
Biosequence Similarity Search on the Mercury System

Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame
Gyang, Arpith Jacob, and Joseph Lancaster
Department of Computer Science and Engineering Washington University in St. Louis

Abstract
Biosequence similarity search is an important application in modern molecular biology. Search
algorithms aim to identify sets of sequences whose extensional similarity suggests a common
evolutionary origin or function. The most widely used similarity search tool for biosequences is
BLAST, a program designed to compare query sequences to a database. Here, we present the design
of BLASTN, the version of BLAST that searches DNA sequences, on the Mercury system, an
architecture that supports high-volume, high-throughput data movement off a data store and into
reconfigurable hardware. An important component of application deployment on the Mercury system
is the functional decomposition of the application onto both the reconfigurable hardware and the
traditional processor. Both the Mercury BLASTN application design and its performance analysis
are described.

1: Introduction
Computational search through large databases of DNA and protein sequence is a fundamental
tool of modern molecular biology. Rapid advances in the speed and cost-effectiveness of DNA
sequencing have led to an explosion in the rate at which new sequences, including entire
mammalian genomes [35], are being generated. To understand the function and evolutionary
history of an organism, biologists now seek to identify discrete biologically meaningful
features in its genome sequence. A powerful approach to identify such features is comparative
annotation, in which a query sequence, such as new genome, is compared to a large database
of known biosequences. Database sequences exhibiting high similarity to the query, as
measured by string edit distance [31], are hypothesized to derive from the same ancestral
sequence as the query and in many cases to have the same biological function.

BLAST, the Basic Local Alignment Search Tool [1], is the most widely used software for
rapidly comparing a query sequence to a biosequence database. Although BLAST’s algorithms
are highly optimized for efficient similarity search, growth in the databases it uses is outpacing
speed improvements in general-purpose computing hardware. For example, the National
Center for Biological Information (NCBI) Genbank database grew exponentially between 1992
and 2003 with a doubling time of 12–16 months [24]. The problem is particularly acute for
BLASTN, the BLAST variant used to compare DNA sequences, because each new genome
sequenced from animals or higher plants produces between 108 and 1010 bytes of new DNA
sequence.

One response to runaway growth in biosequence databases has been to distribute BLAST
searches across multiple computers, each responsible for searching only part of a database.
This approach requires both a substantial hardware investment and the ability to coordinate a

{praveenk, jbuhler, roger, jbf, kg2, jarpith, jmlancas}@cse.wustl.edu.

NIH Public Access
Author Manuscript
J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC
2008 October 8.

Published in final edited form as:
J VLSI Signal Process Syst Signal Image Video Technol. 2007 ; 49(1): 101–121.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

search across processors. An alternate approach that makes more parsimonious use of hardware
is to build a specialized BLAST accelerator. By using an application-specific architecture and
exploiting the high I/O bandwidth of modern storage systems, an accelerator can execute the
BLAST algorithms much faster than a general-purpose CPU.

The Mercury system [9] is a prototype architecture that supports disk-based computation at
very high data rates using reconfigurable hardware. Computing applications historically have
been coded using the following paradigm: read input data into main memory with explicit I/O
calls, compute on that data writing results back to main memory, and send the output from
main memory with explicit I/O calls. In contrast, the Mercury system is built around the concept
of continuous data flow. Data from disk(s) flow into the computational resource(s); one or
more functions (often physically pipelined) are performed on the data; and the results flow to
the intended destination. As the computational resources include reconfigurable hardware,
application deployment requires hardware/software codesign. The Mercury system builds upon
the work of Reidel [30] (active disks), Dally [11] (stream processors), and a host of work
developed in the reconfigurable computing community.

This paper describes the re-engineering of the original BLASTN application for effective
deployment on the Mercury system. We examine the existing application to explore its
performance properties, propose a novel algorithmic optimization, prototype a number of
critical components of the application, and evaluate the performance potential of the overall
application running on the Mercury system.

2: System Architecture
The Mercury system (Figure 1) contains reconfigurable logic, associated with the disk
controller, that provides computing capability in close proximity to the data flowing off the
disk drive(s). Initial processing of the data occurs locally at the disk, prior to delivery to the
processor. The reconfigurable logic is implemented via a Field-Programmable Gate Array
(FPGA).

Application functionality is divided into two parts executing on the FPGA and the main
processor, respectively. Application deployment therefore has the classic components of a
hardware/software codesign problem, with the need to map application elements to multiple
computational resources (i.e., FPGA and processor). A unique aspect of the Mercury system
is that it was designed specifically to work well with high-volume data applications. The
computational resource that is best suited to simpler, repetitive operations on a large data set
is positioned closer to the data, while the resource best suited to more complex operations on
smaller data volumes is (logically) farther away from the data.

The application set that is well matched to the Mercury system architecture is a pipeline that
consumes a high data volume at its input, reduces that data volume to a smaller set, and performs
higher-level processing on this smaller set. Our previous work has illustrated the use of the
system for a number of text search applications [6,7,8,14,36,38]. BLASTN has properties that
fit well with the Mercury system’s capabilities.

While Figure 1 illustrates our vision of the system architecture, our prototyping work has so
far been limited to a series of implementations that are progressively closer to, but do not yet
exactly match, the architecture depicted in the figure. Our earliest prototypes used ATA drives
[36,38] and were severely speed-limited by the disks. Our most recent prototypes are built
using a set of 15,000 rpm Ultra320 SCSI drives organized in a RAID-0 configuration. On this
configuration, we have demonstrated sustained read performance of over 800 MB/sec for
continuous 500 GB reads. The prototype FPGA infrastructure is currently parallel to the disk

Krishnamurthy et al. Page 2

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

controller on the I/O bus, which limits throughput into the FPGA. We have, however,
demonstrated sustained data throughput of over 700 MB/sec from the disk array into the FPGA
[7,8].

In what follows, we refer to computations deployed in the FPGA as firmware and computations
deployed on the processor as software. To facilitate the deployment of applications on the
FPGA, we have developed a firmware socket interface that provides a consistent environment
for the development of firmware application modules. Data from the disk array is delivered to
the FPGA via the firmware socket, while outbound data from the reconfigurable logic is
delivered into the main memory of the processor for access by software.

The current prototype system uses a Xilinx Virtex-II 6000 series FPGA, which provides 8,448
Configurable Logic Blocks (CLBs), 144 18 Kbit Block RAMs (BRAMs), 144 18×18 bit
multipliers, and 1104 I/O pins. Each CLB is comprised of 4 slices and each slice provides two
4 input lookup tables (LUTs) for a total of 67,584 LUTs on chip.

