach is between 12% and 19%, for

a miss ratio of up to one frame per 6 minutes

(0:008%). The most energy efficient solution has 17

scenarios when decoding mixed (or only mono

streams), and six when decoding only stereo streams.

Having concluded that our approach is effective, it

is interesting to consider some of the design deci-

sions in our approach, and some of the individual

components in a bit more detail.

Recall that the decision diagram construction algo-

rithm of Section 6 uses two heuristics, one for labeling

nodes in the diagram and one for traversing the diagram

during the reduction. This leads to four possible

combinations. For all three experiments we did, the

most efficient predictor was the one generated by

selecting during the decision diagram construction first

the variables with the least number of possible values

and by using a breadth-first reduction approach. This

combination is the most effective one in many cases,

although in some of our later experiments also other

combinations turn out to be the most effective one.

To show that the runtime calibration mechanism

and all the steps that we used during the decision

diagram construction are relevant for energy reduc-

tion, we did eight different experiments for a thresh-

old of 0.1% using the set of mixed streams as the

benchmark, as shown in Table 1. These experiments

cover all possible cases for enabling/disabling three

different components: (i1) the runtime calibration

mechanism, (2) the node merging and removal (steps

2&3) in the decision diagram construction algorithm,

and (3) the usage of interval edges in the algorithm

(step 4). The node merging and removal were

considered together because they are very tightly

linked: by merging some nodes, other nodes become

irrelevant as decision makers, so they can be

removed.

The most important observation from Table 1 is

that the merging and removal steps are essential to,

and effective in, obtaining a substantial energy

reduction. It turns out that when these optimization

steps are omitted, 97% of the frames in the

benchmark test falls into the backup scenario. This

explains the low energy savings when the merging

and removal steps are disabled. This also shows that

the runtime prediction is not very effective in that

case, which is in fact an indication that the training

0.000% 0.000%

0.008%

0.001%
0.000%

0.019%

0.000%

0.002%

0.004%

0.006%

0.008%

0.010%

0.012%

0.014%

0.016%

0.018%

0.020%

Stereo Mono Mixed

Evaluated bitstream type

M
is

s
 R

a
ti

o
 [

%
]

Threshold = 1% Threshold = 0.1%

Figure 19. Miss ratio for the MP3 decoder.

Scenario Selection and Prediction for DVS-Aware Scheduling 155

bitstream was not sufficiently representative to

obtain a good predictor (without these optimiza-

tions). An important conclusion from these experi-

ments is that the optimization steps in the decision

diagram construction algorithm provide a high

degree of robustness to our approach. They effec-

tively resolved the shortcomings of a poor training

bitstream. The results furthermore show that also the

interval optimization and the runtime calibration

mechanism lead to further reductions in energy

consumption. A final observation is that, for all the

experiments, including the ones with the runtime

calibration mechanism disabled, a set of scenarios

and a predictor that meet the 0.1% miss ratio

threshold was found. However, even if for this

benchmark the required threshold could be met when

the runtime calibration mechanism is not used, this

will not be the case for all benchmarks and for all

thresholds.

8.2. MPEG-2 Motion Compensation

An MPEG-2 video sequence is composed of frames,

where each frame consists of a number of macroblocks

(MBs). Decoding an MPEG-2 video can therefore be

considered as decoding a sequence of MBs. This

involves executing the following tasks for each MB:

variable length decoding (VLD), inverse discrete

cosine transformation (IDCT) and motion compensa-

tion (MC). Other tasks, like inverse quantization (IQ),

involve a negligible amount of computation time, so

we ignore them for the purpose of our analysis.

For our analysis, we use the source code from

[21], and as a training bitstream we consider the first

20,000 MBs from each test file from [31]. As the

IDCT execution time for each MB is almost

constant, we focus on MC and VLD. In case of the

VLD, our tool could not discover the parameters that

influence the execution time, as they do not exist in

the code. This task is really data dependent, reading

and processing the input stream for each MB until a

stop flag is met. For the MC task, the parameters

found by our tool include all the parameters

identified manually in [2], and which can be found

in the source code. Observe that when knowledge

characterizing frame execution times is introduced in

frame headers, as for example, proposed in [26], our

tool will be able to fully automatically detect the

variables that store this information, and then exploit

it to obtain energy reductions.

