
INTERCONNECT DRIVER DESIGN FOR LONG WIRES IN
FIELD-PROGRAMMABLE GATE ARRAYS

by

Edmund Lee

BA.Sc . , University of Toronto, 2003

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF THE
REQUIREMENTS FOR THE DEGREE OF

M A S T E R OF APPLIED SCIENCE

in

THE F A C U L T Y OF G R A D U A T E STUDIES

Electrical and Computer Engineering

T H E U N I V E R S I T Y OF BRITISH C O L U M B I A

June 2006

© Edmund Lee, 2006

A b s t r a c t

Designers of field-programmable gate arrays (FPGAs) are always striving to improve

the performance of their designs. As they migrate to newer process technologies in search

of higher speeds, the challenge of interconnect delay grows larger. For an FPGA, this

challenge is crucial since most FPGA implementations use many long wires.

A common technique used to reduce interconnect delay is repeater insertion. Recent

work has shown that FPGA interconnect delay can be improved by using unidirectional

wires with a single driver at only one end of a wire. With this change, it is now possible

to consider interconnect optimization techniques such as repeater insertion.

In this work, a technique to construct switch driver circuit designs is developed. Using

this method, it is possible to determine the driver sizing, spacing and the number of

stages of the circuit design. A computer-aided design model of the new circuit designs is

developed to assess the impact they have on the delay performance of FPGAs. Results

indicate that, by using the presented circuit design technique, the critical path can be

reduced by 19% for short wires, and up to 40% for longer wires.

ii

T a b l e o f C o n t e n t s

Abstract

Table of Contents iii

List of Tables '. v

List of Figures vi

Acknowledgements ix

Chapter 1 Introduction 1

1.1 Motivations and Obj ectives : 4
1.2 Contributions '. 5
1.3 Overview 6

Chapter 2 Background 7

2.1 FPGA Overview : 7
2.1.1 Routing 9
2.1.2 FPGA CAD Flow 12
2.1.3 VPRx 13

2.2 Interconnect Design Theory 15
2.2.1 Deep-Submicron Interconnect 15
2.2.2 Interconnect Delay Models 18
2.2.3 Interconnect Driver Design 20

2.3 Remarks : 24

Chapter 3 Circuit Design of Unidirectional Interconnect 25

3.1 Design of Unidirectional FPGA Switch Drivers 25
3.1.1 Components of FPGA Switch Drivers 26
3.1.2 Switch Driver Design Goals 32
3.1.3 Switch Driver Design Parameters 34

3.2 Rapid Design Space Exploration 36
3.2.1 Analytical Delay Model 36
3.2.2 Design Space Sweeps 38
3.2.3 Results 39
3.2.4 Summary 43

3.3 Accurate Switch Driver Circuit Delay Modeling 44
3.3.1 Delay Modeling through Circuit Characterization 45
3.3.2 Circuit Characterization Process 47

i i i

3.3.3 Characterization Results & Analysis 47
3.3.4 Delay Concatenation 53
3.3.5 Verification of Delay Concatenation 54

3.4 Design Parameter Search 55
3.4.1 Circuit Construction 55
3.4.2 Segment Length Sweep 57

3.5 Circuit Design Results & Analysis 60
3.5.1 Multiplexing Intervals 63

3.5.2 Distributed Buffering. 64

Chapter 4 C A D Circuit Architecture Modeling and Evaluation 67

4.1 Goals of the C A D Circuit Evaluation 67

4.1.1 Comments on Area Overhead 68
4.2 Experimental Methodology 69
4.3 Circuit Architecture Modeling 70

4.3.1 Early Turn Modeling (ETM) 70
4.3.2 Distributed Buffering 78
4.3.3 Fast Paths 80
4.3.4 Multiplexer Delay Modeling 82
4.3.5 Circuit Characterization for VPRx 83

4.4 Experimental Results • 88
4.4.1 Driver Designs Modeled in VPRx 88
4.4.2 Benchmark Logic Circuits 90
4.4.3 Experiments 92
4.4.4 Critical Path Delay Results 93
4.4.5 Turn Count Analysis 99
4.4.6 . Runtime • 104

Chapter 5 Conclusions and Future Work 106

5.1 Future Work 107
5.1.1 Circuit Design 108

5.1.2 Future Work for CAD 109

References H I

Appendix A - Wire Models 114

Appendix B - VPRx Results 117

iv

List of Tables

Table 3.1 - Comparison of Multiplexer Architectures 29

Table 3.2 - Driver Design Parameters 35

Table 3.3 - Typical Parasitics in Deep Submicron Process Technology 37

Table 3.4 - Delay-Driven Results 40

Table 3.5 - AreaDelay-Driven Results 41

Table 3.6 - Characterized Sections 46

Table 3.7 - Best Delay-per-millimeter for Various Sections 51

Table 3.8 - Concatenation Verification Results (180nm) 54

Table 3.9 - Concatenation Verification Results (90nm) 55

Table 3.10 - Distributed Driver Design Results for 180nm. 61

Table 3.11 - Lumped Driver Design Results for 180nm 61

Table 3.12 - Driver Design Results for 90nm 62

Table 3.13 - Lumped Driver Design Results for 90nm 62

Table 4.1 - Lumped Driver Designs Used for Experiments 90

Table 4.2 - Distributed Driver Designs Used for Experiments 90

Table 4.3 - Benchmark Circuit Array Sizes 92

Table 4.4 - Overview of Experiments 93

Table 4.5 - Critical Path Results 94

Table 4.6 - Turn Count Changes Due to Addition of E T M 100

Table 4.7 - Turn Count Changes Due to Addition of Fast Paths 101

Table 4.8 - Turn Count Changes Due to Addition of Distributed Features 104

v

L i s t o f F i g u r e s

Figure 1.1- Routing Example of a Net in an ASIC 2

Figure 1.2 - Routing Example of a Net in an FPGA 2

Figure 1.3 - Example of FPGA Interconnect 3

Figure 1.4 - Example of a Switch Driver Path Delay Profile 4

Figure 2.1 - FPGA Architecture with Switch Block Detail 9

Figure 2.2 - Representation of a Wire in a Bidirectional Architecture 10

Figure 2.3 - Tristate Driver Example 10

Figure 2.4 - Representation of a Wire in a Unidirectional, Single-Driver Architecture... 11

Figure 2.5 - Unidirectional Driver Example 11

Figure 2.6 - Example of a Routing Resource Graph [6] 14

Figure 2.7 - Deep-submicron Parasitic Capacitances 17

Figure 2.8 - Elmore Delay Example [12] 19

Figure 2.9 - RC Model of a Buffer 21

Figure 3.1 - Architectural Location of FPGA Switch Drivers 26

Figure 3.2 - FPGA Switch Driver Components 26

Figure 3.3 - Level-Restoring Circuit with 2:1 NMOS Pass Transistor Multiplexer 27

Figure 3.4 - Binary Tree Multiplexer 28

Figure 3.5 - Flat Multiplexer. 28

Figure 3.6 - 2-Level Multiplexer 29

Figure 3.7 - Multiplexer Fast Path 30

Figure 3.8 - Ubiquitous CMOS Buffer .32

Figure 3.9 - Driver Example 32

Figure 3.10 - Path Delay Profile 34

Figure 3.11 - Block Diagram Identifying Driver Design Parameters 35

Figure 3.12 - Elmore Model of Buffer & Wire Delay 37

Figure 3.13 - Parameters Being Swept 38

Figure 3.14 - Design Space Sweep Pseudo Code 39

vi

Figure 3.15 - Areadelay-Driven Minimum-Delay Wire Distribution Plot for a 4mm Wire

42

Figure 3.16 - Areadelay-Driven Minimum-Delay Wire Distribution Plot for a 4mm Wire

Zoomed in on L2 Axis 43

Figure 3.17 - Programmable Driver Example 45

Figure 3.18 - Testbench Configuration 47

Figure 3.19 - Delay vs. Buffer size and Wirelength for 180nm l x l x nomux Design 48

Figure 3.20 - Delay vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux

Design - Wirelength Axis 48

Figure 3.21 - Delay/mm vs. Buffer size and Wirelength for 180nm l x l x nomux Design

49

Figure 3.22 - Delay/mm vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux

Design - Wirelength Axis 50

Figure 3.23 - Buffer size Selection for 180nm l x l x nomux 52

Figure 3.24 - Buffer size Selections for 180nm l x l x nomux Design 53

Figure 3.25 - Circuit Concatenation Example 54

Figure 3.26 - Driver Construction Template 56

Figure 3.27 - LO Sweep for a 2mm Wire in 180nm l x l x for N=3 Stages 57

Figure 3.28 - Buffer sizes Used for LO Sweep in 180nm l x l x 58

Figure 3.29 - Multi-N LO Sweep for a 2mm Wire in 180nm l x l x 59

Figure 3.30 - Multi-N LO Sweep for a 4mm Wire in 180nm l x l x 60

Figure 3.31 - Multiplexing Intervals for various Technologies 63

Figure 3.32 - Path Delay Profile Plots for 180nm l x l x for lmm-4mm. 66

Figure 4.1 - Experimental Methodology Flow 69

Figure 4.2 - Early Turns 71

Figure 4.3 - Original Routing Resource Graph of VPRx 73

Figure 4.4 - Routing Resource Graph for VPRx with E T M Enabled 73

Figure 4.5 - Wire Delay Calculation Example 75

Figure 4.6 - Routing Resource Graph with E T M and Distributed Buffers Shown 78

Figure 4.7 - Modeling a Distributed Driver with Different Architectural Wirelengths.... 79

vii

Figure 4.8 - The Effect on the Path Delay Profile of Modeling Circuits with Different

Architectural Wirelengths 80

Figure 4.9 - Signal Path through a Switch Block Using Normal or Fast Paths 81

Figure 4.10 - Multiplexer Fanin Delay with a 2mm Wire 180nm l x l x 83

Figure 4.11 - How Switch Circuit Delay is Modeled in VPRx 83

Figure 4.12 - VPRx Path Delay Profile Extraction 86

Figure 4.13 - Path Delay Profiles for 2mm Wire in 180nm l x l x 87

Figure 4.14 - Delay Breakdown for 0.5mm Wire 97

Figure 4.15 - Delay Breakdown for 2.0mm Wire 98

Figure 4.16 - Delay Breakdown for 3.0mm Wire 98

Figure 4.17 - Early Turn Routing Example for L4 Wires 101

Figure 4.18 - Routing Choices Due to Fast Paths with Early Turns in an L4 Architecture

103

viii

A c k n o w l e d g e m e n t s

I would to like thank my academic supervisors Dr. Guy Lemieux and Dr. Shahriar

Mirabbasi for their advice, teachings and support throughout my graduate degree. I am

very fortunate to have two professors who have taught me a great deal about research and

the technical aspects of our field.

I would also like to thank the faculty and staff of the SOC lab for making the lab a

wonderful academic home. Thanks for making me feel welcome and always offering

assistance. M y gratitude goes out to all the members of the FPGA and analogue research

group for their many helpful insights and of course, excellent company.

I am grateful for the use of the Westgrid computing resources at U B C . Much of the

research in this thesis was facilitated through the use of Westgrid.

Finally, I would like to thank my family for their constant support and enthusiasm.

ix

C h a p t e r 1

I n t r o d u c t i o n

Field-programmable gate arrays (FPGAs) are large integrated circuits comprised of blocks of

programmable logic interconnected with programmable routing circuits. The demand for

increasing their performance has driven FPGA designers in search of the latest process

technologies. With each new technology generation, FPGAs have grown larger and increasingly.

dense, providing more logic with a smaller feature size. As one can expect, the wiring demands

of these devices have also increased.

In deep submicron process technologies, interconnect has been identified as one of the most

critical challenges facing integrated circuit designers [1]. In an FPGA, this is even more

important, as 60-80% of the delay is caused by the interconnect [2]. Although extensive efforts

have been made on interconnect optimization by means of repeater insertion for ASIC designs,

few studies have investigated the optimization of circuit design for FPGA interconnect.

Techniques used in general ASIC interconnect optimization cannot be directly applied

because the FPGA interconnect design problem is different in nature. Fortunately, due to its rigid

structure and point to point nature, the topology of FPGA interconnect does not possess the

complex fanout trees found in ASIC designs as seen in Figure 1.1.

1

Figure 1.1 - Routing Example of a Net in an ASIC

Instead, routing resources in an FPGA are made up of long straight wires which make up the

predetermined paths of the routing resource architecture, as shown in Figure 1.2. This

simplification is welcome as it considerably reduces the complexity of the circuit design problem.

However, it is not without its own challenges.

Figure 1.2 - Routing Example of a Net in an F P G A

Like an ASIC, wires still fanout to numerous points in FPGAs, but whether or not a fanout is

used in an FPGA interconnect is not known until after a user circuit is fully implemented.

During operation, the path of a signal can occupy either a part or the entire length of a wire. Our

experiments have demonstrated that 50% to 87% of signal paths in an FPGA routing solution

leave the wire before arriving at the end. Such turns are called early turns (Figure 1.3). In order

to assess early turn delays, this work will often consider the delay to several points along the

interior of a wire. In general, these delays are referred to as the midpoint delays of a wire. To

the author's knowledge, the concept of early turns and midpoint delay has not been previously

examined in FPGA research.

The other major difference between FPGA and ASIC interconnect is that the FPGA

interconnect must be programmable. This requirement introduces multiplexer circuits which can

2

adversely affect delay. The closed form models often used in. the development of general

interconnect optimization techniques are less accurate at modeling such circuits, making it

difficult to apply the techniques from previous work on FPGAs. While closed-form analytical

techniques are useful for rough approximations, they are not accurate enough to compare

significantly different circuit implementations. This accuracy is vital to obtaining the best

possible speed performance from FPGAs.

Figure 1.3 presents an example of an FPGA interconnect made up of wires, multiplexers and

drivers. This research attempts to address the problem of wire delay in FPGAs by developing an

accurate approach to design and evaluate interconnect driver circuits for FPGAs.

FPGA Interconnect

Figure 1.3 - Example of F P G A Interconnect

By taking advantage of the recent shift to FPGA architectures with a single driver per wire [3], it

is possible to reduce midpoint delays, in addition to end-to-end (or endpoint) delay, to speed up

performance in FPGAs through the use of distributed driver designs. As an example, Figure 1.4

presents a distributed driver design which could be used to implement the interconnect switch

driver and the programmable wire in Figure 1.3. This sample driver circuit is made up of 2

distributed drivers of size BO and B I . Using a path delay profile (PDP), the delay of the signal

can be examined from its origin to the end of the wire, or to any point in between. PDPs for two

3

designs, a lumped driver and a distributed driver, are shown in Figure 1.4. It can be seen that the

midpoint delays of the first half of the wire are significantly faster than midpoint delays of the

lumped-design PDP. This indicates that distributed driver design has the potential to improve the

delay of the early turn shown in Figure 1.3.

0% 30% 50% 100%

Distance Travelled Along Wire

Figure 1.4 - Example of a Switch Dr ive r Path Delay Profile
Using modified C A D tools, it is possible to model the improvements from these circuit designs.

Our results demonstrate that critical path delay due to these improved circuit designs can be

reduced by up to 46%.

1.1 Motivations and Objectives

In the past, it was not possible to consider interconnect optimization techniques, such as

repeater insertion, on FPGA wires because a long wire was shared by multiple tri-state drivers

located at different points along the interconnect. In [3], it was shown that implementing

directional wires with a single, lumped driver at the beginning of the wire improves both the

4 .

delay and area efficiency of an FPGA architecture. One way to take further advantage of

directional wires that was not explored in [3] is to uniformly insert additional repeaters in order

to reduce the delay of the wire.

The impact on FPGA performance from the use of additional repeaters is, as yet, unclear.

Distributed buffering, has potential to improve not only endpoint delay, but midpoint delays as

well. This is of particular benefit to FPGA designs as signals often turn off a wire before

reaching the end. However, the only way to determine how much of a wire is used is by routing

circuits on the FPGA using C A D tools. A large component of this research is to assess circuit

design options using a C A D model which accurately considers the impact of early turns on

critical path delay.

1.2 Contributions

The contributions of this research are a circuit design methodology and evaluation of

interconnect drivers for long wires in FPGAs to improve midpoint delays and end-to-end delay.

Key findings of this work can be organized into three categories: circuit design, FPGA

architecture and C A D modeling.

Circuit Desifin

• A circuit design methodology for FPGAs was produced which when given a fixed

wirelength, can determine the number of buffers, size of buffers and spacing between

buffers to achieve near-optimal delay.

• Using the circuit design approach, it is shown that distributed buffering is effective at

reducing delay for wires, but only i f the wires are of sufficient length (greater than 2mm

in a 180nm technology with a minimally spaced and minimally sized wire)

5

FPGA Architecture

• Increasing the length of the wire between multiplexers (switch boxes) can improve the

signal velocity and achieve near-ASIC interconnect speeds.

• Turns at the end of a wire (normal turns) are not critical. As fast paths and proper turn

modeling are introduced, the frequency of normal turns decreases. Also, 50-87% of turns

are before the end of the wire. These facts suggest that it maybe possible to remove or

reduce frequency of normal turns in the architecture.

• Fast paths through the switch block multiplexer were verified to improve critical path

delay by up to 8% for short architectural wirelengths.