3: Description of NCBI BLASTN
This section describes the open-source version of BLASTN distributed by the National Center
for Biological Information (NCBI) and used by numerous biological research labs. As shown
in Figure 2, BLASTN is functionally organized as a pipeline with three stages: word matching,
ungapped extension, and gapped extension. The inputs to this pipeline are a query sequence
and a database, each consisting of a string of DNA bases. A base is typically one of {A, C, G,
T}, but other characters (a total of 15) are used to denote uncertainty about or special properties
of certain bases. DNA sequences, including these special characters, can be represented using
four bits per base; however, to minimize storage and I/O bandwidth, NCBI BLASTN stores
its database using only two bits per base.

Each stage of BLASTN’s pipeline implements progressively more sophisticated and more
expensive computations to identify biologically meaningful similarities between query and
database. In stage 1, BLASTN discovers word matches between query and database. A word
match is a string of some fixed length w (hereafter called a “w-mer”) that occurs in both query
and database. Significantly similar sequences usually share a w-mer match for w ≈ 10, though
such matches also occur frequently by chance between unrelated sequences. Each word match
is therefore filtered through stage 2, which tries to extend it into an ungapped alignment
between query and database. An ungapped alignment may contain mismatched bases but
consists primarily of matching base pairs. Ungapped alignments with too few matching base
pairs are discarded, while the remainder are further filtered through stage 3, which extends
them into gapped alignments that permit both mismatches and localized insertion or deletion
of bases. In the final operation following the end of stage 3, gapped alignments with sufficiently
many matching base pairs are reported to the user. The detailed algorithm for BLASTN stage
2 is described in [21], while that for stage 3 is a variant of the standard Smith-Waterman
dynamic programming algorithm [31].

Although each stage of BLASTN is more compute-intensive than the last, each stage also
discards a substantial fraction of its inputs. The volume of data that is processed at each stage
therefore gradually decreases. Table 1 quantifies the data reduction at each stage of the
pipeline1. The match rate, pi, represents the probability that an output from stage i is generated
from an individual input to that stage. For stage 1, p1 measures the number of matches per
DNA base read from the database. Stages 1 and 2 are highly effective at reducing the data

1Reduction measurements for NCBI BLASTN were taken in the same experiments used to generate the timings of Section 3.2.

Krishnamurthy et al. Page 3

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

volume to the next stage. Note that, as the query length increases, the rate at which matches
are output from stage 1 into stage 2 also increases, raising the workload for stage 2.

In the performance predictions that follow, we will consider the throughput of individual stages
of the pipeline as well as the throughput of the entire pipeline. To make throughputs
comparable, they are normalized to be in units of input bases per second from the database.
When executing on a single computational resource (i.e., software running on a single
processor), the average compute time per input base can be expressed as t1 + p1t2 + p1p2t3,
where ti is the compute time for stage i for each input item (base, match, or alignment) to stage
i. The normalized throughput is then T put = 1=(t1 + p1t2 + p1p2t3).

3.1: Details of BLASTN Stage 1
To facilitate later comparison with our firmware design, we now briefly describe the
implementation of NCBI BLASTN’s stage 1. This implementation uses a default word match
length w = 11. Due to the speed advantages of comparing complete bytes at a time, discovery
of 11-mer matches is implemented in two phases. BLASTN first checks two complete bytes
of the database, containing 8 bases, against a lookup table constructed from the query. Only
two-byte words occurring on full byte boundaries are checked. If the query contains the same
8-base word, BLASTN tries to extend this 8-base match to 11 bases by seeking additional
matching residues on either side.

Two 11-mer matches that occur close to each other in both the query and database are likely
to have arisen from the same underlying biological similarity. To avoid having later stages
expend the effort to discover this similarity twice, NCBI BLASTN implements a redundancy
elimination filter at the end of stage 2. The filter checks whether each new 11-mer match
overlaps or is close to a previously observed match. If so, the new match is suppressed, since
it would likely lead only to rediscovery of any feature found by the previous match.

3.2: Performance of NCBI BLASTN
To quantify the performance of NCBI BLASTN on a general-purpose CPU, we measured its
execution time with default parameters on a 2.8 GHz Pentium 4 PC, with an L2 cache size of
512 KB and 1 GB of RAM, running Linux. We compared a database containing the mouse
genome (1.16 Gbases after removing repetitive sequence) to queries of various lengths selected
at random from the human genome. CPU time was measured separately for each of the three
pipeline stages.

The length of a typical query sequence in BLASTN is application-dependent. For example, a
short DNA sequence obtained in a single lab experiment may be only a few kilobases, while
in genome-to-genome comparison, a query (one of the genomes) may be billions of bases long.
A BLAST implementation should support the largest computationally feasible query length,
both to accommodate long individual queries and to support the optimization of “query
packing,” in which multiple short queries are concatenated and processed in a single pass over
the database. Conversely, queries longer than the maximum feasible length may be broken into
pieces, each of which is processed in a separate pass.

In our experiments, we tested queries of 10 kbases, 25 kbases, 50 kbases, 100 kbases, and 1
Mbase, both to simulate different applications of BLASTN and to assess the impact of query
length on the performance of our firmware implementation. One megabase is a reasonable
upper bound on query size for NCBI BLASTN with standard parameters, since it generates
11-mer word matches by chance alone at a rate approaching one match for every base read
from the database. Timings were averaged over at least 20 queries for each length, and each

Krishnamurthy et al. Page 4

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

query’s running time was averaged over three identical runs of BLASTN. It should be noted
that, given a query sequence of length n, BLASTN compares the database to both the sequence
and its DNA reverse-complement, effectively doubling the query length. The performance
numbers reported in this section and throughout the rest of the paper reflect such “double-
stranded” queries.

Table 2 gives the distribution of times spent in each stage of NCBI BLASTN for various query
sizes. Times are given with 95% confidence intervals. Time spent in stage 1 dominated that
spent in later pipeline stages, while time spent in stage 3 was almost negligible. Although later
stages are computationally more intensive, each stage is such an efficient filter that it discards
most of its input, leaving later stages with comparatively little work.

From the measured running times of our experiments and the size of the mouse genome
database, we computed the throughput (in Mbases from the database per second) achieved by
NCBI BLASTN’s pipeline for varying query sizes. The results are shown in the first row of
Table 3. Throughput depends strongly on query length. To explain this observation, we used
the predicted filtering efficiencies pi for each pipeline stage and the distribution of running
times by stage to estimate the average time spent to process each base in stage 1, each word
match in stage 2, and each ungapped alignment in stage 3. These results are shown in the
remaining rows of the table. While the overhead per input remains constant for stage 2 and
actually decreases for stage 3, the cost per base in stage 1 grows linearly with query length.
This cost growth derives from the linear increase in the expected number of matches per base
that occur purely by chance, in the absence of any meaningful similarity.