In the remainder of the experiment, we focus on

the MC task, for which the processing period of a

MB is 120�s, which is very close to the frequency

switching time tswitch ¼ 70�s. Therefore, we ana-

lyzed the possibility of using different values for the

weight coefficient � in the cost function of Eq. (8). A

larger value will give higher importance to reducing

the number of runtime switches, than to reducing the

over-estimation, and it will usually result in smaller

scenario sets. We evaluated all � values between one

and six, and we found that the best energy saving

may be obtained for � ¼ 3.

The evaluation of our approach in terms of energy on

the full streams of [31] is shown in Fig. 20. Three miss

ratio thresholds were evaluated, the two used for the

previous experiment (1 and 0:1%), and an intermediate

one (0:2%). For this application, the most energy

efficient solutions use three scenarios for the 1 and

Table 1. Experimental results for MP3 with a threshold of 0.1% miss ratio.

Decision diagram construction Runtime

calibration
Selected predictor Measured miss

ratio (%)

Energy reduction

(%)

Merging and

Removal Intervals #Scenarios Var. selection Reduction

X X X 17 Least values Breadth-first 0.008 18.65

X – X 17 Least values Breadth-first 0.008 15.46

– X X 67 Least values – 0 1.08

– – X 67 Least values – 0 1.08

X X – 17 Most values Breadth-first 0.085 16.73

X – – 17 Least values Breadth-first 0.008 15.46

– X – 67 Least values - 0 1.11

– – – 67 Least values – 0 1.08

156 Gheorghita et al.

0:2% miss ratio threshold, and two scenarios for the

0:1% threshold. The predictors were built by selecting,

as for the MP3 decoder, first the variables with the

least number of possible values, but using a depth-first

instead of breadth-first reduction approach.

The measured miss ratio for all three thresholds is

shown in Fig. 21. For a threshold of 0:2%, we

obtained a 13% average energy reduction for all

streams. The measured miss ratio was 0:09%, which

represents one macroblock missed in every 13

frames when the video stream is in a QCIF format,

that has a resolution of 176x144 pixels.

If the threshold is pushed to 0:1%, the energy

reduction drops to 3%, as for three of the 11 streams,

it was very difficult to obtain this miss ratio. This is

due to the considered buffer that can accommodate

only a variation in execution of at most 18�s, which

is approximatively four times smaller than tswitch.

The results motivated us to do some experiments

with varying buffer sizes and switching costs, to

investigate their impact on energy savings and miss

ratio. Table 2 shows the result of three experiments,

the first one being the same experiment as reported

in Figs. 20 and 21. It can be observed that a larger

energy reduction for a 0:1% threshold (or any of the

thresholds reported in Figs. 20 and 21) with a small

measured miss ratio can be obtained when the

frequency switching time tswitch is smaller or by

increasing the output buffer size. The first might be

obtained by using a different switching mechanism

within the processor or another processor, and the

second one is a viable solution when MC is

considered in the context of a full MPEG-2 decoder.

Then, the buffer size can be increased without a

supplementary cost, as the decoder already has to

store the entire frame.

As a final remark, it should be noted that, when MC

is embedded in a complete MPEG-2 decoder, the

relative energy reduction observed by our approach

will decrease. Even though MC is the most energy

hungry component in the decoder, it does not count for

more than 50% of the total energy. However, as

already mentioned, if knowledge about frame execu-

tion times is introduced in the headers, as in [2, 15, 26],

our tool will be able to exploit this information to

optimize more components of the decoder.

8.3. G.72� Voice Decompression

This benchmark [30] implements the decoders for a

set of G.721/G.723 adaptive differential pulse-code

modulation (ADPCM) telephony speech codec

standards covering the transmission of voice at rates

of 24, 32, and 40 kbit/s. Its input streams are sampled

at the rate of 8,000 samples/s, so the deadline for

each sample is 125�s.

We analyzed our approach on the streams of [6],

using as training bitstream 3,000 samples from each

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100b bbc3 cact flwr mobl mulb pulb susi tens time v700

Bitstream

R
a
ti

o

No Scenarios Scenarios [Threshold = 1%] Scenarios [Threshold = 0.2%] Scenarios [Threshold = 0.1%] Oracle

Figure 20. Normalized energy consumption for MPEG-2 MC.