C A D Modeling

• FPGA C A D tools which are capable of improved modeling were developed and used to

evaluate proposed circuit designs. The improved modeling alone resulted in a 10%

improvement in critical path delay.

• Distributed buffering yields a modest delay improvement of about 3%.

1.3 Overview

This thesis is composed of 5 chapters. Chapter 2 starts with an overview of FPGA architecture

and C A D , and presents concepts of interconnect design theory. Chapter 3 presents the circuit

design of FPGA interconnect drivers by providing detail on the development of a driver design

methodology. Chapter 4 describes the modeling improvements incorporated into FPGA C A D

tools which were used to assess the circuit designs produced in the previous chapter. Finally,

Chapter 5 summarizes the conclusions drawn throughout the thesis and provides suggestions for

future work.

6

Chapter 2

Background

In this chapter, the background information for this thesis is presented. The first half presents

an overview of FPGA architecture and the supporting C A D flow. Particular emphasis will be

placed upon the topics related to routing.

The second half of this chapter is focused on interconnect design theory. This section presents

methods used for designing and optimizing interconnects in deep-submicron integrated circuits.

Important fundamentals such as device parasitics, wire models and interconnect driver design

techniques will be described in detail.

2.1 FPGA Overview

An FPGA is an integrated circuit equipped with programmable logic and programmable

routing resources. The reconfigurable elements allow an FPGA to be programmed after

fabrication to implement virtually any digital logic function. The majority of FPGAs provide

programmable logic using lookup tables (LUTs). An individual k-input lookup table, or k-LUT,

is capable of implementing any k-input combinational logic function. In order to support

sequential logic, flips flops are placed at the LUT output; this combination is referred to as a

basic logic element (BLE). In most modern FPGAs, BLEs are grouped together in larger blocks

called configurable logic blocks (CLBs) and are configured using S R A M memory elements.

7

Connectivity between logic blocks is achieved through the programmable routing resources.

These resources are made up of metal tracks arranged in channels running vertically and

horizontally across the FPGA. A channel is made up of a number of tracks, typically referred to

as the channel width. A track is made up of wire segments of fixed length. These wire segments

are placed end-to-end to span the length of the channel. The architectural or logical length of a

wire is defined by the number of CLBs it spans. The physical length of a wire is equal to the

logical length times the physical width of the C L B layout tile. Wires are connected to each other

using switch blocks, and to the logic blocks using connection blocks.

Figure 2.1 presents a typical mesh or island-style FPGA architecture which is assumed in this

work. An example of an architectural length 2 wire, also denoted as L2, is indicated. The

connection blocks are labeled as C blocks and the switch blocks are labeled as S blocks.

This work is focused on the transistor-level circuits inside the switch blocks which are located

at the intersection of horizontal and vertical channels. These blocks contain multiplexers which

connect tracks together across the intersection in predefined patterns [4]. The switch block

contains large buffers that are used to drive the long metal traces which make up the wire

segment. These buffers occupy considerable area in the switch block which represents a

significant proportion (roughly 1/3) of overall FPGA area [4].

8

Length 2
Tracks/Wire^

Vertical
^Channel

CLB

= r V :

_

CLB
1

CLB CLB

I |

I |
- \\

11
C \

8
v J

1 1

• i l
11

Horizontal
Channel

S BLOCK

Figure 2.1 - F P G A Architecture with Switch Block Detail

2.1.1 Routing

The functional design of these interconnect circuits is governed by the routing resource

architecture. The routing resource architecture defines the precise connections and turns a signal

may follow in the routing resource network. There are two main routing resource architectures:

bidirectional and unidirectional.

9

Bidirectional Architecture

' C block
i

Shared Track / Wire

S block C block

Figure 2.2 - Representation of a Wire in a Bidirectional Architecture

In a bidirectional routing network (Figure 2.2), a wire can transmit a signal in either direction.

This approach provides a more flexible routing network which allows efficient use of available

metal tracks. This means that the drivers of these wires must be tristate drivers so they can be

disabled when not in use.

Interconnect

\ x n w /

Figure 2.3 - Tristate Driver Example

A common approach to building tristate buffers in FPGAs is to use an NMOS passgate placed

at the output of the regular driver (Figure 2.3) [5]. The use of this design confines the layout of

the driver near to the point where the driver is connected to the wire. This means the driver

design cannot be distributed along the wire. The output passgate affects both speed and area

negatively by adding resistance to the output drive, producing a V T drop in the signal swing, and

adding area to the circuit layout. Furthermore, since only one of the tristate drivers connected to

10

each wire can be enabled after programming, this approach causes a significant waste of active

area.

Unidirectional Architecture

C block

Track / Wire

Track / Wire

C block S block

Figure 2.4 - Representation of a Wire in a Unidirectional, Single-Driver Architecture

In a unidirectional routing network (Figure 2.4), each track can only transmit data in one

direction. This topology reduces the flexibility of the routing resources and suggests that the

channels contain pairs of wires. Despite this restriction, work done in [3] demonstrates that this

approach is more efficient in terms of area and provides improved delay over the bidirectional

architecture.

J Z MUX

\ x n i / M /

Interconnect 6- • • • Interconnect

1
Figure 2.5 - Unidirectional Driver Example

An additional restriction known as single-driver wiring ensures each wire is only driven by

one driver, as opposed to multiple drivers as in the bidirectional architecture (Figure 2.5). This

simplifies the routing network, eliminating the ability to connect at arbitrary points in the middle

11

of the wire. Instead, C L B outputs can only connect to the starting-points of nearby wires. A key

benefit of this is that tristate operation is no longer required. Note, however, that the buffers,

which make up the driver no longer have to be in the physical vicinity of the source. Instead,

they can be located at various positions along the length of the wire. In this research, it is shown

that the relaxation of this constraint can produce an improvement in the delay of the wire

segment, particularly when the wire is of sufficient length.

2.1.2 F P G A C A D Flow

Before a user's logic circuit can be implemented on an FPGA it must under go certain

processing steps known as the FPGA design flow to map the circuit onto an FPGA device. The

FPGA C A D flow is comprised of 5 main steps: synthesis, technology mapping, clustering,

placement and routing.

The first two steps in the C A D flow are synthesis and technology mapping. In these steps, the

circuit is converted from a hardware description language into a network of FPGA-specific logic

blocks which implement the functionality of the original circuit. After this point, logic blocks in

the network are grouped together into clusters during the clustering step. This step controls the

number of BLEs which are packed into a C L B and can be used as a rough method to manipulate

the overall size of the circuit implementation on an FPGA. The following steps are placement

and routing. Placement determines the locations for each C L B on an FPGA device. Routing uses

detailed information of the FPGA routing resources to efficiently connect all the clusters

together and implement the connections between logic blocks. In this work, particular emphasis

is placed on developing the model of the routing resources used in the routing step.

12

F P G A C A D Experimental Methodology

The standard FPGA C A D experimental methodology involves running a suite of user circuits

as benchmarks through the C A D flow multiple times, each time modifying the C A D step under

study. In this work, the first 4 C A D flow steps are applied once on each benchmark circuit. The

final step, routing, is applied multiple times. The first time the router runs, it searches for the

lowest channel width which can successfully route the circuit design. Once this value is

determined, it is increased by one complete set1 of directional tracks to produce a new larger

channel width. The router is run again, but this time it only routes the design once using the new

calculated channel width. This gives some flexibility to the router, which tends to improve the

quality (delay performance) of the routing results.

2.1.3 VPRx

For the place and route steps in the C A D flow, the academic tool V P R [6] is used. A heavily

modified version, known as VPRx [3,4], is used because it supports unidirectional wiring. Both

VPR and VPRx use the same core routing and delay calculation algorithms. In the following two

subsections, details on the routing resource graph and the VPRx delay model is provided.

Routing Resource Graph

VPRx models all routing paths in the FPGA using a routing resource graph. This data

structure represents all possible connections which can occur in the FPGA routing network. In

essence, the routing resource graph is a directed graph of wires, switches and pins at different

locations on the FPGA. In the graph, wires and pins are represented as nodes while switches

1 The number of tracks in a set is equal to twice the architectural length. Further details can be found in [3].

13

between wires are represented as directed edges connecting nodes. Figure 2.6 presents the

routing resource graph for a set of logic blocks connected by two wires. In this example, the

bidirectional switch on wire 1 is modeled as a pair of directed edges, where the directional

switch on wire 2 has only one edge.

Logic
Block A

•
E Logic

Block B

A in A in2 H B_out

• E l •
wire 3

wire 4

1 SRAM

Input Pin of the Logic Block

Output Pin of the Logic Block

Switch
Block

wire 1

wire 2

wire 1

wire 3

A in1

B out

sink

Figure 2.6 - Example of a Rout ing Resource G r a p h [6]

wire 2

wire 4

A in2

Delay Calculat ion

The routing algorithm used in VPRx is a modified version of the Pathfinder routing algorithm

[6, 7]. This algorithm uses the Elmore delay calculation [8] as the primary metric to optimize the

delay of routing paths. For this reason, it is important to ensure that the delay calculation is

accurate. Fortunately, the routing resource graph is designed to facilitate the calculation of the

delay of a signal path through the graph. Each node in the graph contains the capacitance and

resistance of the wire being modeled. Similarly, each switch edge contains the delay of the

switch, its input capacitance, output capacitance and its ability to drive an RC load in the form of

an equivalent resistance. VPRx uses an incremental Elmore approach to calculate the delay [6].

14

The Elmore delay to a given node in an RC tree can be calculated by iterating over all the

capacitances in the tree. For a signal path with no branches, this computation is straightforward.

As the router expands along the routing resource graph, the delay of the next node is computed

incrementally by adding the contribution of its parasitics to a running delay value. The equation

used at each node is tdel =tdel + Rupslream x C n o d e . The value of Rupstream is increased as the nodes are

added to the routing solution. This approach works well for calculating the approach to the end

of an RC tree where there are no fanouts to add extra capacitive loading. Greater detail on

Elmore delay calculations will be described shortly in Section 2.2.2

2.2 Interconnect Design Theory

Interconnect design is an increasingly important consideration for integrated circuits built on

deep-submicron process technologies. In this section, background on interconnect design is

presented to provide the reader with an understanding of tools and techniques used to design

circuits which drive interconnects. Topics such as interconnect models and interconnect driver

design techniques are provided to ensure that the reader is familiar with the concepts in the

subsequent chapters.

2.2.1 Deep-Submicron Interconnect

Interconnect in deep-submicron process technologies has several important issues that affect

the performance and design of high speed circuits. Problems such as signal integrity, inductive

coupling, IR drop and electromigration are among the many growing challenges which face IC

designers. However, the most prevalent challenge for interconnect design in deep-submicron

design is signal delay.

15

The primary factors controlling interconnect delay are wire parasitics. The parasitics of

interest, resistance (R) and capacitance (C), are physical properties of the wire. The resistance

and capacitance of an interconnect act like an RC load in the signal path which causes

propagation delay. The amount of resistance and capacitance is determined by the physical

dimensions of the interconnect and the materials used.

Parasitic Resistance

The resistance is determined from the cross-sectional area of the interconnect. A larger area

implies a lower resistance. However, as technology shrinks, wires in nanometer technologies

tend to be thinner than before. The overall effect is an increase in parasitic resistance for a

minimum width wire. For example, the resistance of a minimum sized wire in 90nm is roughly

twice the resistance of a minimum sized wire in 180nm.

Improved materials such as copper interconnect have been introduced in order to reduce

interconnect resistance. At most, this provides a one-time improvement; the resistance continues

to increase as wire geometries continue to shrink. In the meantime, the most straightforward

solution is to increase the wire width in order to reduce resistance. Unfortunately, this is not

always possible because an increase in wiring density is needed to keep up with the increase in

logic density as transistors are scaled.

Parasitic Capacitance

Parasitic capacitance of an interconnect is caused by coupling with neighboring conductors.

The amount of capacitance is related to the ratio of the conductive areas facing each other to the

distance separating the two conductors. Figure 2.7 shows a typical construction of a deep-

submicron interconnect with the most dominant parasitic capacitances labeled. Plate capacitance

16

is caused by the area at the top and bottom of the wire. In earlier technologies, this value was the

dominant factor. However, with the narrower wires in nanometer technologies, the coupling

capacitance has grown to be the major capacitance contribution.

Figure 2.7 - Deep-submicron Parasitic Capacitances

As with resistance, advanced materials such as low-k dielectric insulators are being introduced to

lower the parasitic capacitances. However, in cases where a designer requires even lower

capacitance, the easiest solution is to increase the distances between wires. With the increase in

importance of coupling capacitance, wire spacing has become an even more effective tool at

reducing delay. However, the benefits of increasing the wire spacing are limited by diminishing

returns and can only be used at the cost of losing interconnect density.

Inductance

One important parasitic effect which is omitted in this research is that of inductive effects.

Severe inductive effects include overshoots and undershoots in signal waveforms. These signal

integrity faults can potentially manifest themselves as glitches or worse, as false transitions at the

end of wires. Inductance is caused by electrical loops formed on integrated circuits that generate

17

corresponding magnetic fields. The interaction of magnetic fields on large integrated circuits can

cause inductive interference which is very difficult to locate and solve.

In the past, inductance was not a serious concern since the resistive component of a wire

dominated the impedance. However, now that the frequencies are increasing, the effect of the

inductive component is growing.

In this work, inductance was ignored for several reasons. The first reason is that it is very

difficult to predict the effective interconnect inductance because it depends strongly on the

overall construction of the integrated circuit. Unlike capacitance, which is based strongly on

neighboring features, inductive effects have a much larger spatial range. The second reason is

that inductive effects do not severely affect the signal or propagation delay of interconnects. As

shown in [9], the worst case inductance would cause an 8% reduction in the delay.

2.2.2 Interconnect Delay Models

In order to design interconnect circuits one must be able to model the delay of a signal

traveling along the wire. Interconnect delay models range from a simple lumped capacitance

model to complex transmission line representations which are good at modeling high-order

effects but are computationally intensive [10]. For the purposes of this research, a distributed

R C circuit model is used with two computational models: Elmore delay and HSPICE delay.

Elmore Delay

There are many approaches used to compute the signal delay of a wire. Different methods

trade off accuracy with computation speed. The fastest and most common approach is the

Elmore delay [8]. This method offers high fidelity with a very fast runtime. Despite this, it is

important to understand that the Elmore delay is only a first order approximation of the true

18

delay of an RC network. Other methods based on the Elmore delay offer improved accuracy with

similar runtime [11]. However, these techniques do not have the ability to accurately model

complex circuits such as pass transistors, level-restorers, or other active elements.

Elmore delay can be computed using a straightforward algorithm described in [12]. For any

RC tree, the delay to node i can be computed using

r,=2Kxtf,,)
k

Ck is the capacitance at node k and R;k is the sum of all the resistances from the source to node k

that are in common with the path from the source to node i.

W\A-
Source

© vvV-

R 3

V \ A A
®

Figure 2.8 - Elmore Delay Example [12]

Figure 2.8 shows an example of a circuit from [12]. The Elmore delay to each node is calculated

as follows.

r, = RXCX + RXC2 + RXC3

r2=RxCx+(Rx+R2)C2+RxC3

r3 = RXCX + RXC2 + (RX+R3) C3

Using this method, the Elmore delay for a distributed RC model of a wire made up of N stages is

N + \
expressed asRC ^ , where R is the total resistance and C is the total capacitance. For large

19

values of N , this expression becomes RC . This can also be written as
rcl2

, where r and c are
2 2

values of resistance and capacitance per unit length and / is the length of the wire (R = rl, C = ct).

This demonstrates that the delay of the wire is a quadratic function of its length.

S P I C E - L e v e l Simulat ion

In order to achieve high accuracy when modeling more complex driver circuits, it is necessary

to use the HSPICE circuit simulator [13]. A SPICE simulator is capable of modeling a larger

range of electrical effects while providing a higher level of confidence in the quantitative results

in comparison to first-order approaches such as Elmore delay.

HSPICE is capable of modeling interconnects as transmission lines using a 2D filed solver.

However, these approaches have lengthy runtimes. Instead, wires are modeled in HSPICE using

numerous distributed RC stages which produce an error of less than 3% i f proper care is taken

[10]. The value of resistance and capacitance can be extracted from process technology

documents and/or first characterizing the RC manually using the 2D field solver in HSPICE.

Further details on interconnect parasitics are provided in Appendix A .

2.2.3 Interconnect Dr ive r Design

The delay of a wire is a quadratic function of its length. This delay can be reduced to a linear

one by inserting additional buffers along the wire. Careful sizing and positioning of the buffers

can further improve the delay. In this section, several approaches used to design buffers to

improve interconnect delay are described.

20

Driver Modeling

In addition to modeling interconnect, it is important to be able to model delay of a driver

circuit in order to determine the overall delay of the driver and interconnect. One common

approach is to model a buffer using a resistance and capacitance. This method of using an RC

time constant to represent a buffer, allows the delay of the buffer to be easily included in an

Elmore delay computation.

In this approach, a buffer is modeled by an effective resistance or on-resistance, a gate

capacitance and an output capacitance as shown in Figure 2.9. The gate capacitance is seen as a

load on the previous stage, while the output stage is modeled as a step input driven through a

resistance. This buffer model can be combined with an interconnect model to form an RC

network which can be evaluated using the Elmore delay.