The empirical performance of NCBI BLASTN’s pipeline demonstrates that stage 1 is a
performance bottleneck and therefore the first target for speedup in firmware.

4: Firmware Implementation of Stage 1
Our firmware implementation of stage 1 reflects the overall functionality of stage 1 in NCBI
BLASTN but makes no attempt to implement this functionality using the same mechanisms.
Our design decomposes stage 1 into 3 substages (Figure 3). The initial substage implements a
prefilter using Bloom filters; the middle substage determines the query position of w-mers in
the database that successfully pass through the Bloom filters (using hashing); and the final
substage performs redundancy elimination.

4.1: Prefiltering using Bloom Filters
A Bloom filter [2] is a probabilistic algorithm to quickly test membership in a large set using
multiple hash functions into a single array of bits. Bloom filters find many uses in networking
and other applications [12]. Figure 4 illustrates a typical Bloom filter datapath. Programming
the filter amounts to setting to ‘1’ each of the bits of the memory locations obtained by the
hash functions. Querying the Bloom filter yields a match when all the memory locations in the
vector obtained from hashing the query contain ‘1’.

A Bloom filter yields no false negatives but does yield false positives at a rate f determined by
the number of w-mers programmed into it and the length of its memory vector. The rate f can
be modeled as f = (1 − e−Nk/m)k, where N is the number of entries programmed into the filter
(query size), m is the filter memory size in bits, and k is the number of hash functions. Figure
5 shows the false positive rate of a Bloom filter, as a function of memory size, for different
query lengths. The number of hash functions, k, in Figure 5 is obtained as . The false
positive rate is obtained as .

Krishnamurthy et al. Page 5

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bloom filters are more efficiently implemented in firmware than in software, as we can store
the memory vectors on chip (using sets of block RAMs), calculate the hash functions in parallel,
and look up the locations of the memory vector in parallel. However, as the number of ports
on these block RAMs is finite, the hash functions are restricted to address only specific block
RAMs.

4.2 Architecture of Bloom filters
In our implementation, each distinct memory vector made using a set of block RAMs is
addressed using a unique hash function (see Figure 6, in which each ‘m’-bit memory is
constructed out of a set of block RAMs). The probability that a random bit in an ‘m’-bit memory
is set to 1 by a hash function is simply . The probability that it is not set is therefore . Now
since all N queries are programmed in each of the memories, the probability that a random bit
is not set by any of the N queries is . Hence, the probability that it is set is

. A random query will trigger a false positive if it randomly collides with set bits
in all the memories. In our design, the number of memories equals the number of hash functions
k. Hence, the probability that a query triggers a match is obtained as f = (1 −(1 − 1/m)N)k, where
m can also be interpreted as the address range of each hash function, N is the length of the
query, and k is the number of hash functions used.

Because the Bloom filter implementation is the primary block RAM-intensive stage in our
design, we dedicate 96 (about two-thirds) of the 144 block RAMs available on chip to it. The
stage is designed to consume 16 bases every clock cycle and to operate at 133 MHz (yielding
a potential throughput of 2 Gbases/s). To sustain this rate, we must process 16 w-mers every
clock cycle and so require 16 identical copies of the Bloom filter.

We reduce the memory requirements for the Bloom filtering stage in half by using both of the
ports of our dual-ported block RAMs. Furthermore, using the clock management circuitry on
the FPGA, we double-clock the block RAMs and in effect make each block RAM quad-ported.
This is illustrated in Figure 7. Four copies of the 4-way parallel Bloom filters are therefore
sufficient to process all 16 w-mers (illustrated in Figure 8).

Reducing the number of Bloom filter copies needed helps to decrease the false positive rate of
the queries, by dedicating more memory to each Bloom filter, or to process larger queries with
the same false positive rate. These tradeoffs are illustrated in Figure 9, which shows the
expected true match rate (solid line) and the overall match rate (including false positives) of
stage 1a (dashed lines). This figure assumes that the input to stage 1a never stalls (i.e., 16 bases
are available each clock cycle). The two double-clocking curves vary in how they utilize the
additional effective memory. One doubles k, while the other doubles m. Doubling the clock
rate of the block RAMs not only decreases the false positive rate for smaller query sizes but
also helps us support larger queries than would otherwise be possible.

The maximum query size that can be supported on our prototype is partially determined by the
rate of matches from stage 1a. Stage 1b (described below in Section 4.3) processes matches
from this stage, and it is designed to support an input rate of approximately one match every
clock cycle. Given an expected average input rate from the disk subsystem of 1.4 Gbases/s
(700 MB/s × 2 bases/byte) and a maximum ingest rate into stage 1a of 2 Gbases/s, 25 kbase
double-stranded queries are reasonably supported.

As similarities can exist between the query and database sequences, there is a good chance that
matches from stage 1a will be bursty. We maintain an on-chip queue of size 1000 w-mers to
accommodate such bursts. In the event that this queue fills up, for example in the case where

Krishnamurthy et al. Page 6

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

long genes are conserved between sequences, we can either store the matches from stage 1a in
off-chip DRAM or generate backpressure for the upstream stages. The performance
implications of this backpressure are minimal, as assessed below.

4.3: Hash Lookup
The second substage of stage 1 uses a hash table to identify those w-mers from the database
that actually occur in the query sequence. Each such w-mer must be mapped to its position or
positions in the query. Note that, in contrast to NCBI BLASTN, we do not test only those w-
mers falling on byte boundaries – every w-mer in the database is checked. The hash table is
implemented in an external SRAM attached to the FPGA, since the latter’s internal block
RAMs are too limited in size to contain tables built from large query sequences.

The need to access a single external SRAM is a potential source of pipeline bottlenecks.
Suppose that the SRAM can sustain only one read per clock cycle, which is a reasonable
assumption at high FPGA clock speeds. The data reduction achieved by our Bloom filters is
sufficient to ensure an average input rate to this substage of at most one w-mer per clock.
However, if processing a w-mer were usually to entail multiple, serial accesses to the SRAM
(e.g. to resolve hash collisions), we could not sustain even this modest data rate. Our design
for this stage therefore seeks to dispose of the vast majority of w-mers with only a single SRAM
lookup.