Scenario Selection and Prediction for DVS-Aware Scheduling 157

test file. The best energy saving was obtained using a

set of three scenarios, each of them associated with a

specific voice transmission rate: 24, 32 and 40 kbits/s.

Figure 22 shows the results, both detailed per input

type, and averaged. As for each stream the transmis-

sion rate is fixed, the number of runtime switches is

exactly one, namely the initial scenario selection for

the first sample from the stream. This, together with

the fact that only one parameter is used in scenario

detection, which helped in having a fully represen-

tative training bitstream, leads to a miss ratio equal

to zero for any imposed threshold. So, even if the

resulting improvement is small (just 2%), it comes

for free, without quality reduction. Furthermore, our

method realizes close to 50% of the maximum

theoretical possible improvement of slightly over

4%, computed via the oracle. The result of almost

50% of the theoretical maximum is inline with the

earlier two experiments.

9. Conclusion

In this paper, we have presented a profiling driven

approach to detect and characterize scenarios for

single-task soft real-time multimedia applications.

The scenarios are identified based on the automati-

cally detected control variables whose values influ-

ence the application execution time the most. In

addition, we present a technique to automatically

derive and insert predictors in the application code,

which are used at runtime to select the current

scenario. Our method is fully automated and it was

tested on three multimedia applications. For all of

them, the identified sets of variables are similar to

manually selected sets. We show that, using a

proactive DVS-aware scheduler based on the scenar-

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

100b bbc3 cact flwr mobl mulb pulb susi tens time v700

Bitstream

M
is

s
 R

a
ti

o
 [

%
]

Threshold = 1% Threshold = 0.2% Threshold = 0.1%

Figure 21. Miss ratio for the MPEG-2 MC.

Table 2. Experimental results for MPEG-2 MC with a threshold

of 0.1% miss ratio.

Buffer size

ðmacroblocksÞ tswitch ð�sÞ
Energy

reduction (%)

Measured miss

ratio (%)

1 70 2.7 0.029

1 10 17.1 0

10 70 15.9 0.008

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

24kbps G.723 32kbps G.721 40 kbps G.723 Average

Evaluated bitstream type

R
a

ti
o

No Scenarios With Scenarios Oracle

Figure 22. Normalized energy consumption for the G.72� voice

decompression.

158 Gheorghita et al.

ios and the runtime predictor generated by our tool

using the identified variables, energy consumption

decreases with up to 19%, having guaranteed, using

a simple runtime calibration mechanism, a frame

deadline miss ratio of less than 0.1%. In practice, due

to output buffering, the measured miss ratio de-

creases even to almost zero.

In future work, we would like to investigate dif-

ferent runtime calibration algorithms, that learn on

the fly and adapt the scenario bounds, the number

of scenarios and the decision diagram underlying

the predictor. The information collected and pro-

cessed by these control algorithms will be used not

only for keeping the miss ratio under control, but

also for further reduction in energy consumption.

We also plan to extend our work to multi-task

applications. Even if most of the basic steps of the

presented trajectory (e.g., parameter identification,

scenario prediction) remain unchanged, others,

particularly scenario selection, have to be adapted

to accommodate the specific problems that appear

in multi-task applications (e.g., communication

delay between tasks, pipelined execution). More-

over, scenario based design is not limited to

multimedia applications and execution time estima-

tion. It is interesting to investigate to what extent

our techniques can be applied to other systems and/

or other resource costs (such as memory accesses).

Again, parameter identification and scenario pre-

diction seem relatively straightforward to adapt.

Scenario selection is the step that depends the most

on the particular context.

Acknowledgment

This work was supported by the Dutch Science

Foundation, NWO, project FAME, number 612.064.101.

More information can be found on http://www.es.ele.

tue.nl/scenarios.

Notes

1. The unused processor cycles represent the difference between

how many cycles were estimated and how many were really

needed by the application.

2. Eq. (1) could potentially have non-linear dependencies on the

�kðiÞ (e.g., �kðiÞ
2). For this paper, the function format is not

relevant, as we only use the �kðiÞ to predict the program

scenarios and not to estimate the cycle count.

3. The same behavior appears also in the case of counters, but we

do not make the difference between counters and iterators,

removing these variables in both cases.