Using this simplistic method has some drawbacks, the most notable being that it cannot

accurately model the effects of reduced signal swing or smaller input slew. Also, the accuracy of

this model is strongly dependant on the value of the effective resistance. Since the on-resistance

of a transistor in operation is not constant, deriving an accurate effective resistance can be tricky.

Although this approach is often used, there are other methods to model the delay of a buffer.

[14, 15] uses an alpha-law model [16, 17] which is based on the I-V curve of the transistor model.

Although this approach yields more accurate results, it involves complicated Laplace domain

Figure 2.9 - RC Model of a Buffer

21

calculations. For first-order calculations, use of the RC model was continued due to its simplicity

and existing implementation in FPGA C A D tools.

Repeater Insertion

A common technique for improving delay performance on long wires is to use repeater

insertion [10, 12, 18-20]. Conventionally, this involves placing single stage repeaters, at

uniformly spaced intervals along the wire. One derivation of this approach is based on a careful

application of the Elmore delay model as shown in [12]. Results show that the number of stages

required to drive a wire of length / is

where r and c are the resistance and capacitance per unit length, respectively. R e q n is the effective

resistance of the driving transistor. C G and Co are the input and output capacitance of a minimum

size buffer. Finally, p is the ratio of PMOS to NMOS sizes used in the buffer.

This repeater insertion technique is a simple solution to the interconnect problem.

Unfortunately, the approach has some drawbacks. The resulting equations compute the optimum

spacing and sizing of the repeaters based solely on the process characteristics. In practice, it

should also depend upon the circuit preceding the interconnect. Furthermore, the optimum

repeater size is usually quite large and unrealistic. Also, start driving this large load, a chain of

cascaded inverters is typically used to drive the first stage [21]. However, the delay of this initial

cascaded buffer arrangement can represent a significant fraction of the overall delay [22] and this

The size of each buffer (relative to a minimum sized buffer) is

22

is ignored in the equations above. Previous work in [22] has shown that it is possible to integrate

this cascaded buffer with the preceding logic, however, this approach does not apply well to

FPGA switches due to the limited amount of active logic in the switch block.

An alternative design approach is non-uniformly inserted repeaters [22]. This technique uses

buffers of increasing size to drive progressively longer wire segments. This particular work uses

a geometric relationship for the sizes and wirelengths of successive segments. Although [22]

offers a change from the classical uniformly-spaced buffer insertion approach, it still relies on a

constrained solution space. In one component of this research, a more general design space will

be considered to determine i f further improvements can be gained from a fully non-uniform

design.

Other Buffer Insertion Optimization Approaches

A substantial amount of work has been done on the development of interconnect circuit

design optimization techniques. Many recent studies are focused on delay minimization using

closed-form expressions [1, 9, 14, 18, 23-25], but there also exists some work which uses SPICE

level analysis [22, 26]. In addition to delay, other important metrics such as power and area

reduction are considered in [14, 18, 24, 27].

Although much of the previous work assumes CMOS buffers, there are other more exotic

circuit architectures which can reduce interconnect delay [28-30], Regardless of what circuit

topology is used, it is clear that interconnect delay is a significant problem that will continue to

be studied.

23

2.3 Remarks

In this work, FPGA architecture and interconnect circuit optimization are combined. FPGA

architecture introduces both constraints and simplifications to the general interconnect problem.

The requirement of programmability places constraints on the circuit design and, in particular, it

introduces complications with the delay model used in most closed-form expressions. However,

the rigid and programmable structure of an FPGA allows the designer to avoid the more general

problem of inserting buffers into interconnect trees. To this day, there has been an enormous

amount of work done in both interconnect circuit optimization and FPGA circuit design. But to

the best of our knowledge, no previous work has been attempted to combine the two concepts to

produce optimized interconnects for FPGAs.

24

C h a p t e r 3

C i r c u i t D e s i g n o f U n i d i r e c t i o n a l I n t e r c o n n e c t

This chapter develops a circuit design technique for an FPGA switch driver. The first step is

to revisit the problem of FPGA switch circuit design with a particular focus on designing for

single-driver routing. From this discussion, design objectives and parameters are obtained. The

next step is a rapid exploration of the design space which provides insights that facilitate the

development of an accurate circuit delay modeling technique. Finally, this technique is used to

determine the values of the design parameters which make up a complete FPGA switch driver

design.

3.1 Design of Unidirectional FPGA Switch Drivers

In this section the problem of FPGA switch driver design is defined for use in a single-driver

routing architecture. In the FPGA architecture shown in Figure 3.1, the switch driver for an

architectural length 2 wire is represented as a part of the switch block. Although this is logically

valid, the switch driver can be physically distributed along the entire wire. But before that can be

discussed, it is important to investigate the design of the components which make up an FPGA

switch driver.

25

Length 2 Wi re

Figure 3.1 - Architectural Location of F P G A Switch Drivers

3.1.1 Components of F P G A Switch Drivers

Interconnect

Programmable
Component

Signal Driver

Figure 3.2 - F P G A Switch Driver Components

A block diagram of the switch driver is shown in Figure 3.2. A switch driver consists of a

programmable component and a signal driving component. The programmable component

allows a variety of sources to access the driver and is typically implemented using a multiplexer.

The driver circuit transmits the signal down the wire to surrounding logic blocks and I/O pads.

What follows is a description of some of the possible implementations of the multiplexer and the

driver.

Multiplexer Design

The use of a multiplexer allows the device to select the signal to be driven from a variety of

inputs of the switch block. Since multiplexers are prevalent throughout an FPGA, it is important

26

to appreciate that their circuits contribute to a large portion of the chip area. For this reason,

area-efficient multiplexer designs are preferred in FPGA devices.

A multiplexer can be built using either active CMOS gates or passgates. The former uses

CMOS logic gates to achieve full rail-to-rail signals. Although this approach is convenient, it is

inefficient in terms of area and delay, especially as the fanin of the multiplexer increases. The

latter design uses pass transistors or transmission gates to select the desired signal. This approach

is commonly used because it provides good area and delay performance. Multiplexers using

NMOS pass transistors have the smallest area, but suffer from reduced signal swing which

causes downstream gates to operate slowly and leak at steady state. One solution to this problem

is to use a level-restoring circuit, shown in Figure 3.3, integrated with the driver circuit.

Unfortunately, this technique introduces non linear models into the circuit, making it difficult to

use an analytical approach to compare with other circuits.

One compromise between area and delay is to use the CMOS transmission gate. This design

is fast and provides a full swing signal to drive downstream gates. However, CMOS transmission

gates require more than twice the area of an NMOS passgate due to the use of PMOS transistors.

Figure 3.3 - Level-Restoring Circuit with 2:1 NMOS Pass Transistor Multiplexer

Once the passgate implementation is determined, the next step is to consider the multiplexer

architecture. For multiplexers built using pass transistors, there are two common architectural

choices.

27

Figure 3.4 - Binary Tree Multiplexer

The first option is the folly-encoded binary tree structure. This design folly encodes the

control signal input to make efficient use of the configuration R A M and reduce the area

overhead. The signals are selected using a binary tree structure as shown in Figure 3.4. For an N -

input multiplexer of this architecture, the number of configuration R A M bits used is equivalent

to the number of levels in the tree, hence f"log2 N~\ . The signal delay in this design is

proportional to the number of levels squared, or |~log2 N~f.

SRAM SRAM SRAM SRAM

7 7 7 7
Figure 3.5 - Flat Multiplexer

An alternative approach is the flat, decoded multiplexer as in Figure 3.5. This architecture

uses one configuration R A M bit and one passgate for each signal input. This design requires the

largest S R A M area overhead, but limits the delay for any signal to that of one passgate plus the

loading effect of additional junction capacitance from neighboring transistors. The number of

transistors used in this design is equal to the number of signal inputs.

28

Comparison of Multiplexer Architectures
(N = fanin of MUX)

Parameter Fully Encoded Flat Decoded 2-Level
Parameter

Multiplexer Multiplexer Multiplexer

Delay Levels riog2 Ari 1 2

Loading
(junction capacitance)

[log 2 iV]
(distributed)

N - l
(lumped)

Configuration R A M \og2N N

Passgates Required 2N-2 N

Table 3.1 - Comparison of Multiplexer Architectures

Figure 3.6 - 2-Level Multiplexer

A combination of the aforementioned designs can be seen in the Stratix II architectural paper

[31]. This approach uses a combination of encoded and decoded designs to produce a tree with

multiple branches. This design attempts to reduce the delay by limiting the number of levels a

signal must pass to two levels. For a 16:1 multiplexer, this design requires about half the amount

of configuration R A M cells as the flat decoded multiplexer but 25% more passgates. Since

configuration R A M is usually quite large in comparison to a passgate, this design can still result

in area savings. Table 3.1 compares the characteristics of the three multiplexer designs.

For this work, the two-level passgate architecture was selected because it reduced delay

without incurring a large increase in area. Also, the delay of this design remains fairly linear with

increasing fanin due to its constant depth. This linearity simplifies modeling of the multiplexer

delay during FPGA architectural explorations where the fanin depends on the channel width.

29

IN 2-Level
MUX

SRAM

2-Level
MUX

c
X

To
Driver

c
X To

Driver Fast
Path Fast

Path

a) NMOS Pass Transistor b) CMOS Passgate

Figure 3.7 - Multiplexer Fast Path

Multiplexer "Fast Path"

Regardless of which multiplexer design is used, it will always be a significant source of delay

in the circuit. To further exacerbate this problem, directional routing architectures require

multiplexers which are larger than those found in bi-directional routing architectures. The

multiplexers used have large fan-in (e.g., 20:1, 40:1) resulting in large propagation delays. In

order to avoid this, an isolated path called the "fast path" was created. Also referred to as the

"fast input" in [31], this path allows one signal to bypass the majority of the multiplexer inputs

and arrive at the driver input after going through one passgate as shown in Figure 3.7. When the

fast path is taken, the remainder of the multiplexer design can be ignored since it is shielded by

the disabled passgates. Since it is expected that this is the common case for high-speed signals

that must cross the chip, the buffer design will be optimized for this fast path by reducing the

multiplexer structure to a simple 2:1 multiplexer.

Multiplexer Design Results

The delay of three multiplexer implementations (NMOS pass transistor, NMOS pass

transistor with level restorer, and the CMOS transmission gate) were compared using HSPICE.

Circuit simulations of the fast path were performed using a 2-1 multiplexer driving a single

buffer of various sizes. Sweeping the size of the passgate transistors yielded minimal

30

improvements for the end-to-end delay of the multiplexer-buffer-wire path, as a result minimum-

sized transistors were used in order to conserve area.

Simulation results also confirmed that the CMOS transmission gate yielded the fastest delay.

In addition, this option offers full signal swing, eliminating the need for any level restoring

circuitry. Because of this, a CMOS transmission gate was used with the 2-level multiplexer and

fast path. The final design is shown in Figure 3.7b.

Driver Designs

The component following the multiplexer is the driver circuit. The purpose of this circuit is to

"drive" the multiplexed signal down the wire. Although there are many ways to implement a

signal driver, our focus is restricted to designs using CMOS inverters, also referred to as a

buffer or a repeater. The standard CMOS inverter is built with one NMOS and one PMOS

transistor (Figure 3.8). The PMOS to NMOS transistor size ratio is dependant on the input signal

and therefore related to the multiplexer design. For example, a buffer following an NMOS pass

transistor multiplexer will require a much larger NMOS transistor to sense the weak ' 1' input

signal [4]. In this work, a 2:1 PMOS to NMOS sizing ratio is assumed for simplicity and because

weak input signals do not occur with the CMOS transmission gate.

31

Buffer 1 Buffer 2 Buffer 3

Figure 3.8 - Ubiquitous CMOS
Figure 3.9 - Driver Example

Buffer

A driver is made up of one or more buffers connected in series as shown in Figure 3.9. The

buffers in this design are progressively larger in size. Since physical distance between the buffers

is very small, it is referred to as a "lumped" driver design. An alternative approach is to space

the buffers apart along the length of wire they must drive. This is referred to as a "distributed"

driver design. The key unknowns regarding driver design are the transistor sizes of the buffers,

the number of buffers, and the distance between buffers. Within a driver, the combination of a

buffer and a wire is referred to as a "stage". Often, the length of a wire following a buffer is used

to indicate the spacing between buffers, and it is also referred to as the wirelength of the stage.

3.1.2 Switch Driver Design Goals

As mentioned in the background, the elimination of tristates allows single-driver interconnect

architectures to use distributed buffering and subsequently, to consider midpoint delay as well as

endpoint delay.

Distributed Buffering

Conventional VLSI practices suggest that distributed drivers are the best design for

minimizing end-to-end delay of an interconnect [10]. However, in order for a distributed driver

to become beneficial, the wire must be long enough and resistive enough to take advantage of

32

the additional repeaters. One of the goals of this work is to determine how long must a

programmable interconnect be, before distributed buffering can benefit an FPGA.

Modeling Early Turns

Another benefit of distributed drivers for FPGAs is the improvement of early turn delays. As

mentioned in the introduction and shown in the following Chapter, place and route results

demonstrate that early turns occur very often in directional FPGAs with long wires. Intuitively,

distributed driver designs can offer improved early turn delay since all the inverters are not

lumped at the front of the wire. However, in order to guarantee this, an ideal design would have

to improve delay to all points along the wire, in addition to the endpoint delay.

The delay to all points along a wire is shown in a "path delay profile" (PDP). This metric

will be used as a qualitative tool to determine i f a circuit design can offer improved early turn

delay. For example, two PDPs are shown in Figure 3.10. Both circuits have similar delay to the

end of the wire. However, the signal of circuit A arrives before the signal of circuit B for the

majority of locations along the length of the interconnect, particularly at points between 0 and

0.75mm. This suggests that circuit A would yield better performance in an FPGA architecture i f

there are turns before 0.75mm.

33

Path Delay Profile
400,

350

300

151

1 1 1 1 1 i i i

i i i

i i i

f : j .1 ' i i i i

i i i

i i i i i

\ \ Circuit A
; j —e—Circuit B
i i i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Location Along Wire (mm)

Figure 3.10 - Path Delay Profile

In summary, the circuit design goals of the switch driver are to take advantage of

unidirectional interconnect architectures to optimize for midpoint and end-to-end delay. In

particular, this work will attempt to determine i f distributed driver designs are beneficial for use

in FPGA interconnect. It will identify what wirelengths benefit in end-to-end delay from a

distributed driver approach and using the PDP, identify designs that improve early turn delays.

3.1.3 Switch Driver Design Parameters

This section summarizes the key design parameters of the circuit design problem. The design

parameters are listed in Table 3.2. Figure 3.11 presents a block diagram indicating the various

design parameters.

34

Driver Design Parameters
Parameter Symbol Description

Total Wirelength L Length of interconnect. Architecturally, this is the
distance between multiplexers (typically in mm)

Number of Driver
Stages N

Number of buffer-wire stages which make up the
total interconnect, including the programmable
component as the first stage

Buffer Sizing Bi
Size of the buffer /, normalized to a minimum
sized buffer

Buffer Spacing Li
Length of wire following buffer i
(typically in mm or in % of L)

Table 3.2 - Driver Design Parameters

L

Number of stages N

Figure 3.11 - Block Diagram Identifying Driver Design Parameters

Interconnect Characteristics

Thus far, the geometry issues of interconnect have not been discussed. In most FPGAs, long

interconnects are manufactured on mid-level layers (e.g., metal 3 in a 6 metal process).

Therefore this work assumes that metal layer 3 is used to build the wires. Two combinations of

wire widths and spacings were considered for 180nm and 90nm process technologies: l x

minimum width/lx minimum spacing (denoted as l x l x) and 2x minimum width/2x minimum

spacing (2x2x). Results are presented for designs built using 180nm l x l x and 90nm 2x2x

interconnects. These combinations are chosen because they represent the range of delays

achievable, as 180nm l x l x is the slowest and 90nm 2x2x is the fastest.

35

3.2 Rapid Design Space Exploration

By developing a model based on the design parameters from the previous section, the general

problem of sizing and placing buffers on a wire can be explored. A quick-to-compute Elmore

model is created and used to rapidly explore the design space of a system with three buffers. The

results from this exploration suggest that distributed buffering can improve results at certain

wirelengths. Furthermore, the results indicate that the design space is fairly insensitive to small

changes in buffer size and wirelength, which allows for some flexibility in choosing an optimal

design.

3.2.1 Ana ly t ica l Delay M o d e l

In this study, the design parameters will be exhaustively swept using a simple Elmore delay

model. The difference between this exploration and previous work [14, 22, 23, 32] is that the

search here does not impose relationships between subsequent inverters. Most approaches

constraint the size of successive inverters to be equal or related to one another based on a

geometric series. Unfortunately, by not introducing any constraints, the design space becomes

very large and unwieldy. To reduce the dimensionality of the design space, the number of stages

is restricted to 3 stages as in previous FPGA switch driver designs [3, 33]. Another constraint is

that the size of the first inverter is fixed to minimum. This is done because the Elmore model

approach does not take into account the input capacitance of the first gate. Also, using a smaller

sized buffer will minimize the impact of loading on the preceding circuitry.