4.3.1: Near-Perfect Hashing—We have developed an FPGA-friendly approach to hash
table design, called near-perfect hashing, that empirically approximates the properties of a
perfect hash for our application. A perfect hash [32] for a set k1 … kn of keys maps each key
to a distinct table entry, with no collisions between keys in the set. Assuming we could find
such a perfect hash function h of the w-mers in our query sequence, checking whether the query
contains a given w-mer s would entail retrieving only a single entry h(s) from SRAM; if the
entry is empty or contains a key different from s, we know that s is not in the table.

Several methods exist [10,15,33] to generate perfect hash functions for applications (like ours)
in which the table size is limited and so cannot be much larger than the number of keys.
Unfortunately, to guarantee that a perfect hash exists for n keys, these approaches produce hash
functions whose representation takes ⊝(n log n) bits. When n is on the order of tens of
thousands, the number of on-chip bits required to compute hashes approaches a megabit, which
would consume a significant fraction of our FPGA’s capacity and would compete for space
with the Bloom filters of stage 1a. We therefore sought a more area-efficient approach that
nevertheless gives hashes with very few collisions.

Like many perfect hash generators, our approach uses the idea of displacement hashing [33].
To create fa mapping from a set C of w-mers, each consisting of 2w bits, into a table of size
2a for some fixed a, we construct a hash function h of the form

where A : {0, 1}2w → {0, 1}a and B : {0, 1}2w → {0, 1}b are easily-computed functions of the
key, ⊕ is the bitwise XOR operation, and τ is a displacement table of 2b small integers. The
functions A and B are chosen so that the pairs (A(s), B(s)) are distinct for all keys s ∈ C. The
displacement table can then be exploited to resolve collisions as follows: if w-mers s1 and s2
have A(s1) = A(s2) but B(s1) ≠ B(s2), try to choose distinct values for τ[B(s1)] and τ [B(s2)] to
ensure that h(1) ≠ h(2).

Krishnamurthy et al. Page 7

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The hash functions A and B in our construction are chosen from the H3 family described in
[5,29], which is efficiently computable in hardware. An H3 function g from p to q bits consists
of q p-bit vectors v1 … vp. Let M be the q × p Boolean matrix whose rows are the vi’s. Then
for a p-bit input vector s, g(s) is the vector-matrix product s · M over the mathematical field
(Z2, XOR, AND).

A novel aspect of our approach is that we choose M to be a random linear transformation of
full rank; that is, the q rows of these matrices are linearly independent over . It can be shown
that, if H3 hash function M has rank q, then it maps exactly 2p–qp-bit inputs to each of its 2q

possible outputs. Moreover, if we choose random A and B of full rank (a and b respectively),
and a + b ≥ 2w, then A and B have probability at least 1/4 of mapping every s ∈ C to a distinct
pair (A(s), B(s)), as is required by our construction. Hence, a small number of trials is sufficient
to find such A and B. Finally, we note that a random p × q Boolean matrix, p ≥ q, with no zero
rows has probability at least 1/4 of being full rank, and we can test this for property efficiently
using Gaussian elimination; hence, full rank H3 functions are easy to generate. Proofs of the
above properties may be found in [3].

Given suitable A and B, we are left with the problem of filling in the displacement table τ so
as to resolve the collisions induced by the A hash alone. Unlike the abovementioned perfect
hash generators, our τ has many fewer than 2a entries, and these entries use fewer than a bits.
For example, when |C| ≈ 50000 (a 25 kbase query), we use a τ with 2048 entries of 8 bits each
and so consume only 16 Kbits on chip. Such as τ is too small to guarantee existence of a perfect
hash according to the analysis of, e.g., [33], so we settle for seeking values for the entries of
τ that minimize the number collisions. Our scheme may not produce a perfect hash, whence
comes the name “near-perfect.”

The following efficient greedy heuristic chooses values for the displacement table τ that
empirically achieve few, and often no, collisions in our application. First, sort the 2b values of
B in decreasing order by the number of keys mapping to each. Let {β1 … β2b} be the resulting
sequence of B-values. For each i from 1 to 2b, greedily assign a value to τ [βi] so as to minimize
the number of collisions with all keys with B-values B-values β1 …βi−1. Once τ has been filled
in, we may heuristically improve it by trying to modify each entry τ [βi] in turn to minimize
collisions given the other values in τ. This cycle is repeated a fixed number of times, as
computational costs permit.

To support 25 kbase queries with w = 11, we set a = 18, b = 11, and permit each entry of τ to
be up to 8 bits. We therefore map w-mers to a table of 218 entries in SRAM, using a modest
214 bits of space on chip for τ. On a sample of thirty 25 kbase DNA query sequences drawn at
random from the human genome, our heuristic almost always generated perfect hash functions,
only occasionally producing one or two collisions. For comparison purposes, using the A hash
alone with no displacement table produced an average of 7718 collisions over the same queries.
On a 2 GHz AMD Opteron workstation, the time to generate h for these queries and construct
an image of the resulting hash table was under 0.6 seconds. Additional empirical validation of
near-perfect hashing may be found in [3]; theoretical performance guarantees for this strategy
remain a topic for future work.

4.3.2: Hash Table Structure—The datapath of our hash table (stage 1b) is illustrated in
Figure 10, and the control logic that manages this datapath is shown in Figure 11. Each 32-bit
entry in our hash table stores a 16-bit query position and a collision bit, which is set if two or
more distinct w-mers from the query map to that entry. Collisions occur if our hash function
design does not yield a perfect hash. Unoccupied entries are marked by a special value in the
query position field.

Krishnamurthy et al. Page 8

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

If a w-mer s maps to a table entry h1(s) with the collision bit unset, lookup proceeds as for a
perfect hash, using only a single SRAM access. In case of a collision, the implementation
performs a second check in a smaller secondary hash table (216 entries in our implementation)
similar to the primary table, which contains only those query w-mers that collide in the first
table. The hash function used for the secondary table, h2, is chosen from the H3 family, in
similar fashion to A and B above. Because the primary hash function h1 is near-perfect, the
number of entries with collision bits set is small. Hence, accesses to the secondary table are
rare, preserving our desired property of at most one SRAM lookup for most w-mers.

Query w-mers s1 and s2 that collide in both the primary and secondary tables are merged; that
is, they are treated for hash lookup purposes as if they are two copies of the same w-mer. The
duplicate facility described below ensures that probes of either s1 or s2 return all query positions
at which either one occurs. Merging therefore creates false positive matches, which are
removed by later pipeline stages, but does not create false negatives. Merging requires that two
w-mers collide in both primary and secondary tables, which use independent hash functions,
so it is extremely rare.