4. tswitch can be extracted from the processor datasheet.

5. The sequence slope is the slope of the segment that links the

first and the last point from the sequence.

6. Scenario 2 from the decision diagram is the same as the

scenario j computed in Fig. 9.

References

1. S.P. Amarasinghe, J.M. Anderson, M.S. Lam, and A.W. Lim,

BAn Overview of a Compiler for Scalable Parallel Machines,^
in Proc. of the 6th International Workshop on Languages and

Compilers for Parallel Computing, Springer-Verlag, Ger-

many, 1993, pp. 253–272.

2. A.C. Bavier, A.B. Montz and L.L. Peterson, BPredicting

MPEG Execution Times,^ ACM SIGMETRICS Perform. Eval.

Rev., vol. 26, no. 1, 1998, pp. 131–140.

3. T.D. Burd, T.A. Pering, A.J. Stratakos and R.W. Brodersen,

BA Dynamic Voltage Scaled Microprocessor System. IEEE J

Solid-State Circuits, vol. 35, no. 11, 2000, pp. 1571–1580.

4. J.M. Carroll (Ed.) BScenario-based Design: Envisioning Work
and Technology in System Development^. Wiley, New York,

NY, 1995.

5. S.S. Chawathe, A. Rajaraman, H. Garcia-Molina and J. Widom

BChange Detection in Hierarchically Structured Information,^
ACM SIGMOD Record, vol. 25, no. 2, 1996, pp. 493–504.

6. S.M. Clamen B8bit ULAW files collection,^ 2006. http://

www.cs.cmu.edu/People/clamen/misc/tv/Animaniacs/sounds/

7. G. Contreras, M. Martonosi, J. Peng, R. Ju and G.Y. Lueh,

BXTREM: A Power Simulator for the Intel XScale core. ACM

SIGPLAN Not., vol. 39, no. 7, 2004, pp. 115–125.

8. M. Dietz, et al., BMPEG-1 audio layer III test bitstream

package,^ 1994. http://www.iis.fhg.de.

9. B. Douglass, BReal Time UML: Advances in the UML for

Real-Time Systems,^ Addison Wesley, Reading, MA, 2004.

10. S.V. Gheorghita, T. Basten and H. Corporaal, BIntra-task

Scenario-aware Voltage Scheduling,^ in Proc. of the Interna-

tional Conference on Compilers, Architecture and Synthesis

for Embedded Systesms (CASES), ACM Press, New York, NY,

2005, pp. 177–184.

11. S.V. Gheorghita, T. Basten and H. Corporaal, BApplication

Scenarios in Streaming-oriented Embedded System Design,^
in Proc. of the International Symposium on System-on-Chip
(SoC 2006). IEEE Computer Society Press, Los Alamitos, CA,

2006, pp. 175–178.

12. S.V. Gheorghita, T. Basten and H. Corporaal, BProfiling

Driven Scenario Detection and Prediction for Multimedia

Applications,^ in Proc. of the International Conference on

Embedded Computer Systems: Architectures, Modeling, and

Simulation (IC-SAMOS), IEEE Computer Society Press, Los

Alamitos, CA, 2006, pp. 63–70.

13. S.V. Gheorghita, S. Stuijk, T. Basten and H. Corporaal,

BAutomatic Scenario detection for improved WCET estima-

tion, in Proc. of the 42nd Design Automation Conference
DAC, ACM Press, New York, NY, 2005, pp. 101–104.

Scenario Selection and Prediction for DVS-Aware Scheduling 159

http://www.es.ele.tue.nl/scenarios
http://www.es.ele.tue.nl/scenarios
http://www.cs.cmu.edu/People/clamen/misc/tv/Animaniacs/sounds/
http://www.cs.cmu.edu/People/clamen/misc/tv/Animaniacs/sounds/
http://www.iis.fhg.de

14. M. Hind, M. Burke, P. Carini and J. Choi, BInterprocedural

Pointer Alias Analysis,^ ACM Trans. Program. Lang. Syst.,

vol. 21, no. 4, 1999, pp. 848–894.

15. Y. Huang, S. Chakraborty and Y. Wang, BUsing Offline

Bitstream Analysis for Power-aware Video Decoding in

Portable Devices,^ in Proc. of the 13th ACM International

Conference on Multimedia, ACM Press, New York, NY, 2005,

pp. 299–302.