The delay model uses standard VLSI techniques [12] presented in the background. Figure

3.12 shows a buffer of size s driving a wireload of length / and a downstream buffer of size s'.

36

Figure 3.12 - Elmore Model of Buffer & Wire Delay

The Elmore delay equation for the wire has the time constant:

T = —(c0s + cl + cgs') + ̂ Y- + (rlxcgs') ^

where r and c are the resistance and capacitance per unit length of a wire, c0 and cg are the output

and input capacitance of a minimum sized buffer and rx is the equivalent resistance of a

minimum-sized transistor. Although the value of rx depends on the type of transistor used, most

approaches do not distinguish the value. In this work, the Elmore-delay computation code

distinguishes between a rising and falling scenario and takes the average of the delays. Table 3.3

lists typical values of the parasitics in a 180nm process technology.

Parasitics in 180nm Process Technology
Parameter Description Typical Values [12]

Co Output capacitance 1 fF/um
cs Gate Capacitance 2 fF/ urn
c Wire capacitance per unit length (min width & spacing) 0.1-0.25 fF/um
r Wire resistance per unit length (min width) 125-300 mQ/um

rP Equivalent resistance of a PMOS transistor 30 kQ/um
rn

Equivalent resistance of an NMOS transistor 12.5 kQ/um
Table 3.3 - Typical Parasitics in Deep Submicron Process Technology

The total delay through the chain of inverters is calculated by summing up the delay through

all three stages. Typical Elmore delay modeling applies a ln(2) = 0.69 factor to x to calculate

50% propagation delay, however, it was found that a l.Ox factor was more accurate due to the

37

non-ideal (ramp) inputs used to drive the circuits [12]. With this model, the delay of a three-stage

driver for any given combination of inverter sizes, inverter spacings and total wirelength can be

calculated.

driversize sweep

wire distribution sweep

L 1

Figure 3.13 - Parameters Being Swept

3.2.2 Design Space Sweeps

Using the general delay model, a set of nested sweeps was used to search the design space for

a variety of wirelengths. The inner sweep is a driver-size sweep and the outer sweep is a wire-

distribution sweep. The driver-size sweep calculates the delay for all possible combinations of a

set of predetermined buffer sizes. From the sweep, the buffer sizes which produce the smallest

delay and the smallest area-delay product can be determined. Similarly, the wire-distribution

sweep generates the best buffer spacing configuration for each wirelength setting. The pseudo­

code for this exhaustive search is shown in Figure 3.14. This pseudo-code was implemented in

Matlab. The calculate_delay_of_() function computes the Elmore delay as described in the

previous section (3.2.1).

38

driver_sizes_weep(wirelengths_array [wl w2 w3]) {
/* mindelaymetric can represent delay or areadelay */
mindelaymetric = largenumber;
for a l l b l s i z e s [bl] {

for a l l b2sizes [b2] {
for a l l b3sizes [b3] {

/ * b u i l d c i r c u i t with b u f f e r s i z e s [bl b2 b3]
and w i r e d i s t r i b u t i o n s [wl w2 w3] */

c i r c u i t = b u i l d _ c i r c u i t ([bl, b2, b3], [wl w2 w3]);
delaymetric (bl,b2,b3) = ca l c u l a t e _ d e l a y _ o f (c i r c u i t);
/* Grab the best design */
i f (delaymetric (bl,b2,b3) < mindelaymetric) {

mindelaymetric = delaymetric (bl,b2,b3);
b e s t c i r c u i t = c i r c u i t ;

}
}

}
}
return b e s t c i r c u i t ;
}

wire_distribution_sweep(wirelength) {
/* mindelaymetric can represent delay or areadelay */
mindelaymetric = largenumber;
fo r a l l Lllengths [LI] {

for a l l L21engths [L2] {
L3 = wirelength - LI - L2 ;
c i r c u i t = driver_sizesweep([LI L2 L3])
delaymetric (L1,L2) = calc u l a t e _ d e l a y _ o f (c i r c u i t);
/* Grab the best design */
i f (delaymetric (L1,L2) < mindelaymetric)

delaymetric = delay (Ll,L2);
b e s t c i r c u i t = c i r c u i t ;

} '
}
return b e s t c i r c u i t ;

}

Figure 3.14 - Design Space Sweep Pseudo Code

3.2.3 Results

Table 3.4 presents the best wire distribution, buffer sizes and resulting delays for wirelengths

ranging from 1mm to 16mm in a 180nm process using wires with l x minimum spacing and lx

minimum width. The best wire distribution is shown as three values which represent the length

of wire following buffer 1, 2 and 3, respectively, these values are normalized to the total

wirelength and sum to 1.0. Similarly, best buffer sizes are listed as the size of buffer 1, 2 and 3,

respectively. The delay for the best design is shown in column 4 and the delay for the

corresponding lumped design is shown in column 5. The final column indicates the performance

39

difference between the two designs. For example, the 2.5mm design is made up of lx , 7x and

38x buffers followed by wirelengths which make up 0%, 15% and 85% of the total wirelength,

respectively. This design has a delay of 379.8ps. In comparison, the best 3 stage lumped design

for a 2.5mm design would have a delay of 382.3ps, approximately 1% slower.

With only three stages in this design, it is unlikely that any wires as longer than 4-5mm will

even be considered. Data for wirelengths up to the 16mm long are shown because that is when

the design becomes fully uniform. The most interesting region is around 2-3mm, where the best

designs begin to shift from lumped designs to distributed designs.

Delay-Driven Results

Wirelengths
Best wire

distribution

Best
Buffer
Sizes

Delay
Best delay for

Lumped Design
Performance
Difference

1mm 0.00 0.00 1.00 1 4 21 185.4ps 185.4ps 0%
2mm 0.00 0.00 1.00 1 5 36 305.8ps 305.8ps 0%

2.5mm 0.00 0.15 0.85 1 7 38 379.8ps 382.3ps 1%
2.8mm 0.00 0.25 0.75 1 8 37 423.5ps 434.3ps 2%
3mm 0.00 0.25 0.75 1 8 39 453.2ps 471.5ps 4%
4mm 0.00 0.35 0.65 1 10 39 613.5ps 687.4ps 11%
5mm 0.00 0.40 0.60 1 12 39 796.6ps 956.6ps 17%
6mm 0.00 0.40 0.60 1 12 39 1004ps 1281ps 22%
7mm 0.00 0.45 0.55 1 14 36 1237ps 1662ps 26%
8mm 0.00 0.45 0.55 1 14 36 1496ps 2098ps 29%
9mm 0.00 0.45 0.55 1 16 39 . 1781ps 2590ps 31%
10mm 0.00 0.45 0.55 .1 16 39 2094ps 3138ps 33%
12mm 0.00 0.45 0.55 1 18 39 2802ps 440lps 36%
16mm 0.00 0.50 0.50 1 22 36 4539ps 7596ps 40%

Table 3.4 - Delay-Driven Results

One concern with the delay driven analysis based on Elmore delay calculations is that buffer

sizes tend to increase rapidly. A commonly used method to reducing the area usage is to use the

area-delay product metric to improve the tradeoff between area and delay. The results in Table

3.5 are determined using the area-delay metric.

40

AreaDelay-Driven Results

Wirelengths
Best wire

distribution

Best
Areadelay

Buffer
Sizes

AreaDelay
driven
Delay

Best AreaDelay
driven delay
For Lumped

Design

Performance
Difference

1mm 0.00 0.00 1.00 1 3 13 194.7ps 194.7ps 0%
2mm 0.00 0.00 1.00 1 3 16 334.6ps 334.6ps 0%

2.5mm 0.00 0.00 1.00 1 3 17 422.1ps 422.1ps 0%
2.8mm 0.00 0.35 0.55 1 6 15 469.2ps 484.1ps 3%
3mm 0.00 0.40 0.60 1 7 14 502.8ps 528.2ps 5%
4mm 0.00 0.45 0.55 1 8 14 677.3ps 803.4ps 16%
5mm 0.00 0.45 0.55 1 8 14 884.3ps 1117ps 21%
6rnrri 0.00 0.50 0.50 1 9 13 1117ps 1507ps 26%
7mm 0.00 0.50 0.50 1 9 12 1397ps 1936ps 28%
8mm 0.00 0.50 0.50 1 9 12 1688ps 2454ps 31%
9mm 0.00 0.50 0.50 1 9 12 2007ps 3085ps 35%
10mm 0.00 0.50 0.50 1 9 12 2354ps 3747ps 37%
12mm 0.00 0.50 0.50 1 8 11 32 Hps 5140ps 37%
16mm 0.00 0.50 0.50 1 8 10 5200ps 8843ps 41%

Table 3.5 - AreaDelay-Driven Results

Once again, results indicate that as the wirelengths increase beyond 2-3mm, a distributed

arrangement begins to demonstrate improvement over a lumped design. It is interesting to note

that as in the delay driven results, slightly non-uniform distributed solutions are good for certain

wirelengths. However, the range of wirelengths with non-uniform solutions shrinks from 2.5mm-

12mm to 2.8-5mm through the use of the area-delay metric. These wire distribution results

suggest two conclusions:

1) The first two driver stages should be lumped together (L = 0)

2) For wires longer than 2mm (in 180nm with minimum wire width and spacing), the

design should be distributed, and wire segment lengths in subsequent stages should be

approximately equal

The first result is strongly tied to the initial assumption that the first buffer should be of

minimum size. However, as mentioned earlier, this is a realistic assumption since the first stage

is a sense stage. This reinforces the notion that ASIC interconnect designers should consider

41

tapering logic which proceeds large interconnect drivers [22]. The second conclusion verifies

that common design approaches which assume equally spaced repeaters are valid. To further

understand these conclusions, it is beneficial to examine figures 3.15 and 3.16.

Figure 3.15 shows the effects of wire distribution on delay. In the figure, the wirelengths of

the stages are represented by L I , L2 and L3, respectively. Since LI + L2 + L3 = 1.0, it is

sufficient to plot only LI and L2, as the third length can be determined from their sum (i.e., L3 =

1 - LI - L2). The plot shows that the effect of LI has a large influence on the delay, where as the

effect of L2 has little effect on the delay. This confirms that to minimize delay, LI should be

fixed at 0 and L2 can be selected for minimum overall delay.

Delay of Minimum-Areadelay for varying L1 and L2

Figure 3.15 - Areadelay-Driven Min imum-De lay W i r e Distr ibut ion Plot for a 4mm W i r e

42

1000-

950

900

850

800

750^

0)
D

700]

650

600!

550;

500J

Delay of Minimum-Areadelay for Varying L2

0.1 0.2 0.3 0.4 0.5
L2 size

0.6 0.7 0.8 0.9

Figure 3.16 - Areadelay-Driven Minimum-Delay Wire Distribution Plot for a 4mm Wire

Zoomed in on L2 Axis

Figure 3.16 presents the same plot as Figure 3.15, but it is enlarged from the perspective of the

L2 axis. It shows that L2 can easily be stretched from 35% (683ps) to 50% (688ps) with only a

0.7% change in minimum delay. This suggests that uniformly dividing the wire between stages 2

and 3 can achieve near-minimum delay, supporting the notion that a uniform spacing of the

subsequent stages is an acceptable choice for design. Moreover, it reassures the designer that the

design is robust to minor shifts in the placement of the latter driver stages, provided they are

already within the vicinity of the optimal configuration.

3.2.4 Summary

Results from the design space exploration provided an understanding of where distributed

buffering becomes applicable and how much tolerance the design has for deviations. Although

43

certain distributed designs are non-uniform, the tolerance in delay to minor shifts in the design

suggests that uniform spacing still provides an adequate solution.

One apparent limitation to this analysis is that the number of stages is fixed. However it is

unlikely that introducing additional stages will change these conclusions. Placing an additional

stage in the design would continue to result in a uniform arrangement with shorter wire segments.

Furthermore, adding unnecessary stages will only result in increasing the overall delay of the

design.

Using results from this study it is possible to make good assumptions which will help to

reduce the design space of the general problem and develop a more detailed circuit model with

fewer unknowns. Conclusions based on the wire distribution results suggest that the circuit

model can be divided into two sections; a lumped front end and a distributed back end. The

lumped front end will contain two buffers, starting with the minimum sized buffer to sense the

input. Since this work is for programmable interconnects the front end will also need to include a

multiplexer. For this reason, this section is referred to as the multiplexer stage. The distributed

back end, referred to as the distributed stages, will be made up of multiple driver stages

consisting of buffer-wire segments of equal length. This is an important constraint because, the

ability to assume that the back end of the circuit is uniformly distributed greatly reduces the

design complexity. Now that the circuit sections are defined, our attention turns to the

development of a more detailed delay model.

3.3 A ccurate Switch Driver Circuit Delay Modeling

The rapid design space exploration used a simplified model to calculate the delay of the

circuit. Unfortunately, this model lacks the ability to accurately predict the effects of passive

devices such as passgates, model the initial input buffer loading, or properly account for reduced

44

drive strength due to a weak input signal. These inaccuracies make it difficult to incorporate and

compare the delay of different multiplexer designs. This section addresses the problem of how to

determine the overall delay of the switch driver circuit accurately and rapidly, by taking

advantage of the design space constraints determined in the previous section.

3.3.1 Delay Modeling through Circuit Characterization

Figure 3.17 provides an example of a circuit which contains elements that are difficult to

evaluate and compare using an Elmore model. However, these complex elements in multiplexer

designs such as pass transistors and level restorers can be accurately modeled and compared

using HSPICE. The major drawback to HSPICE is that its runtime is long and care must be taken

in order to avoid a lengthy optimization process.

Figure 3.17 - Programmable Driver Example

In this section, the delays of different circuit stages are characterized using HSPICE. This

data is then loaded into an array which acts as a lookup table for delay calculations. The circuit

stages characterized represent either a multiplexer stage or a distributed stage of the overall

circuit design. There are several different types of multiplexer stages that are defined by the type

of multiplexer used and the driver. These designs are summarized in Table 3.6.

45

Various Characterized Stage Types
Characterized Sections Description

D
is

tr
ib

ut
ed

 S
ta

ge

Ty
pe

s
nomux

Single buffer + wire

D
is

tr
ib

ut
ed

 S
ta

ge

Ty
pe

s

dblbuffer {>\
I double buffer + wire

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s

wmux

NMOS mu itiplexer + single buffer + wire

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s

wmuxl
r t .

NMOS multip

i

D 1

- ̂ ">d—(()-•

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s

wmuxl
r t .

NMOS multip lexer A ivith level restorer + single buffer + wire

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s wmuxsqrbuffX

NMOS multip lex sr + squ£ ire root sized buffer + buffer + wire

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s

wcmux

T

CMOS

i-

mu Itiplexer + single buffer + wire

M
ul

tip
le

xe
r

St
ag

e
Ty

pe
s

wcmuxsqrbuffX

—a-
Or-

CMOS multip lex 5T + sque ire root sized buffer + buffer + wire

Table 3.6 - Characterized Sections

46

3.3.2 Circuit Characterization Process

The first step in the characterization process is to build a parameterized SPICE circuit model

(SPICE deck) which allows for using variable buffer size and wirelengths. The parameterized

circuit model is then plugged into a testbench circuit which is built to model the input and output

conditions of the circuit. This testbench arrangement is shown in Figure 3.18.

Delay Measurements

Input Waveform

Input shaping Driver design under test Output loading

Figure 3.18 - Testbench Configuration

Next, a Matlab interface to HSPICE is developed. This function is capable of modifying the

SPICE deck parameters, launching the spice job and collecting the desired data. Additional

Matlab scripts were written to perform two dimensional HSPICE based sweeps on the buffer

sizes and the wirelengths of each circuit type. These scripts call the underlying HSPICE

simulator to generate delay data and load the lookup table array. In the following section, this

data is examined to identify certain characteristics about the technology and produce design

information.

3.3.3 Characterization Results & Analysis

The characterization process produces a three dimensional mesh plot of delays as shown in

Figure 3.19. In this plot, the x-axis represents the buffer size in multiples of minimum size

buffers and the y-axis represents wirelength in mm. The delay in picoseconds is produced along

the z-axis for each buffer size-wirelength pair.

47

Buffersize & Wiresize vs Delay (ps)

Buffers Ize Wirelength (mm)
80 0

Figure 3.19 - Delay vs. Buffer size and Wirelength for 180nm l x l x nomux Design

6000r

5000r

40001-

5? 300r>

2000h

1000H

Buffersize & Wiresize vs Delay (ps)

Figure 3.20 - Delay vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux Design

- Wirelength Axis

Since the plot is in 3D, it helps to view it from various perspectives to help identify local

minima. Figure 3.20 presents the delay from the wirelength axis perspective. It simply shows

48

that the minimum delay is achieved with the shortest wire, which is a fairly intuitive result.

However, using a different metric, it is possible to identify which wirelength achieved the fastest

end-to-end signal propagation speed. This metric is referred to as the "delay-per-millimeter"

and can be calculated by dividing the delay by the distance traveled. A similar metric is

described in [34].

Buffersize vs Delay/mm

80 0

Figure 3.21 - Delay/mm vs. Buffer size and Wirelength for 180nm lxlx nomux Design

Figure 3.21 presents a 3D plot similar to Figure 3.19. The difference is that the z-axis now

presents the delay in terms of delay-per-millimeter.