4.3.3: Resolving Duplicate Keys—When a w-mer occurs at two or more positions in the
query, we wish to return not just one such position but all of them. We therefore extend each
hash entry with a duplicate flag and a pointer into a separate duplicate table, also in SRAM.
Any w-mer s with more than one occurrence has its duplicate flag set. One occurrence of s is
stored in the table entry itself, while the remainder are stored in a contiguous range of 16-bit
cells in the duplicate table. The first cell in the range, which is pointed to by the hash table
entry, specifies the number of additional occurrences, while each additional cell gives the
position of one occurrence.

We align the beginning of each range of cells in the duplicate table on a 32-bit boundary. Hence,
a 14-bit pointer in the hash table entry is sufficient to support a table of 215 16-bit cells – enough
for even a fairly degenerate 25 kbase query.

Accesses to the duplicate table compete with the hash table for SRAM bandwidth, so they
increase the average number of probes per w-mer. However, a typical repeat-masked 25 kbase
DNA sequence from the human genome has only a few hundred duplicate 11-mers, so the
additional accesses to the table add only slightly to the overall load on SRAM.

There are two conditions under which a false positive result can come from stage 1b. The first,
described earlier, is if there is a collision in both the primary and secondary hash tables. The
second is when a false positive result from the Bloom filters collides in the primary hash table
with a w-mer in the query. Our current implementation passes these false positives to later
stages (where they are discovered and discarded). An alternative approach would be to perform
an explicit test, comparing the w-mer in the database with the w-mer in the query. This would
completely eliminate any false positives from stage 1. However, the additional load caused by
false positives on later pipeline stages is small enough that it does not significantly impact
performance, so removing them is not worth the additional design complexity it would entail.

4.4: Redundancy Filter
To avoid repeated generation of the same sequence alignment, NCBI BLASTN uses a
redundancy filter to discard the w-mers which fall within the range that already has been
inspected by extension in stage 2. This range can be defined as two w-mers which have an
overlapping diagonal. Each w-mer is represented by an ordered pair (qj,dk), where qj and dk
are indices into the query and database, respectively. Define the diagonal of this w-mer to be
D = dk − qj. To keep track of the redundant w-mers, a record for every diagonal is stored in a

Krishnamurthy et al. Page 9

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

data structure which contains the previous non-redundant database index. If dk of the current
w-mer is greater than the stored value, the w-mer is queued for further inspection. In NCBI
BLASTN, the redundancy filter is updated after extension in stage 2. This method can eliminate
more than strictly overlapping w-mers without decreasing sensitivity.

We use a slightly different heuristic which does not require feedback from stage 2 [28]. Instead
of storing the highest endpoint of the database from the stage 2 extension, Mercury BLASTN
implements the redundancy filter by finding all the truly redundant w-mers as well as the ones
close to them. The end of the first non-overlapping w-mer out of stage 1b is stored for each
diagonal and is updated every time a new non-overlapping w-mer is seen on that diagonal. The
redundancy filter is also parameterizable to discard any w-mers on a diagonal that are within
N bases of a previous diagonal, even if they do not overlap. Setting this parameter allows for
a trade-off between filter strength and sensitivity.

Figure 12 illustrates an example query and database sequence plotted to form a matrix using
a word length of 4. and a tail region of length N = 2. Non-redundant 4-mer matches are shown
in bold, while redundant 4-mers are shown normal weight. The filter keeps a record of the first
4-mer in each diagonal and passes them to the later stages. 4-mers that are truly overlapping a
previous 4-mer on that diagonal are discarded. This is shown on the figure as “True Overlap.”
An example of a 4-mer that does not overlap the previous entry on that diagonal but is within
the tail region (and therefore discarded) is shown in Figure 12 labeled “Tail Overlap.”

While the Mercury BLASTN redundancy filtering method is a less stringent filter than NCBI
BLASTN’s heuristic, it does not require feedback from stage 2. We compared the two
approaches empirically on comparisons of human and mouse genomic DNA and found that
the simpler heuristic does not increase the number of matches emerging from stage 1 enough
to create a performance bottleneck.

5: Performance Analysis
We assess the performance of our design in three phases. First, we assess the performance gain
relative to software of stage 1 alone. Second, we assess the overall performance of a design
that exploits the firmware implementation of stage 1 and continues to use software to
implement stages 2 and 3. Finally, we discuss the benefit that can be gained from a (future)
firmware implementation of stage 2 and provide performance targets for that design.

5.1: Word Matching (Stage 1) in Firmware
We have built several firmware prototypes of stage 1 that can consume 16 bases/clk. The latest
runs at a clock rate of 133 MHz. The prototype is limited to a query size of 25 kbases. To
process queries of size greater than 25 kbases, we pass the database through the firmware stage
multiple times (say r), each pass consuming a fraction of the query ≤ 25 kbases. This results
in an effective throughput of that of 25 kbase queries for larger queries. Note that this bound
on the query length is due primarily to the number of available block RAMs on our current
chip and is not a fundamental limit of the design itself.

To assist in the performance analysis task, we developed a detailed simulator that provides a
cycle-accurate model of the stage 1 design. This simulation model is used to validate the
analytical models used to generate Figure 9, and our assumption that we can process a match
from stage 1a every clock cycle in stage 1b. We chose 3 of the design points from Figure 9 and
executed simulations using a minimum of 30 different queries for each configuration. For each
of these simulations we assumed that the input rate into stage 1 is 2.128 Gbases/s, which is its
maximum ingest rate. Table 4 compares the results we obtain from these simulations to the

Krishnamurthy et al. Page 10

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

analytical predictions for a number of different parameters. We observe that the simulation
performance predictions line up extremely well to the predictions using the analytic models.

While the mean time to process a match in stage 1b is slightly higher than the predicted value
of 1, the input rate to this stage is such that the utilization remains < 100%. Also, the nature of
genomic sequences is such that the assumption of uniform distribution of bases in sequences
turns out to be pessimistic. The observed mean throughput of 2.128 Gbases/s (with extremely
small standard deviations) builds further confidence in our analytic model results.

The raw throughput supported by our stage 1 implementation is about 2 Gbases/sec. Using the
Mercury system infrastructure, which currently provides 700 MB/sec of input bandwidth, we
can expect a data rate of 1.4 Gbases/sec into stage 1. Note that we use 4 bits per base, thereby
eliminating potentially significant post-processing of masked sequences arising from NCBI
BLASTN’s use of 2 bits/base. Table 5 compares the performance of stage 1 in firmware to the
software BLASTN.

As shown in Figure 8, a queue is present in the design to smooth the bursty nature of matches
that are generated in stage 1a. The detailed simulation model described above was used to
assess the usage of this queue, and also to assess the performance impact of bursty matches.
Figures 13 through 15 plot the maximum queue length for 32 executions each of 3 system
configurations. The 3 configurations shown are the same as those used for validation purposes
above. Across the board, the maximum queue lengths are reasonable, with an overall maximum
under 1600 matches. Note that should the queue fill, there is appropriate backpressure built
into the design so that correcness is maintained. At issue is simply the performance impact that
a full queue would have on overall throughput.