16. Intel Corporation: Intel XScale microarchitecture for the

PXA255 processor: User_s manual (2003). Order No.

278796.

17. N.K. Jha, BLow Power System Scheduling and Synthesis,^ in

Proc. of the IEEE/ACM International Conference on Com-

puter Aided Design (ICCAD), IEEE Computer Society Press,

Los Alamitos, CA, 2001, pp. 259–263.

18. K. Lagerström, BDesign and Implementation of an MP3

decoder. http://www.kmlager.com/mp3/. M.Sc. thesis, Chalm-

ers University of Technology, Sweden, 2001.

19. A. Maxiaguine, Y. Liu, S. Chakraborty and W.T. Ooi,

BIdentifying Frepresentative_ Workloads in Designing MpSoC

Platforms for Media Processing,^ in Proc. of 2nd Workshop on

Embedded Systems for Real-Time Multimedia (ESTIMedia),

IEEE Computer Society Press, Los Alamitos, CA, 2004, pp.

41–46.

20. E.J. McCluskey, BMinimization of Boolean Functions,^ Bell

Syst. Tech. J., vol. 35, no. 5, 1956, pp. 1417–1444.

21. MPEG Software Simulation Group, BMPEG-2 video codec,^
2006. ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2vidcodec_v12.

tar.gz.

22. S. Murali, M. Coenen, A. Radulescu, Goossens, K. and G.

DeMicheli, BA Methodology for Mapping Multiple Use-cases

Onto Networks on Chips,^ in Proc. of Design, Automation,

and Test in Europe (DATE), IEEE Computer Society Press,

Los Alamitos, CA, 2006, pp. 118–123.

23. M. Palkovic, H. Corporaal and F. Catthoor, BGlobal Memory

Optimisation for Embedded Systems Allowed by Code

Duplication,^ in Proc. of the 9th International Workshop on

Software and Compilers for Embedded Systems (SCOPES),
ACM Press, New York, NY, 2005, pp. 72–79.

24. J.M. Paul, D.E. Thomas, and A. Bobrek, BScenario-oriented

Design for Single-chip Heterogeneous Multiprocessors, ^IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 14, no. 8, 2006, pp. 868–880.

25. M. Pedram, W.C. Cheng, K. Dantu and K. Choi, BFrame-

based Dynamic Voltage and Frequency Scaling for a MPEG

decoder,^ in Proc. of {IEEE/ACM} International Conference

on Computer-Aided Design (ICCAD), ACM Press, New York,

NY, 2002, pp. 732–737.

26. P. Poplavko, T. Basten, M. Pastrnak, J. van Meerbergen, M.

Bekooij and P. de With, BEstimation of Execution Times of On-

chip Multiprocessors Stream-oriented Applications,^ in Proc. of

the 3rd ACM/IEEE International Conference in Formal

Methods and Models for Codesign (MEMOCODE), IEEE

Computer Society Press, Los Alamitos, CA, 2005, pp. 251–252.

27. M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van

der Wolf, E.D. Pol, O.P. Gangwal and A. Timmer, BA

Heterogeneous Multiprocessor Architecture for Flexible

Media Processing,^ IEEE Des. Test Comput., vol. 19, no. 4,

2002, pp. 39–50.

28. R. Sasanka, C.J. Hughes and S.V. Adve, BJoint Local and

Global Hardware Adaptations for Energy,^ ACM SIGARCH
Comput Archit News, vol. 30, no. 5, 2002, pp. 144–155.

29. D. Shin and J. Kim, BOptimizing Intra-task Voltage Schedul-

ing Using Data Flow Analysis,^ in Proc. of the 10th Asia and
South Pacific Design Automation Conference (ASP-DAC),

ACM Press, New York, NY, 2005, pp. 703–708.

30. Sun Microsystems, Inc., Free Implementation of CCITT

compression types G.711, G.721 and G.723, 2006.

31. Tektronix, BMPEG-2 video test bitstreams,^ 2006. ftp://

ftp.tek.com/tv/test/streams/Element/MPEG-Video/525/.