49

Wiresize vs Delay/mm

jl i i i i i i i i i l
0 1 2 3 4 5 6 7 8 9 10

Wirelength (mm)

Figure 3.22 - Delay/mm vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux

Design - Wirelength Axis

As before, Figure 3.22 presents a view of Figure 3.21 from the wirelength axis. This

perspective clearly indicates that in this technology, using wires approximately 1mm in length

will achieve the best delay-per-millimeter.

For the distributed (non-multiplexed) stages, the wirelength corresponding to the minimum

delay-per-millimeter represents the optimal distributed drive stage wirelength. This is the

spacing that would be used by an ASIC uniform repeater insertion process. In a given process

technology, this spacing represents a lower bound on the delay-per-millimeter of ASIC

interconnect. However, it is important to keep in mind that this only applies to designs using the

same metal layer, wire width and pitch.

50

Best Delay-per-millimeter Values for Various Circuit Sections

Process Characterized
lx spacing
lx width

Delay (ps/mm)

2x spacing
2x width

Delay (ps/mm) Technology Stages

lx spacing
lx width

Delay (ps/mm)

2x spacing
2x width

Delay (ps/mm)
nomux 108 69.1

dblbuffer 179 -
Wmux 322 -

180nm Wmuxl 340 -
wmuxsqrbuffX 215 -

Wcmux 262 -
wcmuxsqrbuffX 207 138

90nm
nomux 90.9 57.9

90nm wcmuxsqrbuffX 199 131
Table 3.7 - Best Delay-per-millimeter for Various Sections

Table 3.7 summarizes some of the delay-per-millimeter values for the different characterized

sections. Of the multiplexer stage types in 180nm, wcmuxsqrbuffX was the fastest design and is

assumed for the remainder of the work. This circuit is made up of a CMOS passgate multiplexer

followed by a two-stage lumped driver as shown in last row of Table 3.6 (page 46). The size of

the first buffer is equal to the square root of the size of the second buffer. From this point

forward, any discussions involving the "size" of this driver will be referring to the size of the

second buffer. Since this design was selected and because characterization is a time-consuming

process, only the nomux circuit and the wcmuxsqrbuffX circuit were characterized for other

technology configurations, as shown in Table 3.7.

Selecting Buffer Sizes

The characterization data also provides valuable information which is used for accurate

selection of buffer sizes. As an example, Figure 3.23 presents buffer size curves for wirelengths

0.1mm to 4.0mm for the 180nm l x l x nomux stage. Buffer sizes which yield the minimum delay

at each wirelength are marked with x's and connected with another line.

51

Delay vs. Buffersize for Wirelengths (mm):

10 20 30 40 50 60 70
Buffersize

Figure 3.23 - Buffer size Selection for 180nm lx lx nomux

Since the delay curve is quite shallow towards the minimum delay, it is common practice to

use a buffer size corresponding to a modest delay increase instead of the minimum delay to save

significant transistor area. In this work, the buffer size corresponding to a delay which is 10%

above the minimum delay was extracted. Figure 3.24 presents buffer size data for both minimum

delay and the 10%-off minimum delay for the 180nm l x l x nomux design.

Note that the curve representing the minimum-delay buffer sizes is not smooth. This is due to

the coarseness of the characterization data and the fact that the delay surface is very flat. This

sometimes leads to minor variations in the results of future computations based on these buffer

sizes.

52

55,
Buffersizes vs Wirelengths

50h

4 5 r

40

A , A. A
A "'••A A . / \ . A A . . / ''

'•••A' V ' ' - A'

. A , . . A

A ' - ' '•A - '*

A - A

- A - M i n Delay Buffersizes

-•— 10%-off minimum Delay Buffersizes

4 5 6 7
Wirelengths (mm)

Figure 3.24 - Buffer size Selections for 180nm lxlx nomux Design

10

3.3.4 Delay Concatenation

In this section, a technique is described which uses the pre-characterized data as a lookup

table to produce the delay of an arbitrary circuit driver design. This technique assumes that the

overall interconnect circuit design is constructed through some combination of the pre-

characterized stages. Figure 3.25 presents an example of how stages can be concatenated

together to produce a total interconnect driver solution. Since all the internal sections of the

circuit are fully buffered, it is reasonable to assume the delay is additive. This assumption will be

verified in the following section.

53

Multiplexer Stage Distributed Stages

delay

Figure 3.25 - Circuit Concatenation Example

3.3.5 Verification of Delay Concatenation

In order to verify accuracy of the concatenation approach several circuit designs were built

and their delays were computed using both HSPICE and the concatenation technique. As

suggested in section 3.2.4, the circuits are built using two sections, the multiplexer stage and the

distributed stages which are made up of identical buffer-wire drive stages. The circuit designs

had 2 to 5 stages and total wirelengths ranging from 2.0mm to 3.0mm. These ranges were chosen

because they represent the range of the design space where distributed driver designs begin to

outperform lumped designs. The delays of the test circuits are shown in Tables 3.8 and 3.9.

180nm lx spacing lx width

Total
Wirelength

(mm)

Number
of Stages

Multiplexer
Stage

Length
(mm)

Distributed
Stage Buffer-
wire Segment

Length
(mm)

Concatenated
Delay/mm

HSPICE
Delay/mm % error

2 0.80 1.20 198 192 .3.2%
2.0 3 0.15 0.93 196 203 -3.4%

4 0.15 0.62 202 210 -4.1%
2 1.50 1.50 178 172 3.6%

3.0
3 0.60 1.20 171 168 1.7% 3.0
4 0.36 0.88 170 170 0.2%
5 0.36 0.66 174 174 0.0%
Table 3.8 - Concatenation Verification Results (180nm)

54

90nm 2x spacing 2x width

Total
Wirelength

(mm)

Number
of Stages

Multiplexer
Stage

Length
, (mm)

Distributed
Stage Buffer-
wire Segment

Length
(mm)

Concatenated
Delay/mm

HSPICE
Delay/mm % error

2 0.80 1.20 110 108 1.9%
2.0 3 0.15 0.93 103 105 -1.6%

4 0.15 0.62 103 105 -2.2%
3 0.60 1.20 95 94 0.5%

3.0 4 0.30 0.90 91 91 -0.2%
5 0.26 0.69 90 91 -1.0%

Table 3.9 - Concatenation Verification Results (90nm)

The results show that the concatenated delay model can achieve delay estimates within 4% of

HSPICE. The accuracy of this approach appears to degrade when the stage lengths become

extremely short (under 200um). Table 3.9 presents similar results based on a 90nm technology.

Here, the accuracy is improved to within 2.2% of HSPICE.

3.4 Design Parameter Search

In the previous section, a circuit modeling method capable of rapidly and accurately

determining the delay of a circuit design based on lookup tables was presented. This section

describes an approach which uses the aforementioned circuit modeling technique to determine

values for the buffer sizes, number of stages and buffer spacings used to construct a complete

FPGA switch driver.

3.4.1 Circuit Construction

Results from section 3.2.4 showed that it is possible to construct a driver design using two

separate sections: the multiplexer stage and the distributed stages. This simplification

substantially reduces the search space, particularly when considering higher N values (number of

stages), by making it possible to only consider 2 wirelengths and 2 buffer sizes. Figure 3.26

55

presents a general template of how a driver circuit will be constructed using the aforementioned

restrictions. (Recall from Section 3.1.3 that the symbols B r represent the size of the buffer

driving a wire of length Li).

FPGA Mux stage Distributed Stages

Number of stages N

Figure 3.26 - Driver Construction Template

The multiplexer stage in Figure 3.26 is made up of the wcmuxsqrbuffX stages described in

the characterization step (mux-buffer-wire). The distributed stages can be constructed using one

or more buffer-wire pairs (nomux stages) to make up a uniformly distributed buffer arrangement.

Driver Delay Equation

Using the template described above, several equations can be written to relate the lengths and

delays of the entire circuit design. The first equation relates the stage wirelengths to the number

of stages (N) and the total wirelength (L).

L = L0 + (N-l)xLl (2)

This equation will primarily be used to solve for L I , given any L, N and LO. Once LO, L I , L and

N are known, the delay of each buffer-wire segment can be extracted from the pre-characterized

data, by looking up the appropriate buffer size and delay corresponding to a wirelength LO or L I .

The final design delay is calculated as the sum of the segment delays.

delay = dmux(L0) + (N-\)xddistrib(Ll) (3)

56

Where dCirCuittype{x) is the delay of wirelength x for a circuit stage determined by the pre-

characterized lookup table data.

Given a total wirelength (L) and a number of stages (N), this process of calculating the

wirelength, looking up the delay and buffer size must be performed for all values of LO and L I .

However, since LO and LI are related, the search degenerates into a single sweep referred to as

the segment length sweep, or the LO sweep.

3.4.2 Segment Length Sweep

The segment length sweep involves sweeping the length of the first stage (LO) to determine

the best delay for a particular configuration of total wirelength (L) and number of stages (N).

Plotting the delay of the resulting circuit design against LO reveals a curve which contains a

minimum. Figure 3.27 presents the effect of changing LO on the delay. In this example the best

delay-driven circuit design should have L0=0.15mm to achieve a delay just over 390ps.

Delays for different LO lengths
480

470

460

_ 450
«)
Q.

440
CD

Q
To 430
•5 \—

420

410

400

390
i

L0 Length (mm)
Figure 3.27 - L0 Sweep for a 2mm Wire in 180nm lxlx for N=3 Stages

57

30,

25k

!2

to %

i t </> SI a. I

20

15

x 10

•4
f

t

•-+
i

5rf

Best Buffer Size Data Used
T "

Distributed Stage

+ + + +.,

Multiplexer Stage

..4-.

....+.... d minimum delay buffer sizes
mux

...+... d . .u 10%-off minimum delay buffer sizes
distrib '

4 5 6
Wirelengths (mm)

10

Figure 3.28 - Buffer sizes Used for LO Sweep in 180nm lxlx

It is noted that the LO sweep in Figure 3.27 is not completely smooth and contains some kinks

in the curve. This is due to changing buffer sizes according to the data shown in Figure 3.28. In

this figure, the curve for the distributed stage gives the buffer size B l to use with wirelength L I ,

while the curve for the multiplexer stage gives the buffer size BO to use with the wirelength LO.

As discussed in 3.3.3, the discrete jumps in Figure 3.28 are due to the flat delay curve and the

coarseness of the characterization data. However, because the delay curves are insensitive with

respect to buffer sizes, this does not interfere with establishing a circuit design which achieves

close to minimum delay.

58

500,
Delays for various sizes of the first segment (2mm wire)

480

460

» 440 Q
~s o
r -

4201

400

380

4,F

-N=2 (198ps/mmJ
N=3 (196ps/mm
N=4 (202ps/mm

£

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
L0 length (mm)

Figure 3.29 - Mult i -N L0 Sweep for a 2mm Wire in 180nm lxlx

Multi-Segment Length Sweeps

Using L0 plots it is possible to compare designs with different numbers of stages (N). An

example of a multi-N L0 sweep is shown in Figure 3.29. This plot shows that there is a value of

N which yields the delay curve containing a minimum delay. In this example, the optimal design

parameters are: L = 2mm, N = 3, L0 = 0.15mm and L\ = ——— -0.925mm . Buffer sizes are

N-\

extracted from Figure 3.28 to yield B0 = 6 from the minimum delay curve, and B l = 22 from the

10%-off minimum delay curve.

In Figure 3.29 the effect of the number of stages appears to have a minimal impact on the best

delay, however, this is dependant on the wirelength and technology. Figure 3.30 presents a

similar plot, except for a 4mm long wire. In this case, the effect of changing N has a larger

impact on the overall delay, particularly between N=2 and N=3.
59

950,
Delays for various s izes of the first segment (4mm wire)

X

900

850

3 800

Q
JS 7501

700

650

600

\

T
• " N=2 (174ps/mm
-*»•- N=3 (162ps/mm

N=4 (157ps/mm

1 - v
0 „*

• V /
0 /

0.5 1.5 2 2.5
LO length (mm)

3.5

Figure 3.30 - Multi-N L0 Sweep for a 4mm Wire in 180nm lxlx

3.5 Circuit Design Results & Analysis

The multi-N LO-sweep was performed for a variety of total wirelengths (L) and number of

stages (N) to produce optimal circuit designs for various total wirelengths. Each solution

provides the four parameters required to build the circuit. For the multiplexer stage, the length is

L0 and the buffer size is B0. For the distributed stages, there are N - l buffer-wire segments with

B l sized buffers and wires of length L I . This arrangement was depicted in Figure 3.26 (page 56).

Results of the multi-N LO-sweep for different wirelengths are presented in Tables 3.10 and

3.12. Circuit designs built in 180nm process technology with wires at lx minimum width and lx

minimum spacing are shown in Table 3.10. Similar results for 90nm with wires at 2x minimum

width and 2x minimum spacing are shown in Table 3.12. In addition to the six design parameters

used to construct the circuit, the estimated delay-per-millimeter is shown. For each wirelength,

60-

the design which yields the best delay (ps/mm) is in bold. It is interesting to note that the LI

lengths of the fastest designs are closest to the length of wire shown to achieve the minimum

delay-per-millimeter in the delay characterization process.

180nm - lx spacing lx width

Wirelength Number
of Stages

(N)

Multiplexed
Stage

Distributed
Stage Buffer-wire

Segment Delay
(mm)

Number
of Stages

(N) Driver
Size BO

Length
L0

Buffer
S i z e B l

Length
LI

(ps/mm)

(x min) (mm) (x min) (mm)

, 0.5 2 3.0 0.05 14.0 0.45 414
, 0.5

3 3.0 0.05 14.0 0.23 462
2 6.0 0.15 22.0 0.85 266

1 3 5.0 0.10 19.0 0.45 283
4 5.0 0.10 19.0 0.30 306
2 17.0 0.80 27.0 1.20 198

2 3 6.0 0.15 22.0 0.93 196
4 6.0 0.15 22.0 0.62 202
2 20.0 1.50 26.0 1.50 178
3 14.0 0.60 27.0 1.20 171

J 4 11.2 0.36 26.0 0.88 170
5 11.2 0.36 26.0 0.66 174
2 22.0 2.00 25.0 2.00 174

A 3 19.0 1.20 26.0 1.40 162
H 4 14.0 0.60 27.0 1.13 157

5 11.2 0.36 26.0 0.91 157
Table 3.10 - Distributed Driver Design Results or 180nm

Lumped Design Results 180nm - lx spacing lx width
Wirelength Number of Stages Buffer Sizes Delay

(mm) (N) (x min) (ps/mm)
0.5 , 2 3.74, 14.0 408
1 3 4.0, 10.0,30.0 260
2 3 4.0, 9.0, 35.0 192
i 3 3.3, 11.1,37.0 184
J 4 2.6,6.7, 17.4, 45.0 186
A 3 3.4, 11.5,39.0 194

4 2.7,7.1, 18.9,50.0 191
Tab e 3.11 - Lumped Driver Design Results for 180nm

61

90nm - 2x spacing 2x width

Wirelength Number
of Stages

(N)

Multiplexed
Stage

Distributed
Stage Buffer-wire

Segment Delay
(mm)

Number
of Stages

(N) Driver
Size BO

Length
LO

Buffer
Size B l

Length
LI

(ps/mm)

(x min) (mm) (x min) (mm)
2 31.0 0.80 49.0 1.20 110

7 3 12.0 0.15 43.0 y

43.0 '
0.93 103

L 4 12.0 0.15
43.0 y

43.0 ' 0.62 103
5 12.0 0.15 43.0 0.46 105
3 27.0 0.60 50.0 1.20 95
4 19.0 0.30 48.0 0.90 91

3 5 17.2 0.26 47.1 0.69 90
6 17.2 0.26 47.1 0.55 91
5 22.0 0.40 49.0 0.90 85

A 6 19.0 0.30 48.0 0.74 84
4 7 19.0 0.30 48.0 0.62 84

8 17.4 0.26 47.2 0.53 85
Tab e 3.12 - Driver Design Results for 90nm

Lumped Design Results 90nm - 2x spacing 2x width
Wirelength Number of Stages Buffer Sizes Delay

(mm) (N) (x min) (ps/mm)
2 3 4.0, 16.2,65 115
3 5 2.6, 6.6, 16.8,43.0, 110.0 115
4 5 2.6, 6.8, 17.7,46.1, 120.0 125

Table 3.13 - Lumped Driver Design Results for 90nm

Data for the best lumped driver designs is shown in Tables 3.11 and 3.13 for comparison with

the distributed driver design results. These circuits are designed by assuming a geometric

relationship between each successive driver and running an HSPICE-based search on the final

drive stage for a range of N values. Once the final drive stage is determined, the design is

optimized by hand to reduce any delays caused by a non-ideal drive stage ratio. Since the delay

of the lumped design is strongly dependant on the final drive stage, rigorous tuning of the

intermediate buffers is not crucial.

62

Analysis of the driver design results yield several useful conclusions regarding FPGA

architecture and distributed buffering.

3.5.1 Multiplexing Intervals

In Figure 3.31 the delay-per-millimeter of the programmable interconnect designs in 180nm

process technology can be compared to the best ASIC delay found in Table 3.7. It is expected

that the programmable multiplexed design will always be slower than the ASIC equivalent.