The bursty nature of the stage 1a match process has a negligible impact on the overall
throughput performance. Observing the throughput predictions from simulation (see Table 4),
the performance is quite stable (i.e., the standard deviations are quite low) and is not impacted
significantly by the data variability.

5.2: Overall Performance of BLASTN on the Mercury System
We now consider overall pipeline performance. While the component pipeline stages above
have been constructed individually and verified to work together, the complete system has yet
to be integrated at full speed (we are currently undertaking this activity). As a result, the
performance numbers that follow are model-based predictions.

When executing the application across multiple resources, the overall throughput is determined
by the minimum throughput achieved on any one resource. Here, stage 1 executes in firmware,
while stages 2 and 3 execute in software. The throughput is therefore

where T put1, stage 1 throughput, is from Table 5; ti, the time to perform stage i in software,
is from Table 3; and pi, the probability of an output from stage i, is from Table 1.

Table 6 compares the overall performance of Mercury BLASTN with that of NCBI BLASTN.
Though we have shown significant speedup for stage 1 in firmware (refer to Table 5), the
overall speedup is limited to a factor of 5 to 8. Overall performance is now limited by the

Krishnamurthy et al. Page 11

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

software-based stage 2. Hence, though we successfully deployed stage 1 in firmware with high
throughput, the overall application still suffers from limitations imposed by the remaining
pipeline stages.

If t3 is the software compute time per match from stage 3 (from Table 3), the maximum pipeline
throughput that can be sustained by stage 3 is T put3 = 1/p1p2t3 (as above, normalized to be in
units of input bases per second from the database). For 1 Mbase query sizes, this rate is
approximately 2 Gbases/sec, which matches the input rate supported by the firmware stage 1.
Hence, stage 3 is unlikely to be a bottleneck to overall performance.

We next consider the overall performance impact of accelerating stage 2. This impact can be
modeled as Tputoverall = min(Tput1, Tput2, Tput3), where Tput1 and Tput3 are as above and
Tput2 is now S2=p1t2. S2 is a model input representing the speedup of a hypothetical firmware
stage 2 implementation. This model determines the performance required of the stage 2
firmware in order to achieve a given overall pipeline throughput.

Figure 16 plots the throughput of the overall application, as a function of the stage 2 speedup
S2, for various query sizes. By increasing the performance of the bottleneck stage 2, overall
performance improves until the throughput reaches the limit imposed by stage 1, at which point
it saturates.

Figure 17 plots the speedup, relative to a pure software implementation, of the entire application
as a function of stage 2 speedup, again for various query sizes. If, as seems likely, we can
achieve even modest speedup in a firmware stage 2, we predict that overall performance of
Mercury vs. NCBI BLASTN will improve by two orders of magnitude.

6: Related Work
Biosequence similarity search is a fundamental task of modern biology. Several research
groups have therefore implemented systems to accelerate similarity search, both in software
alone and in hardware.

Several software tools exist that seek to accelerate BLASTN-like computations through
algorithmic improvements. MegaBLAST [39] is used by NCBI as a faster alternative to
BLASTN; it explicitly sacrifices substantial sensitivity relative to BLASTN in exchange for
improved running time. The SSAHA [25] and BLAT [18] packages achieve higher throughput
than BLASTN by requiring that the entire database be indexed offline before being used for
searches. By eliminating the need to scan the database, these tools can achieve more than an
order of magnitude speedup versus BLASTN; however, they must trade off between sensitivity
and space for their indices and so in practice are less sensitive. In contrast, Mercury BLASTN
aims for at least BLASTN-equivalent sensitivity.

Other software, such as DASH [19] and PatternHunter II [23], achieves both faster search and
higher sensitivities compared to BLASTN using alternative forms of pattern matching and
dynamic programming extension. DASH’s reported speedup over BLASTN is less than 10-
fold for queries of 1500 bases, and it is not clear how it performs at our query sizes, which are
an order of magnitude larger. DASH’s authors have also reported on a preliminary FPGA
design for their algorithm [20]. PatternHunter II achieves a reported two-fold speedup relative
to BLASTN, with substantially greater sensitivity, through judicious modification of its
pattern-matching stage. We plan to implement similar improvements, based on our own studies
of BLASTN-like pattern matching [4], in a future version of our system.

Krishnamurthy et al. Page 12

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

In hardware, numerous implementations of the Smith-Waterman dynamic programming
algorithm have been reported in the literature, using both non-reconfigurable ASIC logic [13,
16] and reconfigurable logic [17,26,37]. These implementations focus on accelerating gapped
alignment, which is heavily loaded in proteomic BLAST comparisons but takes only a small
fraction of running time in genomic BLASTN computations. Our work instead focuses on
accelerating the bottleneck stages of the BLASTN pipeline, which reduces the data sent to later
stages to the point that Smith-Waterman acceleration is not necessary.

While one could in principle dispense with the pattern matching and ungapped extension stages
of BLASTN given a sufficiently fast Smith-Waterman implementation, no such
implementation is likely to be feasible with current hardware. The projected data rate of 1.4
Gbases/s shown for a 25 kbase query in Figure 16, if achieved by a Smith-Waterman
implementation, would imply computation of around 1014 dynamic programming matrix cells
per second. In contrast, existing FPGA implementations report rates of less than 1010 cells per
second.

High-end commercial systems have been developed to accelerate or replace BLAST [27,34].
The Paracel GeneMatcher™ [27] relies on non-reconfigurable ASIC logic, which is inflexible
in its application and cannot easily be updated to exploit technology improvements. In contrast,
FPGA-based systems can be reprogrammed to tackle diverse applications and can be
redeployed on newer, faster FPGAs with minimal additional design work. RDisk [22] is one
such FPGA-based approach, which claims a 60 Mbases/sec throughput for stage 1 of BLAST
using a single disk.

Two commercial products that do not rely on ASIC technology are BLASTMachine2™ from
Paracel [27] and DeCypherBLAST™ from TimeLogic [34]. The highest-end 32-CPU Linux
cluster BLASTMachine2™ performs BLASTN with a throughput of 2.93 Mbases/sec for a 2.8
Mbase query. Mercury BLASTN with only stage 1 implemented in firmware has a predicted
throughput of 4.44 Mbases/sec for a 1 Mbase query. Hence, BLASTMachine2™ (with 32
nodes) has roughly twice the throughput of Mercury BLASTN (with 1 node).