32. I. Wegener, BInteger-Valued DDs,^ in Branching Programs

and Binary Decision Diagrams: Theory and Applications,
SIAM Monographs on Discrete Mathematics and Applica-

tions, chap. 9. Society for Industrial and Applied Mathematics,

Philadelphia, PA, 2000.

33. P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P.

David, J. Vounckx, and R. Lauwereins, BCost-efficient

Mapping of Dynamic Concurrent Tasks in Embedded Real-

time Multimedia Systems,^ in Multi-Processor Systems on
Chip, chap. 11, W. Wolf, A. Jerraya (Eds.), Morgan

Kaufmann, San Francisco, CA, 2003.

Valentin Gheorghita received his B.Sc. and M.Sc. degrees in

Computer Science and Engineering from the FFPolitehnica__
University of Bucharest, Romania in 2002, and respectively

2003. During his studies, he received two six-month research

scholarships, one in the Tampere University of Technology,

Finland (2000) and one in the National University of Singapore

(2002). Moreover, he won multiple prizes at international

programming contests, and he worked for three years in

different software and consultancy companies. In 2003, Valentin

Gheorghita joined the Electrical Engineering Department from

the Eindhoven University of Technology, Netherlands for his

Ph.D. studies. He is due to defend his Ph.D. in 2007. The current

focus of his research is on embedded systems, especially on

applications and design flow. During his Ph.D. studies, in the

fall of 2005, he went for a three-month internship at Google

160 Gheorghita et al.

http://www.kmlager.com/mp3/
ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2vidcodec_v12.tar.gz
ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2vidcodec_v12.tar.gz
ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/525/
ftp://ftp.tek.com/tv/test/streams/Element/MPEG-Video/525/

Inc., Mountain View, CA. Valentin Gheorghita published more

than 10 scientific publications.

Dr.ir. Twan Basten is an Associate Professor in the

Department of Electrical Engineering at the Eindhoven

University of Technology. He has a Master’s degree (with

honors) and a Ph.D. degree in Computing Science from the

same university. Twan Basten worked as visiting researcher at

the University of Waterloo, Canada, Philips Research Labo-

ratories, Eindhoven and Carnegie Mellon University, Pitts-

burgh, PA. His research interest is the design of complex,

resource-constrained embedded systems, based on a solid

mathematical foundation, with a focus on multiprocessor

systems. Twan Basten was the Ambient Intelligence co-chair

in the DATE 2003 PC, topic chair in the DATE 2004 and

2005 PCs, and the PC co-chair for ACSD 2007. He

(co)authored over 80 scientific publications. He is a member

of the ACM and a senior member of the IEEE.

Henk Corporaal has gained a M.Sc. in Theoretical Physics

from the University of Groningen, and a Ph.D. in Electrical

Engineering, in the area of Computer Architecture, from Delft

University of Technology. Corporaal has been teaching at

several schools for higher education, has been Associate

Professor at the Delft University of Technology in the field

of computer architecture and code generation, had a joint

professor appointment at the National University of Singapore,

and has been Scientific Director of the joined NUS-TUE

Design Technology Institute. He also has been Department

Head and Chief Scientist within the DESICS (Design

Technology for Integrated Information and Communication

Systems) division at IMEC, Leuven (Belgium). Currently,

Corporaal is Professor in Embedded System Architectures at

the Einhoven University of Technology (TU/e) in The

Netherlands. He has co-authored over 200 journal and

conference papers in the (multi-)processor architecture and

embedded system design area. Furthermore, he invented a new

class of VLIW architectures, the Transport Triggered Archi-

tectures, which is used in several commercial products. His

current research projects are on the predictable design of soft-

and hard real-time embedded systems.

Scenario Selection and Prediction for DVS-Aware Scheduling 161

	Scenario Selection and Prediction for DVS-Aware Scheduling of Multimedia Applications
	Abstract
	Introduction
	Related Work
	Overview of our Approach
	Multimedia Applications
	Scenario-aware Energy Reduction

	Application Parameter Discovery
	Cycle Budget Estimation
	Control Variable Identification
	Trace Analyzer

	Scenario Selection
	The Scenario Selection Problem
	Scenario Signatures
	Scenario Sets Generation
	Scenario Sets Selection

	Scenario Analyzer
	Quality Preservation Mechanism
	Experimental Results
	MP3 Decoder
	MPEG-2 Motion Compensation
	G.72× Voice Decompression

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