However, as the length of the programmable interconnect grows the delay-per-millimeter of the

design improves. This has significance to FPGA architecture since the length of the

programmable interconnect is essentially the distance between multiplexers in the FPGA device,

or the "multiplexing interval."

Best Muxing Interval for FPGA Interconnect Wires
(one 2:1 multiplexer every X mm)

300 n :

50

0 i 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 1 0

Multiplexing Interval (mm)

Figure 3.31 - Multiplexing Intervals for various Technologies

63

This means that an FPGA architect can choose to select a longer multiplexing interval in order to

achieve a delay-per-millimeter which is sufficiently close to that of an ASIC. Identifying the best

physical wirelength is important for FPGA architecture because it can be translated directly into

an architectural wirelength when the tile size is known. Although Figure 3.31 suggests that using

the longest possible wire can produce the smallest delay, it is important to note that this is often

impractical due to many other tradeoffs. For instance, the larger logical lengths that come about

from longer wires will increase the minimum channel width required to ensure the start of a wire

is located at all CLBs. In contemporary FPGAs, 3mm [35] is a reasonable length for long wires.

3.5.2 Distr ibuted Buffering

Using the driver design results, the suitability of distributed buffering can be assessed. The

delay of the distributed driver designs in Tables 3.10 and 3.12 will be compared with those of the

lumped designs using path delay profiles. PDPs provide a qualitative assessment of the benefits

of distributed driver design on midpoint delays in addition to a direct comparison with the end-

to-end delays.

Figure 3.32 presents PDPs for 0.5mm to 4mm for a 180nm process. From the plots it is clear

that the distributed driver designs offer improved end-to-end performance for longer wires. In

this technology, wirelengths beyond 2mm benefit from distributed designs when compared to

lumped designs. In the case where end-to-end delay is roughly equal, distributed designs can

offer smaller midpoint delays. For example, a 2mm distributed N=2 design uses roughly the

same total buffer size area as the 2mm lumped N=3 design and both have the same end-to-end

delay. However, the distributed design offers smaller delay to early turns up to 800pm down the

wire. At 800um, the distributed design offers a turn delay which is approximately 18% faster

than the lumped design. The actual net benefit of achieving this early midpoint delay is not clear

64

without proper modeling and simulation using a real C A D router and timing analysis. This is the

objective of the next chapter.

65

300

250

• 200

Path delay Profile for 0.5mm buffered wire

•a 150K

100

50

—|i—I—t—I—I—I—l-1-̂ -+--§—I—I—I— t+-h+ + + +++1H-4 - f -

-+- - N=2
N=3
Lumped

0.1 0.2 0.3 0.4
location along wire (mm)

0.5

350
Path delay Profile for 1mm buffered wire

300 h

250

200

50

, , ^ " f t ? ^ w " |^ -

150

100t —

•+- N=2
N=3

-O N=4
" Lumped

0.2 0.4 0.6
location abng wire (mm)

0.8

450
Path delay Profile for 2mm buffered wire Path delay Profile for 3mm buffered wire

0.5 1 • 1.5
location along wire (mm)

1 1.5 2
location along wire (mm)

800

700

600

& 500
>.
TO

v 400

300

200

100

Path delay Profile for 4mm buffered wire

• f c + i t

0 0.5

H — N=2
- i - ; N=3

• -O- - N=4
- N=5

—* Lumped

2.5 3.5
location along wire (mm)

Figure 3.32 - Path Delay Profile Plots for 180nm lxlx for lmm-4mm

66

C h a p t e r 4

C A D C i r c u i t A r c h i t e c t u r e M o d e l i n g a n d E v a l u a t i o n

In the previous chapter a method to design FPGA switch drivers was presented. Given the

nature of FPGAs it was not clear how the proposed designs would improve performance. In this

chapter, an FPGA C A D tool, VPRx, is modified to model the proposed switch driver circuits in

order to evaluate their performance. It begins with a discussion on the goals of the circuit

evaluation, and proceeds to develop the model of the proposed circuits in VPRx. Later sections

will present critical path delay results of using the new switch designs in an FPGA.

4.1 Goals of the CAD Circuit Evaluation

In the previous chapter, the design with the best delay was constructed using a 2:1 CMOS

passgate multiplexer followed by 2 inverters and then by a uniformly distributed driver. In this

chapter, that circuit design is modeled in VPRx to measure the impact of early turns and the new

design on delay. Using a router which is aware of precise delays of early turns, it is investigated

how often early turns are used and whether a performance improvement can be attained using

circuits which offer reductions in midpoint delay. This requires that the C A D tools be capable of

a) modeling the midpoint delays during routing, and b) making decisions based on this

information.

67

Another architectural question involves the effect of adding fast paths to the FPGA routing

resources. The new circuit design uses a simplified high-speed fast path to operate near

maximum speed for straight connections. To determine the effect of these changes, they must be

evaluated in the FPGA C A D framework as well.

Modification of C A D tools to fully support the proposed circuit designs is the first goal of this

chapter. The second goal of the chapter is to use the modified C A D tools to implement

benchmark circuits using a C A D framework to determine the overall improvement in FPGA

performance.

4.1.1 Comments on Area Overhead

The goal of this thesis is to obtain the best possible delay performance from long wire

interconnect. As such, area is only a secondary concern. To mitigate concerns over area

overhead, we note two things. First, by stepping back delay by 10% from optimal, considerable

area is saved. Second, the number of high-performance long wires in an FPGA device is

expected to be a small fraction of the total amount of interconnect. Hence, even though large

buffers are used, they appear infrequently (few long wires) and one spaced far apart

(approximately 1mm apart). For this reason the remainder of this thesis will not be concerned

with measuring area overhead.

68

4.2 Experimental Methodology

Depopulate
Circuits

Create
Architecture

File

Placement
(VPR)

Routing
(VPR)

Complete
\

Create
Architecture File

New Circuit Designs

Characterize
Circuit for VPR

(HSPICE)

Build Switch
Models for VPR

Testbench
Placement

(VPR)

Testbench
Routing
(VPR)

Yes

Architecture File Build
Complete

No

Figure 4.1 - Exper imental Methodology F low

The experimental methodology shown in Figure 4.1 follows the flow described in Chapter 2.

Steps are added to depopulate circuits to generate larger FPGA arrays for use with longer wires.

Also shown, is a process to generate architecture files based on the proposed circuit designs.

Details on this process are provided in section 4.3.5.

69

4.3 Circuit A rchitecture Modeling

In order to evaluate the new circuit designs using FPGA C A D tools, proper support needs to

be added to the C A D models. In particular, VPRx must be able to use early turns and fast paths

while accurately assessing their respective costs. Modifications made to VPRx can be broken

down into circuit modeling and router awareness.

Circuit modeling allows accurate representation of the circuit designs in VPRx. The existing

wire model built into VPRx lacks the resolution required to distinguish the benefits of the new

designs from the previous designs. In order to increase the detail of the wire model and to model

new circuit designs, VPRx was modified to model wires made up of multiple wire-segments and

driver designs using distributed buffering. Another VPRx model that required revision is the

multiplexer delay model. Since the two-level flat multiplexer design has delay properties which

differ from the original tree-based design, a new multiplexer modeling scheme is introduced in

section 4.3.4.

The second component of the modified C A D tool is router awareness. This requires that the

C A D algorithms are capable of understanding and exploiting the routing options provided by the

new circuit models. For instance, the router should be able to recognize the presence of a fast

path and take advantage of it when applicable. In the following sections, detailed discussions of

the new features added to VPRx are presented.

4.3.1 Early Turn Modeling (ETM)

In an FPGA, a turn occurs when a signal leaves a wire for another destination. In a

unidirectional architecture, a turn which occurs at the end of a wire is referred to as a normal

turn since it uses the entire interconnect resource. When a turn takes place before reaching the

end of the wire it is referred to as an early turn. A n example of the two types of turns is provided

70

in Figure 4.2. The reason why it is important to distinguish the two is because the delay of an

early turn can be substantially smaller than that of a normal turn.

CLB CLB CLB CLB
1 2 • • • N-1 N

J J J J J J J J _
i i i i i i i in

Y
Early Turns

J
Normal Turns

Figure 4.2 - Early Turns

Initial turn counting experiments indicated that early turns occurred often in unidirectional

FPGA designs. Unfortunately, in the existing VPRx tool the delay of such turns is not modeled

accurately because both normal turns and early turns are treated as i f they have the same delay.

Turn Modeling Error

Treating the delay of all turns equivalently introduces error into the timing calculations. This

affects the accuracy of the critical path calculation and the metrics used during the routing search.

An idea of the error that can occur in the delay of the wire can be obtained by using an Elmore

tree calculation as follows.

R C

The delay of a normal turn is the delay to the end of the wire: w'"^ w , r e

The delay of an early turn occurring at !4 of the wirelength:
wire/ wire/ D I/"1

/ 4 /4_ + _Kwire i{^wire_ 2
7R.,^C.,ir.

4 4

wire wire
32

71

In this example, the normal turn delay is roughly 2.3 times larger than the early turn delay. To

account for this, VPRx assumes that all turns occur at the halfway point of the wire and estimates

R C

all turns to have delay w i r e w i r e . In this work, VPRx was modified to model early turns in order

to compute wire delay more accurately based on the actual turn location .

As the wirelength increases the potential difference in delay between an early turn and a

normal turn grows larger. Hence, from a circuit design modeling standpoint, ignoring early turns

cannot be tolerated when longer wires are used.

Proper early-turn modeling allows the timing analyzer to extract more accurate delays for the

critical path. It also allows the router to make informed decisions on whether or not to use early

turns instead of normal turns. Most importantly, early turn modeling makes it possible to assess

the benefits of circuits offering improved delay to early turns.

Rout ing Resource G r a p h Modifications

A new option was added to the VPRx code called " E a r l y T u r n M o d e l i n g " or E T M .

Implementation of E T M involved building a new routing resource graph which could

accommodate the level of detail appropriate for modeling early turns at the routing-resource

graph level.

2 When VPRx is not using early turn modeling, timing calculations revert to their original behavior.

72

Switches
ET - Early Turns
NT - Normal Turns

From adjacent
wirenode

To adjacent
wirenode

Figure 4.3 - Original Routing Resource Graph of VPRx

In the original VPRx, wire segments are modeled as discrete elements represented by nodes in

the routing resource graph. An example highlighting where early turns are possible is shown in

Figure 4.3. E T M was implemented by breaking up the existing wires into sub-wires; each sub-

wire spans one C L B . To model this in the routing resource graph, the nodes are split apart into

E T M sub-nodes and strung together using special E T M edges to form a multi-segment wire

model. Once the new E T M sub-nodes are created, the edges representing early turns are

connected directly to the closest E T M sub-node. Figure 4.4 shows the resulting routing resource

graph.

CLB CLB CLB
•

CLB

*
Switches — •
ET - Early Turns I E T
NT - Normal Turns I

I
I

From adjacent f wire\
— * \ n o d e / ~

I

wirenode

N T

* \ n o d e y *

J

To adjacent
wirenode

ETM Edges and Nodes

Figure 4.4 - Routing Resource Graph for VPRx with E T M Enabled

73

The result of this modification is a larger routing resource graph with more nodes and more

edges, but it is now capable of modeling all possible turns. Although it is possible to obtain

additional detail by breaking the wires into even smaller segments, this increases the complexity

of the routing resource graph unnecessarily. The cost for the accuracy of E T M is increased

runtime and memory use by the router. The amount that the routing resource graph grows is

directly related to the architectural wirelength of the wire being modeled. For example, an L4

wire architecture E T M adds 3 additional nodes and wires for every existing wire. Similarly for

an LI 6 architecture, enabling E T M adds 15 nodes and 15 wires for each existing wire,

expanding the routing resource graph by 15 times. Note, however, this is roughly equivalent to

the overhead needed i f the architecture used LI wires everywhere.

E T M Delay Calculations

The introduction of E T M requires some modifications to the router delay estimation code.

Like before, the router must be able to calculate the incremental delay from any point in the

E T M routing resource graph to its neighbors. However, this time the neighbor can either be the

start of a new wire or an adjacent sub-wire in the middle of an E T M wire. Before E T M , during

the routing wavefront expansion, the only thing that is known to the router is the return path to

the source. Now, there are situations where the router must consider downstream information

from as-yet-unvisited nodes of the routing resource graph. This scenario occurs when the router

is considering adding the first segment of a long wire to the routing solution. The effect of the

latter segments of the wire is manifested in the concept of downstream capacitance.

E T M requires that the router is able to calculate the delay to all midpoints of the wire both

accurately and incrementally. The following derivation demonstrates how to calculate the delay

74

to the midpoint of a wire using Elmore tree analysis. Afterwards, the resulting equation is

manipulated into a form which is practical for incremental calculation.

Source

uu

A A A -

Sinks

R i
VNAA

©
VVNA-

©
-V\AA

R x ©

Segment 1 Segment 2 Segment 3

Single Wire Model

Figure 4.5 - Wire Delay Calculation Example

Figure 4.5 presents an example of a wire model made up of three lumped RC segments. The

wire is driven through an upstream resistance R u p . The end of the wire is connected to an RC

load represented by R x and C x . In this example, the router is expanding only along the wire made

up of segments 1 through 3 and it is not aware of the RC load located at the end of the wire.

The delay from the source to each of the three labeled nodes can be determined using an

Elmore tree calculation:

Delay to node 1: r, = (RUP + R])(C, + C 2 + C 3)

Delay to node 2: r 2 = (RUP + Ri)cI+(RUP+R]+R2)(C2 + C3)

Delay to node 3: r 3 =(i^p+i?1)c i +(RUP+R] +R2)C2 + (R„P+R] +R2+R})C}

Rewriting the equation for X2 gives us:

r 2 =K +*.)C. + K + / ? . + ^) (C 2 +C 3)

= (KP +A) (c, + c2 + c3)+R2 (c2+c3)
= r 1 + J R 2 (C 2 + C 3)

75

Similarly, for T3:

h =(KP +* ,)C , +(RUP +R, +R2)C2 +(RUP+R, +R2 +R3)C2

= (RUP+R,)c.+(RUP+RL+R2){CZ+CI) + R3C,

In the above equations, it is common to have sum of all the capacitances starting from the

current node to the end of the wire (e.g., C, +C2 +C 3 for node 1). This sum is referred to as

"downstream capacitance."

It is interesting to look at the wire in terms of segments since each segment represents a sub-

wire in the E T M model. Thus the delay to node 1 is effectively the delay of segment 1. This can

be rewritten as:

^ firstsegment (^upstream ^segment) ^downstream (4)

For the remaining sinks on the wire, the delay of the previous sink can be used to form the

basis of the delay. This is apparent in the rearrangement of the equations. The delay is calculated

using the delay to the previous sink plus the product of the resistance to the current sink and the

downstream capacitance. Again in terms of wire segments, the delay of a mid-wire segment is:

^midwiresegment ~ ^ previoussegment ^segment^^downstream (^)

Using these two equations, it is possible to incrementally calculate the delays to the midpoints

of an E T M wire. When the router encounters the first segment in an E T M wire, it will calculate

the delay using Equation (4). As the router examines the adjacent segments, it will determine the

delays using Equation (5).

It is important to note that the above equations only apply once the router is aware it is

working on an E T M wire. The concept of downstream capacitance only applies internally to an

E T M wire. This is because once an E T M segment is included in the routing solution, then all the

76

downstream capacitance must be included along with it. However, it is not apparent what will be

included in the routing solution from beyond the routing resource nodes which make up the wire.

This is why the previously described equations do not include the effect of R x and C x ; they are

not part of the current wire being examined and so the router cannot assume they will be part of

the solution. However, it is important to make sure that i f node 4 does become part of the

solution, the delay equation will still be correct. According to the Elmore tree calculation the

delay of node 4 is:

r4 = (R U P + R 1) C 1 + (R U P + R L + R 2) C 2 + { R U P +/?, + R 2 + R 3) C 3 + (R U P + R L + R 2 + R 3 + R X) C X

= T 3 + (R U P + R 1 + R 2 + R 3 + R X) C X

However, since node 4 is not an E T M node, the router will use the conventional non-ETM

equation described in section 2.1.3:

^=h+(KPslream+K)Cx (6)

This equation (6) applies only i f RUpStream is equal to R u p + Ri + R2 + R3 + Rx- Fortunately, this is

the case, as the value of Rupstream is constantly being updated at each stage of an E T M wire even

though it is not being used for E T M delay calculation.

Accurate Delay Timing using E T M

In the example presented above, the calculations discussed were "forward" looking

estimations. This means that the router was attempting to produce a delay estimate based on the

best available knowledge. However, the intermediate delay values calculated using this approach

are not always accurate, due to the fact that the full signal routing path is unknown. This can be

seen in the previous example where X4 is accurate (includes C x) but xi, X2 and X3 have not yet been

update to include C x . VPRx resolves this problem by eventually performing a full reverse

77

traversal of the routing tree for each source after the complete net has be formed. It builds a

parallel routing tree which fully encompasses any downstream capacitance at all points in the

tree. This allows a more accurate timing analysis which provides intermediate delay numbers

throughout the tree. E T M modifications were made to the routing tree construction code in order

to make it aware of the additional wiring detail. The extent of the modifications involved adding

correct downstream capacitance to nodes modeling early turns.