The DeCypherBLAST™ solution uses an FPGA-based approach to improve the performance
of BLASTN. This solution has throughput rate of 213 kbases/sec for a 16-Mbase query, which
is comparable to that of Mercury BLASTN with only stage 1 in firmware, processing a query
length of 1 Mbase.

7: Conclusions and Future Work
This paper presents the design of BLASTN, an important biosequence search application, for
the Mercury system, an architecture that provides both FPGA and traditional processor
computing resources and is optimized for disk-based, data-intensive applications. We
constructed prototype application components for a firmware (FPGA-based) stage 1 of the
BLASTN pipeline, including the addition of a Bloom filter-based prefilter, a firmware hash
table, and a match redundancy eliminator.

We compared the performance of our firmware stage 1 implementation to that of NCBI
BLASTN’s software stage 1 implementation. We also estimated overall performance of
Mercury BLASTN, both for the current version with only stage 1 in firmware and for a future
version that will also deploy a firmware stage 2.

Because of the strong predicted impact of stage 2 speedups on overall application performance,
we have proceeded with a firmware implementation of stage 2, which is reported in [21].

Krishnamurthy et al. Page 13

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Currently, we are completing end-to-end deployment of BLASTN on the Mercury prototype.
Each of the component pieces is now in place, functionally correct and running at speed on the
reconfigurable hardware, and integration work is ongoing.

Acknowledgments
This work was supported by NSF Career grant DBI–0237902, NSF grants CNS–0313203, CCF–0427794 and CCR–
0217334, and NIH/NGHRI grant 1 R42 HG003225–01.

References
1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and

PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research
1997;25:3389–402. [PubMed: 9254694]

2. Bloom B. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM
May;1970 13(7):422–426.

3. Buhler, J. Technical report. Washington University; St. Louis: 2006. Mercury BLAST dictionaries:
analysis and performance measurement.

4. Buhler J, Keich U, Sun Y. Designing seeds for similarity search in genomic DNA. Journal of Computing
and Systems Science 2005;70:342–363.

5. Carter L, Wegman M. Universal classes of hashing functions. Journal of Computer and System
Sciences 1979;18:143–154.

6. Chamberlain, R.; Cytron, R. Novel techniques for processing unstructured data sets. Proc. of IEEE
Aerospace Conf.; March 2005;

7. Chamberlain, R.; Shands, B. Streaming data from disk store to application. Proc. of 3rd Int’l Workshop
on Storage Network Architecure and Parallel I/Os; September 2005; p. 17-23.

8. Chamberlain, R.; Shands, B.; White, J. Achieving real data throughput for an FPGA co-processor on
commodity server platforms. Proc. of 1st Workshop on Building Block Engine Architectures for
Computers and Networks; October 2004;

9. Chamberlain, RD.; Cytron, RK.; Franklin, MA.; Indeck, RS. The Mercury system: Exploiting truly
fast hardware for data search. Proc. of Int’l Workshop on Storage Network Architecture and Parallel
I/Os; September 2003; p. 65-72.

10. Czech ZJ, Havas G, Majewski BS. Perfect hashing. Theoretical Computer Science 1997;182:1–143.
11. Dally, WJ., et al. Merrimac: Supercomputing with streams. Proc. of Supercomputing Conf.;

November 2003;
12. Dharmapurikar S, Krishnamurthy P, Sproull T, Lockwood J. Deep packet inspection using parallel

bloom filters. IEEE Micro 2004;24(1):52–61.
13. Singh, RK., et al. BioSCAN: a dynamically reconfigurable systolic array for biosequence analysis.

Proceedings of CERCS; 1996.
14. Franklin, M.; Chamberlain, R.; Henrichs, M.; Shands, B.; White, J. An architecture for fast processing

of large unstructured data sets. Proc. of 22nd Int’l Conf. on Computer Design; October 2004; p.
280-287.

15. Hagerup T, Miltersen PB, Pagh R. Deterministic dictionaries. Journal of Algorithms 2001;41:69–85.
16. Hirschberg, JD.; Hughley, R.; Karplus, K. Kestrel: a programmable array for sequence analysis.

Proceedings of IEEE International Conference on Application-Specific Systems, Architecture, and
Processors; 1996; p. 23-34.

17. Hoang, DT. Searching genetic databases on Splash 2. IEEE Workshop on FPGAs for Custom
Computing Machines; 1993; p. 185-191.

18. Kent WJ. BLAT: the BLAST-like alignment tool. Genome Research 2002;12:656–64. [PubMed:
11932250]

19. Knowles, G.; Gardner-Stephen, P. DASH: localizing dynamic programming for order of magnitude
faster, accurate sequence alignment. Proceedings of the 3rd International IEEE Computer Society
Computational Systems Bioinformatics Conference; 2004; p. 732-35.

Krishnamurthy et al. Page 14

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

20. Knowles, G.; Gardner-Stephen, P. A new hardware architecture for genomic and proteomic sequence
alignment. Proc. of IEEE Computational Systems Bioinformatics Conf.; 2004;

21. Lancaster, J.; Buhler, J.; Chamberlain, RD. Acceleration of ungapped extension in Mercury BLAST.
Proc. of 7th Workshop on Media and Streaming Processors; November 2005;

22. Lavenier, D.; Guytant, S.; Derrien, S.; Rubin, S. A reconfigurable parallel disk system for filtering
genomic banks. ERSA’03, Engineering of Reconfigurable Systems and Algorithms; 2003;

23. Li M, Ma B, Kisman D, Tromp J. Patternhunter II: highly sensitive and fast homology search. Journal
of Bioinformatics and Compuational Biology 2004;2:417–39.

24. National Center for Biological Information. Growth of GenBank. 2002.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

25. Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA databases. Genome
Research 2001;11:1725–9. [PubMed: 11591649]

26. Pappas, N. Master’s thesis. Virginia Polytechnic Institute and State University; 2003. Searching
biological sequence databases using distributed adaptive computing.

27. Paracel, Inc. http://www.paracel.com
28. Pevzner PA, Waterman MS. Multiple filtration and approximate pattern matching. Algorith-mica

1995;13(12):135–154.
29. Ramakrishna MV, Fu E, Bahcekapili E. Efficient hardware hashing functions for high performance

computers. IEEE Transactions on Computers 1997;46:1378–1381.
30. Reidel E, Faloutsos C, Gibson G, Nagle D. Active disks for large-scale data processing. IEEE

Computer June;2001 34(6):68–74.
31. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of Molecular

Biology March;1981 147(1):195–97. [PubMed: 7265238]
32. Sprugnoli R. Perfect hashing functions: a single probe retrieving method for static sets.

Communications of the ACM 1977;20(11):841–850.
33. Tarjan RE, Yao ACC. Storing a sparse table. Communications of the ACM 1979;22(11):606–611.
34. TimeLogic Corporation. http://www.timelogic.com
35. Waterston RH, et al. Initial sequencing and comparative analysis of the mouse genome. Nature

2002;420:520–562. [PubMed: 12466850]
36. West, B.; Chamberlain, RD.; Indeck, RS.; Zhang, Q. An FPGA-based search engine for unstructured

database. Proc. of 2nd Workshop on Application Specific Processors; December 2003; p. 25-32.
37. Yamaguchi, Y.; Maruyama, T.; Konagaya, A. High speed homology search with FPGAs. Pacific

Symposium on Biocomputing; 2002; p. 271-282.
38. Zhang, Q.; Chamberlain, RD.; Indeck, RS.; West, B.; White, J. Massively parallel data mining using

reconfigurable hardware: Approximate string matching. Proc. of Workshop on Massively Parallel
Processing; April 2004;

39. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal
of Computational Biology 2000;7:203–14. [PubMed: 10890397]

Krishnamurthy et al. Page 15

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
http://www.paracel.com
http://www.timelogic.com

Figure 1.
Mercury system architecture

Krishnamurthy et al. Page 16

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Pipeline stages of NCBI BLAST algorithm

Krishnamurthy et al. Page 17

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Division of BLAST stage 1 (word matching) into 3 substages (1a: Bloom Filters, 1b: Hash
Lookup, and 1c: Redundancy Eliminator)

Krishnamurthy et al. Page 18

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Typical Bloom filter functional diagram

Krishnamurthy et al. Page 19

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Theoretical false positive rate of a Bloom filter vs. memory size for different query lengths

Krishnamurthy et al. Page 20

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
Firmware Implementation of Bloom filter using block RAMs

Krishnamurthy et al. Page 21

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Four parallel Bloom filters

Krishnamurthy et al. Page 22

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
Sixteen parallel Bloom filters

Krishnamurthy et al. Page 23

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Bloom filtpper output match rate vs. query size, NDC: no double clocking of block RAMs,
DC: double clocking of block RAMs

Krishnamurthy et al. Page 24

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
Hash table (stage 1b) datapath

Krishnamurthy et al. Page 25

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 11.
Hash table control logic

Krishnamurthy et al. Page 26

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 12.
Redundancy filter example

Krishnamurthy et al. Page 27

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 13.
Maximum length of queue between stages 1a and 1b, query size = 12.5 kbases, k=6, m=32Kb

Krishnamurthy et al. Page 28

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 14.
Maximum length of queue between stages 1a and 1b, query size = 12.5 kbases, k=6, m=64Kb

Krishnamurthy et al. Page 29

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 15.
Maximum length of queue between stages 1a and 1b, query size = 20 kbases, k=6, m=64Kb

Krishnamurthy et al. Page 30

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 16.
Throughput of Mercury BLASTN with improved stage 2

Krishnamurthy et al. Page 31

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 17.
Speedup of Mercury BLASTN over NCBI BLASTN with improved stage 2

Krishnamurthy et al. Page 32

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 33

Table 1

Match rates p across pipeline stages
Query Size (bases) Stage 1 (p1) Stage 2 (p2) Stage 3 (p3)
10 k 0.00858 0.0000550 0.320
25 k 0.0205 0.0000619 0.141
50 k 0.0411 0.0000189 0.194
100 k 0.0841 0.0000174 0.175
1 M 0.851 0.0000172 0.096

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 34

Table 2

Percentage of pipeline time spent in each stage of NCBI BLASTN
Query Size (bases) Stage 1 Stage 2 Stage 3
10 k 86.53±1.33% 13.24±1.99% 0.23±0.02%
25 k 83.89±2.56% 15.88±4.40% 0.22±0.04%
50 k 82.63±2.94% 17.28±4.96% 0.09±0.01%
100 k 83.35±1.28% 16.58±2.17% 0.08±0.01%
1 M 85.39±3.34% 14.68±5.24% 0.03±0.01%

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 35

Table 3

Summary of performance results for software runs of NCBI BLASTN
Query Size 10 kbases 25 kbases 50 kbases 100 kbases 1 Mbase Units
Throughput 67.0 29.2 14.9 8.76 0.648 Mbases/sec
Stage 1 (time per base, t1) 0.0129 0.0287 0.0553 0.0951 1.32 μsec/base
Stage 2 (time per match, t2) 0.231 0.265 0.281 0.225 0.264 μsec/match
Stage 3 (t3) 71.3 60.4 81.8 58.9 34.4 μsec/alignment

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 36

Table 4

Validation of analytic predictions using simulation
Configuration Parameter Analytic Simulation

query=12.5kbases k=6, m=32Kbits

f 0.369 0.34
fr 0.81 0.82

Process time stage 1b ≈ 1 clk 1.03
Tput 2.128 Gbases/s 2.128 ± 2:9 × 10−2 Gbases/s

query=12.5kbases k=6, m=64Kbits

f 0.016 0.014
fr 0.81 0.82

Process time stage 1b ≈ 1 clk 1.07
Tput 2.128 Gbases/s 2.128 ± 7:6 × 10−6 Gbases/s

query=20.0kbases k=6, m=64Kbits

f 0.15 0.12
fr 0.69 0.71

Process time stage 1b ≈ 1 clk 1.07
Tput 2.128 Gbases/s 2.128 ± 7:0 × 10−5 Gbases/s

f: false positive rate from stage 1a

fr: %f removed by stage 1b

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 37

Table 5

Firmware vs. software stage 1 (throughput and speedup)
Query Size 10 kbases 25 kbases 50 kbases 100 kbases 1 Mbases Units
NCBI BLASTN Stage 1 (T put1) 77.4 34.8 18.1 10.5 0.771 Mbases/sec
Mercury BLASTN Stage 1(T put1) 1400 1400 700 350 35 Mbases/sec
Speedup (S1) 18.1 40.2 38.7 33.4 45.4

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnamurthy et al. Page 38

Table 6

Overall performance (throughput and speedup)
Query Size 10 kbases 25 kbases 50 kbases 100 kbases 1 Mbase Units
NCBI BLASTN 67.0 29.2 14.9 8.76 0.657 Mbases/sec
Mercury BLASTN 497 181 86.0 52.6 4.44 Mbases/sec
Speedup 7.42 6.21 5.76 6.01 6.84

J VLSI Signal Process Syst Signal Image Video Technol. Author manuscript; available in PMC 2008 October 8.