4.3.2 Distributed Buffering

Once the E T M modifications are made to the routing resource grid, implementation of

distributed buffering is the next logical step. The fact that a wire can be modeled using multiple

sub-wires makes it possible to insert buffers in-between sub-wires to construct a distributed

buffer design.

Switches — •
ET - Early Turns
NT - Normal Turns

From adjacent f wire A
wirenode node J

To adjacent
wirenode

Buffered ETM Edges

Figure 4.6 - Routing Resource Graph with E T M and Distributed Buffers Shown

One drawback to this approach is that often the prescribed locations for the buffers from the

"best" circuit design do not align precisely with the E T M sub-wire segment divisions. This

causes the buffer locations of the driver designs modeled in VPRx to be slightly different from

78

the actual "best" circuit design specifications. The amount of deviation that occurs is related to

the architectural wirelength of the wire. Larger architectural wirelengths provide more

"resolution" to model a distributed driver. For instance an LI6 wire will be composed of 16

E T M wire segments, whereas in comparison, an L4 wire will only be made up of 4 E T M wire

segments. Figure 4.7a illustrates how a distributed driver design is implemented in an LI 6 wire

model. Alternatively, Figure 4.7b presents the design implemented in an L4 wire model.

Driver Circuit
Design

L16 wire
model

a) L 1 6 Arch i tec tu ra l W i re leng th

Driver Circuit
Design

L4 wire
model

b) L 4 A rch i t ec tu ra l W i re leng th
Figure 4.7 - Modeling a Distributed Driver with Different Architectural Wirelengths

Figure 4.8 illustrates the effect that architectural wirelength has on the distributed buffering

model. As suggested by the PDP shown in Figure 4.8, larger architectural wirelengths can more

closely match the "best" circuit designs found in Chapter 3. However, according to the results

from the design space exploration in 3.2.3, small deviations from the "best" design point can be

tolerated since overall delay is relatively insensitive to the precise location of downstream

buffers.

79

L16 wire'
model

L4 wire
model

Q

Distance Travelled Along Wire

Figure 4.8 - The Effect on the Path Delay Profile of Modeling Circuits with Different

Architectural Wirelengths

4.3.3 Fast Paths

The modified VPRx is capable of modeling the fast path used by the new circuit designs. This

option enables VPRx to be aware of fast paths and model them accordingly. Recall from Chapter

3 that the fast path is a fast multiplexer bypass designed to aid cross-chip signal performance. It

allows a signal which is traveling straight to bypass the wide fan-in multiplexers and take a faster

path to the buffer input.

In order to implement this feature in VPRx, the edge in the routing resource grid representing

the path of adjacent wires is modified with the smaller delay of the fast path circuits. Figure 4.9

demonstrates how the implementation of the fast path affects the routing resource graph.

80

Circuit Model Routing Resource Graph Model

End of long wire \ Start of long wire

^ S BLOCK j

a) Normal Path

Circuit Architecture Model Routing Resource Graph Model

Slow switch

wire \ _ . _ / wire
r—Fast swtichC>^

node / V node ,

Fast path MUX

b) Fast Path

Figure 4.9 - Signal Path through a Switch Block Using Normal or Fast Paths

In Figure 4.9a, all the switches use the multiplexer and hence share the same switch design,

indicated as "slow switches". In Figure 4.9b, two switch types are indicated, a fast switch and a

slow switch. Since there can only be one fast edge per switch driver, all remaining edges which

represent turns must use the slow multiplexer delay model. Details regarding this delay model

are presented in the following section.

81

4.3.4 Multiplexer Delay Modeling

Chapter 3 introduces a 2-level flat multiplexer design for use with routing switches. In order

to model this multiplexer design in VPRx, a new multiplexer modeling scheme is used.

In VPRx, the size (fanin) of the routing multiplexer in each switch is determined

automatically. The size may vary depending on architectural parameter such as architectural

wirelength or channel width. As the size of the multiplexer changes, so does its delay. The VPRx

delay model accounts for these changes and provides a delay estimate for each instance of a

multiplexer based on the fanin required by the architecture.

The current VPRx multiplexer delay model assumes a fully encoded multiplexer tree. As

shown in Chapter 3, this multiplexer architecture has a delay that is quadratic to the depth of the

tree. Unlike the previous design, the 2-level flat design has a constant depth. When fanin

increases, additional delay is caused by the junction capacitance of the added passgate devices.

Experiments indicate that the delay of the 2-level flat design is actually linearly related to the

logarithm of the fanin in the region of interest. Using this relationship, an accurate delay model

of this revised multiplexer architecture is achieved. Figure 4.10 presents an example of this

model using a 180nm l x l x process for a 2mm wire driven by a N=2 distributed driver design.

82

390
380

370
360

Q. 350
re 340 340
"O 330

320
310
300

Mux Input Size vs Delay

4:1 Mux

y = 25.487X + 273.9

20:1 MuA

8:1 Mux

-0—HSpice Delay
Line of best fit

1.5 2.0 2.5 3.0
log2(mux input)

3.5 4.0 4.5

Figure 4.10 - Multiplexer Fanin Delay with a 2mm Wire 180nm lxlx

4.3.5 Circuit Characterization for VPRx

Up to this point, only wire modeling in VPRx has been described. Since the wire models have

known parasitics, characterizing them for VPRx can be achieved by entering their capacitance

per micron and the resistance per micron into the architecture file. The next step is to

characterize the buffers so that they can be modeled in this framework.

Wire Model

VPRx Switch VPRx Switch

-A/VV
KJ2

Switch
Tdel

-AAAr
KJ2

Figure 4.11 - How Switch Circuit Delay is Modeled in VPRx

83

In VPRx, the general term used to refer to a circuit driving a wire is a switch. The circuit can

be a single buffer or multiple buffers lumped together used to drive a wire in the routing resource

graph. In order to model a switch, a combination of fixed delays and equivalent resistances is

used. A switch has several characteristics relevant to this discussion:

• Tdel: Intrinsic switch delay

• R^ : Equivalent Output Resistance

• Cj„: Input Capacitance • •

Each of these characteristics is used by VPRx to calculate the delay of the signal. Figure 4.11

shows how these characteristics are used to model a switch using an RC circuit. The delay is

calculated using the following equation:

Delay = Tdel + { Req + ^] x C wire + {Req + % + x C„ (7)
e q 2 2 V ^ ^ J

Each of the parameters in the above equation are determined for use with VPRx as follows:

Wire Parasitics (R w i r g , C w i r e)

The wire parasitics are obtained from process geometries and technology documents. Details

are provided in Appendix A .

84

Intrinsic Buffer Delay (Tdel)

Tdel is also known as the intrinsic delay of the driver circuit. It is effectively the delay of the

driver without a load; Note that this value includes the effect of the output capacitance of the

output buffer. Using HSPICE, the value of Tdel can be measured through simulation.

Input Capacitance (Q n)

The input capacitance is process specific. It is characterized using an HSPICE simulation

which determines input capacitance for a variety of gate sizes.

Equivalent Resistance (R^)

Unlike the aforementioned characteristics, the output resistance is not measured directly by

HSPICE. Instead, it is used as a model fitting parameter to correlate HSPICE with VPRx delay

calculations. Hence, the concept of an equivalent resistance is only used to model timing and

does not represent a physical value. Calculation of the output resistance begins with a delay

value obtained from an HSPICE simulation. Substituting this value into equation (7) yields an

equation which has one unknown: R e q . By solving for the equivalent resistance the value used to

represent the drive strength of the buffer is obtained.

The above approach provides initial values for a VPRx architecture file. In the following

section, an iterative calibration loop used to tune the architecture file is described. In this process

the initial architecture file is used by VPRx to generate calibration data. This data is

subsequently used to further tune the accuracy of the system.

V P R x C i r cu i t M o d e l Cal ibra t ion Results

In order to verify that the architecture files used by VPRx accurately represent HSPICE

delays, a custom testbench circuit shown in Figure 4.12 was constructed. The delays at several

85

points in this path were computed by VPRx to construct a PDP. This VPRx-PDP was compared

to a similar one generated using HSPICE.

C L B C L B " . C L B "' • C L B C L B , C L B ' C L B C L B

Mult ip le S i n k s
. J

Mult ip le S i n k s

\s B L O C K ; B L O C K ;

Figure 4.12 - VPRx Path Delay Profile Extraction

Since the VPRx model is much simpler than the HSPICE model, it is expected that there will

be differences in the outputs. Although absolute delay values can differ, fidelity must be ensured

by preserving relative values. This means that end-to-end delays must be ranked accurately

according to the original HSPICE PDP. Also, the midpoint rankings must behave similarly. The

delay values of the beginning and end of each step in the PDP are examined and compared. This

ensures that the relative shapes of the PDPs are consistent with one another.

86

VPRx Path Delay Profile for 2mm Wire
450

9
CLB Location

13

450

a) VPRx Generated PDP

Path Delay Profile for 2mm Buffered Wire

0.5 1 1.5
Location Along Wire (mm)

b) HSPICE Generated PDP

Figure 4.13 - Path Delay Profiles for 2mm Wire in 180nm lxlx

Any major discrepancies between the two PDPs are resolved by tuning the parameters such as

Tdel and Req in the architecture file. Each time the architecture file is adjusted, a new VPRx

PDP is generated and this process is repeated.

87

Figure 4.13 compares a calibrated VPRx PDP with the HSPICE equivalent for a 2mm wire in

a 180nm technology using l x l x wires. Although the overall shape and ranking of the two curves

is preserved, one can ascertain that there are certain differences in the output. The most notable

one is the change in the delay of the lumped design. It appears that the Lumped delay is larger in

the VPRx-PDP. One reason for this is that the model in VPRx contains architectural knowledge

than the HSPICE model is missing. In VPRx, the effect of switch drivers which tap off the wire

is added to the wire capacitance. Since the HSPICE model was constructed before the

architectural length was specified, it does not model these additional loads. As expected, the

VPRx PDP delays increase as a result of these loads. Notice however, that the increase is larger

for the lumped design since all the additional wire load is added to the output of one buffer. In

the distributed design, the additional load is spread among multiple buffers. This demonstrates

another advantage of distributed designs.

4.4 Experimental Results

Using the modified VPRx developed in the previous section, 20 M C N C benchmark circuits

are placed and routed several times using different combinations of modeling configurations.

The different modeling configurations are described in the experiments subsection, but first the

routing switch designs which are being modeled will be presented.

4.4.1 Dr ive r Designs Modeled in V P R x

Three physical interconnect lengths were chosen to be modeled in VPRx. For each length, an

optimal buffer sizing and spacing was determined according to Chapter 3.

The first length chosen is 2.0mm. This was selected because the 180nm design results from

Chapter 3 suggested that 2.0mm designs are the crossover point where distributed buffer designs

88

demonstrate potential improvements over lumped buffers. In modern FPGAs, such as Altera's

Stratix which is implemented in 130nm, long wires are approximately 3mm in length [35].

Furthermore, the PDPs of Chapter 3 indicate that distributed buffering begins to offer

improvements in endpoint delay as well as midpoint delays at 3.0mm. For these reasons, a

3.0mm wire is considered.

The third wirelength which is examined is the 0.5mm design. This length is interesting

because it represents the shorter wires (e.g., L4 wires). It also provides a point of comparison

with previous work optimized for L4 wires.

Driver design results show that the 0.5mm wirelength is too short to take advantage of

distributed buffering. As a result, for 0.5mm only a lumped circuit design will be used. Using the

lumped design, benefits due to E T M , the 2-level multiplexer design and use of the fast path are

evaluated. For the longer 2.0mm and 3.0mm wirelengths, distributed drivers are compared to

lumped driver designs. The driver designs to be evaluated are summarized in Table 4.1 and

Table 4.2.

89

Lumped Driver I >esigns

Wirelength
(mm)

Number of
Stages (N)

Driver Sizes
(x min)

0.5 2 3.74,14.
2 3 4, 9, 35 .
3 3 3.33, 11.1,37

Table 4.1 - Lumped Driver Designs Used for Experiments

Distributed Driver Designs

Wirelength
Number
of Stages

(N)

Multiplexed
Stage

Distributed
Stage Buffer-wire

Segment
(mm)

Number
of Stages

(N) Driver
Size BO

Length
LO

Buffer
Size B l

Length
L I

(x min) (mm) (x min) (mm)

9 2 17.0 0.80 27.0 1.20
Z 3 6.0 0.15 22.0 0.93
3 4 11.2 0.36 26.0 0.88
Table 4.2 - Distributed Driver Designs Used for Experiments

Each physical wirelength also corresponds to an architectural wirelength in VPRx. The

0.5mm wire is modeled as an L4 architectural length wire made up of 4 C L B tiles of 125pm.

This is roughly equivalent to the wirelength in FPT04 [3] which was approximately 0.46mm.

The 2.0mm and 3.0mm designs are modeled as wires with an LI 6 architectural length. For the

2.0mm design, the C L B tiles of this architecture are assumed to be 125pm. However, for the

3.0mm design, the C L B tiles are assumed to be 187.5pm long.

4.4.2 Benchmark Logic Circuits

The 20 largest M C N C benchmark circuits were used for each experiment. Although these

circuits are large enough to properly utilize the L4 architectural wirelength, they are not large

enough to take advantage of LI 6 wires. To increase the size of the array used, the amount of

C L B packing was decreased so as to spread out the circuit design. Circuits used for the LI 6

experiments are packed such that only 1 LUT per C L B is used. This produces larger array sizes

90

which are large enough for experimentation with longer wires. Since the purpose of this research

is to assess the interconnect circuit design and not the packing efficiency of the clustering tool,

this is an acceptable solution.

Table 4.3 presents the resulting array sizes used by each benchmark circuit. Since the arrays

are square, only one dimension is listed. Columns 3 and 5 indicate the number of end-to-end

wires which would be required to cross the entire array. Despite packing the CLBs to only 1/8 of

the maximum logic capacity, it is still difficult to generate array sizes which would utilize the

same number of end-to-end wires in the LI 6 array as there are in the L4 array.

For all experiments using L4 wires, the same placement is used for each M C N C circuit.

Similarly, all LI6 experiments share identical placements. This is necessary to remove noise

generated by different placement solutions. In theory, delay could be further improved by

placing each circuit with the additional knowledge provided by the E T M , but this is not explored

in this work.

91

Architectural Wirelengths of Driver Circuit Designs
L4 (0.5mm) L16 (2.0 & 3.0mm)

Benchmark Number of L4 Number of L16
Circuits Array Size wires required Array Size wires required

to cross array to cross array
alu4 14 3.5 40 2.5

apex2 16 4.0 44 2.8
apex4 13 3.3 36 2.3
bigkey 18 4.5 42 2.6
clma 33 8.3 92 5.8
,des 21 5.3 40 2.5
diffeq 14 3.5 . 39 2.4
dsip 18 4.5 38 2.4

elliptic 22 5.5 61 3.8
exlOlO 25 6.3 68 4.3

ex5p 12 3.0 33 2.1
frisc 22 5.5 60 3.8

misex3 14 3.5 38 2.4
pdc 25 6.3 68 4.3
s298 16 4.0 44 2.8

S38417 29 7.3 81 5.1
S38584.1 29 7.3 81 5.1

seq 15 3.8 42 2.6
spla 22 5.5 61 3.8

tseng 12 3.0 33 2.1
Table 4.3 - Benchmark Circuit Array Sizes

4.4.3 Experiments

Experiments can be divided into two groups: Lumped experiments and distributed

experiments. Table 4.4 presents the different experiments performed.

Lumped experiments are performed on lumped circuit designs for each wirelength. These

experiments demonstrate the incremental benefit of adding E T M and the fast path.

The distributed experiments apply to the longer wire circuits (2.0mm and 3.0mm) which have

distributed circuit designs. These experiments demonstrate the benefits of distributed buffering.

Note that the distributed designs can only be evaluated when E T M is enabled.

92

Overview of VPRx Experiments

Circuit
Architecture Lumped Distributed

, +-*

Experiment

FP
T

04

B
as

el
in

e

L
um

pe
d

L
um

pe
d

+F
as

t

L
um

pe
d

+E
T

M

L
um

pe
d

+E
T

M
 +

Fa
;

D
is

tr
ib

ut
ee

+E

T
M

D
is

tr
ib

ut
ee

+E

TM
 +

Fa
i

Wirelengths
(mm)

0.5
2.0

0.5
2.0

0.5
2.0

0.5
2.0

0.5
2.0 2.0 2.0 Wirelengths

(mm) 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Early Turn

Modeling (ETM) No No No Yes Yes Yes Yes

Distributed
Buffering No No No No No Yes Yes

Fast Path No No Yes No Yes No Yes

Table 4.4 - Overview of Experiments

Table 4.4 also shows the wirelengths which apply to each type of experiment. The column

indicating 'baseline' experiments is unique in that it uses the exact same driver design for 0.5mm,

2.0mm and 3.0mm wirelengths. This design was presented in FPT04 [3] and is optimized for an

L4 wire of approximately 0.5mm in length. Although not optimized for 2.0mm or 3.0mm wires,

the same buffer sizes will be used as a baseline. Hence, the results will also demonstrate the

extent of performance loss that can occur i f a circuit is not appropriately designed for the

wirelength. In all other cases the driver design is chosen as the "best" possible for the given

wirelength according to Table 4.1 and Table 4.2.

4.4.4 Critical Path Delay Results

Critical path delay is used as the performance metric used in each experiment. Table 4.5

presents the average critical path delay results for the 20 M C N C benchmark circuits. A l l values

are normalized to the baseline design. Absolute delays for each circuit are provided in Appendix

B.

93

N o r m a l i z e d C r i t i c a l P a t h D e l a y R e s u l t s

C i r c u i t A r c h i t e c t u r e L u m p e d D i s t r i b u t e d

E x p e r i m e n t

F
P

T
0
4

B

a
se

lin
e

L
u
m

p
e
d

L
u
m

p
e
d

+
F

a
st

L
u
m

p
e
d

+
E

T
M

L
u
m

p
e
d

+
E

T
M

 +
F

a
st

D
is

tr
ib

u
te

d

+
E

T
M

D
is

tr
ib

u
te

d

+
E

T
M

+
F

a
st

0 . 5 m m (L 4) *
1.0

(20ns) 0.90 0.82 0.88 0.81
(16.2ns) - -

2 . 0 m m (L 1 6) *
1.0

(31ns) 0.73 0.70 0.69 0.65 0.67 (N=2)
0.67 (N=3)

0.63 (N=2)
(19.5ns)

3 . 0 m m (L 1 6) *
1.0

(38ns) 0.70 0.67 0.63 0.60 0.56 (N=4) 0.54 (N=4)
(20.5ns)

* L4 packs CLBs until full, L16 packs only 1 L U T per C L B to spread out the circuit over a larger array

Table 4.5 - Critical Path Results

Each column in Table 4.5 provides insights on the benefits of each circuit feature combination.

Below, the change in critical path caused by the proposed circuits, E T M , addition of the fast path

and distributed buffering is discussed.

One important limitation to note is that the results in this study are based on an FPGA

architecture with a single wirelength in the routing architecture. This restriction arises from the

fact that VPRx does not support heterogeneous routing resource wirelengths.

Improved Circuit Design Results

The change from the FPT04 design to the lumped circuit design involves two differences: the

introduction of the 2-level flat multiplexer and buffer resizing to optimize delay. Results from

the 0.5mm wirelength demonstrate that the new lumped circuit design produces about 10%

improvement in critical path delay. Most of this improvement is due to the multiplexer design. In

[31], a similar multiplexer design is cited to improve delay by 5%.

94

The 2.0 and 3.0mm results indicate larger gains of up to 30%.. This is mostly because the

FPT04 circuit was not optimized for such long wirelengths. This stresses the importance of using

properly designed circuits for different wirelengths.

Early Turn Modeling Results

The benefits of E T M can be observed by comparing the results in the Lumped column with

the Lumped+ETM column. Addition of E T M shows minor improvements of 2.2% (0.02 points),

for the L4 architectural wirelength. E T M produces larger improvements from 5.4% (0.04 points)

up to 10% (0.07 points) on the longer LI6 architectural wirelength wires.

These results appear reasonable as the L4 architecture provides only three E T M nodes for

each wire. In comparison, the LI 6 architecture provides better detail and more opportunities to

take advantage of early turns by adding 15 E T M nodes for each wire. Furthermore, these results

are consistent with the idea that longer wires benefit more from E T M due to the larger error

which occurs with longer wires.

Fast Path Results

The impact of the fast path is determined by adding the Fast Path option to the Lumped and

Lumped+ETM experiments. Results show a consistent improvement in critical path delay

ranging from 8.9% (0.08 points) on the L4 0.5mm wire to 4.1% (0.03 points) for the longer LI6

2.0 and 3.0mm wires. Intuitively, adding a fast path to the architecture will improve delay by an

amount related to the number occurrences of the fast path. As described in section 4.4.2, the

array size of the L4 wires contains more wires arranged end-to-end and therefore, has a larger

occurrence of fast paths. In comparison, the LI6 design has fewer instances of the fast path due

95

to the combination of array size, channel width and track staggering arrangements of an LI6

wire.

One other reason for the smaller improvement from fast paths on the longer wires can be

attributed to the fact that the delay of the longer wires is large compared to the fast path savings.

Since the fast path reduces the delay through the circuit by a constant amount, the relative impact

of this improvement is larger for smaller L4 wires with a lower wire delay.

Distributed Buffering Results

Improvements due to distributed buffering are presented in the final two columns of Table 4.5

which are only applicable to the long 2.0mm and 3.0mm wires. The design improvements differ

between the 2.0mm wire and the 3.0mm wire due to key differences in the circuit designs.

Compared to the lumped circuit design with E T M enabled, distributed buffering on the

2.0mm wire is able to reduce critical path delay by about 2.8% (0.02 points). Recall from

Chapter 3 that the PDP of the 2.0mm driver circuit design shows that the end-to-end delays are

the same as the lumped designs delay, but the midpoint delays are improved. This experiment

demonstrates that the improvements to midpoint delays can be used by early turn modeling to

provide a modest increase in performance.

In the 3.0mm design, the distributed circuit offers improved end-to-end delays in addition to

reduced midpoint delays. The overall result is a larger reduction in delay just over 11% (0.07

points). This demonstrates that distributed buffering can improve overall critical path delay, but

not substantially until the wire is long enough.

96

Combined Gains

When all the improvements are combined, the cumulative gains can be substantial. For the

3.0mm wire, distributed buffering combined with the fast path produces a 46% improvement

over the original FPT04 design driving an equivalently long wire. Since the FPT04 circuit design

is not optimized for a 3.0mm wire, it makes sense to compare the final distributed design with

the Lumped design for 3.0mm. The results for this comparison show that a distributed circuit

design can still offer a 16 percentage point or 23% improvement when combined with the fast

path. A breakdown of the improvements on a per-circuit basis are provided in Figures 4.14 to

4.16.

0.5mm

ro
D_

"ri
o

45

40

35

30

25

20

15

10 -t

5

0 *

• FPT04

• Lumped

• ETM

• ETM +Fast

i
- B -

Figure 4.14 - Delay Breakdown for 0.5mm Wire

9 7

2mm

Figure 4.15 - Delay Breakdown for 2.0mm Wire

3mm
9 0

Figure 4.16 - Delay Breakdown for 3.0mm Wire

98

4.4.5 Turn Count Analysis

By keeping track of the number of turns in the final routed solution, it may be possible to

better understand the impact of adding early turn modeling, distributed buffering and fast paths

to the routing resource graph. Each routed solution has turn data which can be divided into three

categories: Early Turns, Normal Turns and Straight Throughs. Early Turns represent turns which

occur before the end of the wire. Normal Turns occur at the end of the wire and Straight

Throughs represent the cases where the routing does not turn at all 3 . The sum of these three

values is the total number of turns.

In almost all the scenarios which follow, the addition of new features had little effect on the

total turn count. This is likely because the number of turns in a routing solution are dominated by

the placement and the circuit connectivity relative to the FPGA architecture. Turn counts can

also be affected by other factors such as placement and congestion. Although this section

attempts to explain some of the trends observed in the results, it is difficult to draw concrete

conclusions without further examination of the router operation.

3 Note that when fast paths are enabled, the number of straight throughs represents the number times the fast path

is used.

99

Effect of Adding E T M on Turn Counts

Designs
Average Total

Number of
Turns

Average Early
Turns

Average
Normal Turns

Average Straight
Throughs

FPT04 0.5mm
+ E T M

7617
7604

57.0%
57.7%

26.0%
26.2%

16.9%
15.2%

Lumped 0.5mm
+ E T M

7587
7597

57.3%
58.9%

25.7%
25.1%

16.0%
15.0%

FPT04 2.0mm
+ETM

10986
11041

87.4%
87.3%

7.0%
7.5%

5.0%
4.4%

Lumped 2.0mm
+ETM

10978
11029

87.6%
89.0%

6.9%
6.4%

4.9%
3.7%

Lumped 3.0mm
+ETM

10983
11046

87.5%
88.8%

6.9%
6.6%

5.0%
3.8%

Table 4.6 - Turn Count Changes Due to Addition o F E T M

Effect of Early Turn Modeling on Turn Counts

Table 4.6 presents the effects of E T M on turn counts for the three lumped circuit designs. For

each circuit, two rows of data are shown. The first row provides the turn count data with no

features enabled. The second row, indicated by +ETM, provides the turn data for circuits routed

with E T M enabled.

The table shows that the addition of E T M yielded slight increases in early turns for all cases

except the FPT04 design running on long wires. The fact that the number of early turns increased

by a small amount while the critical path decreased suggests that the improvements due to E T M

are caused by a combination of changes. The biggest factor is most likely increased modeling

accuracy, followed by smarter local choices in routing. An example of smarter routing is given

in Figure 4.17. It presents a scenario where two routes are considered equivalent in a non-ETM

L4 architectural wirelength model. Route B is slightly faster than route A , but only by virtue of

the early turn. It is important to note that although the delay improves, the number of turns does

not. This helps to explain why the number of total turns does not change substantially through

the addition of E T M .

100

• Route A •

CLB CLB Sink
CLB

• — Route B — — — — . i

V;CLB''V CLB •;XCLB '• CLB

CLB CLB CLB CLB

Source
CLB

Figure 4.17 - Early Turn Routing Example for L4 Wires

Effect of Adding Fast Paths on Turn Counts

Designs
Average Total

Number of
Turns

Average Early
Turns

Average
Normal Turns

Average Straight
Throughs

Lumped 0.5mm
+ Fast

+ E T M & Fast

7587
7591

. 7698

57.3%
57.3%
59.2%

25.7%
24.2%
20.8%

16.0%
17.5%
18.9%

Lumped 2.0mm
+ Fast

+ E T M & Fast

10978
10908
11057

87.6%
88.4%
88.4%

6.9%
6.4%
5.1%

4.9%
4.5%
5.3%

Lumped 3.0mm
+ Fast

+ E T M & Fast

10983
10913
11073

87.5%
88.3%
88.2%

6.9%
6.5%
5.2%

5.0%
4.5%
5.5%

Table 4.7 - Turn Count Changes Due to Addition of Fast Paths

Effect of Fast Paths on Turn Counts

Table 4.7 presents the effects of fast paths on turn counts for the three lumped circuit designs.

For each circuit, three rows of data are shown. As in the previous table, the first row is the turn

count data with no features enabled. The +Fast row indicates the changes in turn counts caused

101

by only enabling fast path modeling. The third row, indicated by "+ETM & Fast", provides the

turn data for circuits routed with both Fast Paths and E T M enabled.

Intuitively, one would expect that the introduction of fast paths would increase the number of

straight throughs. According to Table 4.7, it appears that this is exactly what is occurring in the

L4 0.5mm wire. Adding the fast path increased average straight throughs, while the average

normal turns decreased slightly. This suggests that normal turns are being replaced at the

junctions with straight throughs. A simple example here would be a staircase route turning into

an L shaped route.

In the case of the longer wires, the results are counter-intuitive. The average number of

straight throughs and normal turns decrease, while the average number of early turns increases.

For these longer wires, it appears that the lower cost of straight throughs causes more early turns

to occur.

Once E T M is enabled, the results are different. The introduction of fast paths causes a definite

increase in the number of fast paths used. A specific example of this is the case where the

combination of a fast path and an early turn provide a routing option which is faster than a

normal turn plus an early turn. This is shown in Figure 4.18, where three possible routing

choices are illustrated. The table in the figure shows how these routing choices would be ranked

depending on what options where enabled in VPRx, assuming there is no congestion. In the

standard VPRx, without E T M or fast paths, all the routes would be considered equivalent in

timing. If Fast Path is enabled, route B has an advantage because the fast path has a smaller

delay than early or normal turns. If both Fast Path and E T M are enabled, the superiority of route

B becomes clear through the benefits of early turns. Similarly, as the router becomes aware of

the benefits of early turns, it is likely to initially favour route C over A during the routing search.

102

These examples help illustrate why normal turns are less popular once Fast Paths and/or E T M

options are enabled.

A

Fast Path

Ranking of Routing Choices

Routing
No E T M
No Fast

No E T M
+ Fast

+ E T M
+ Fast

A - "Normal Turn" 1 2 3
B - "Straight Through" 1 1 1
C - " A l l Early Turns" 1 2 2

Figure 4.18 - Routing Choices Due to Fast Paths with Early Turns in an L4 Architecture

Effect of Distributed Buffering on Turn Counts

Table 4.8 presents the turn count changes resulting from the addition of distributed driver

designs. It is expected that the improved midpoint delays from the distributed driver designs

would have promoted the use of early turns, increasing the early turn count even more. Instead,

results indicate that the effect of adding distributed buffering does not have any significant effect

on the overall turn count distribution. This suggests that the improvements in critical path delay

are most likely due to reductions in the early turn delays and not changes to the routing solution.

103

Effect of Adding Distributed Buffering on Turn Counts

Designs
Average Total

Number of
Turns

Average
Early
Turns

Average
Normal Turns

Average
Straight

Throughs
Lumped 2.0mm +ETM 11029 89.0% 6.4% 3.7%

+ Distributed N2 11034 88.9% 6.5% 3.7%
or Distributed N3 11063 89.1% 6.3% 3.8%

Lumped 3.0mm +ETM 11046 88.8% 6.6% 3.8%
+ Distributed N4 11055 89.1% 6.4% 3.7%

Table 4.8 - Turn Count Changes Due to Addition of Distributed Features

One thing which has not been examined is where the early turns took place. It is possible that

the location of the early turns is influenced by new circuit designs. Ideally, the router would be

able to strategically choose the best location for an early turn based on the staggered delay

profile of the distributed drive design. Unfortunately, without data indicating the location of

early turns, no clear conclusions can be drawn.

4.4.6 Runtime

Although not a major focus of this work, runtime is an important factor which must be

considered by all C A D tools. By introducing the detailed circuit models which enlarged the

routing resource graph, the complexity and therefore runtime, of the routing problem increased

considerably. The amount the routing resource graph grows is largely dependant on the

architectural length of the wires being modeled. In this work, architectural length of L4 and LI 6

are used. For L4 designs, adding E T M increases runtimes by up to 3x. For the LI 6 designs,

runtimes increase considerably, ranging from 3x up to almost 30x depending on the modeling

options enabled in the experiment. The largest increases in runtime are observed in experiments

involving only E T M .

An interesting observation is that all the experiments which had Fast Path enabled had

runtimes only 3-16x larger than the original. It appears that providing a routing option as

104

compelling as the fast path helps to reduce the runtime of the routing process. In the standard

configuration without the fast path, the router has to negotiate between three equally slow

choices. Introducing the fast path makes the best choice obvious. This allows the router to

postpone expansion of slower neighboring nodes enough to reduce the overall routing runtime.

This observation is useful because it shows that runtime can be reduced by providing clear

choices for the router to pursue.

105

Chapter 5

Conclusions and Future Work

As the industry moves towards faster clock speeds and smaller devices, the challenge of

interconnect delay will always be present. For FPGA designers, this is a significant concern as

the wiring demands of programmable interconnects are intense.

In this thesis, an attempt has been made to address the interconnect delay problem by

investigating the design of programmable switch drivers for FPGAs. Our resulting circuit

designs are based on routing architectures which were recommended by [3]. Prior to [3], FPGA

routing architectures used shared wires that were driven from various points throughout the wire.

This resulted in all FPGA drivers having tristate capability which restricted driver designs to

lumped circuit architectures. In [3], it was shown that implementing directional wires with

single-drivers can improve both the delay and area efficiency of an FPGA architecture. This

thesis shows that by using directional wiring with single-drivers, it is possible to design circuits

which can optimize the interconnect performance on FPGA wires. Optimized circuit designs are

generated using a circuit design methodology which is capable of estimating the delay of a

circuit design using SPICE generated delay data. The use of this method provides the flexibility

and accuracy obtained from a SPICE-level simulator but has the advantage of shorter runtime.

By examining the PDP of the optimized circuits, it can be seen that distributed driver designs

can offer more to FPGAs than just improved endpoint delay. In comparison to lumped driver

106

designs, distributed driver designs can improve early turns which occur before the end of the

wire. Using an enhanced version of VPR capable of accurately modeling the new circuits, the

performance of several circuit designs were evaluated using standard benchmarks. Results show

that early turn improvements alone can reduce delay by a modest amount of about 3%. Overall,

the effects of the new circuits are substantial. When the benefits from improved modeling,

optimized circuit design and other enhancements such as fast paths and faster multiplexers are

combined, reductions in critical path delay by as much as 46% are observed.

By examining the optimized circuit designs, several items which are useful to an FPGA

architect are revealed. The first is that distributed buffering only outperforms lumped designs

once wires are long enough. Results show that in 180nm technology, wires less than 2.0mm

cannot reap the rewards of distributed buffering. The second discovery is that the length of the

interconnect has particular influence on the best speed (delay-per-millimeter) at which the wire

can transmit a signal. In the case of FPGAs, this means that using longer wires can help to

achieve speeds closer to those found in general ASIC interconnect. This information is useful to

an FPGA architect as it aids in the selection of wirelengths for long wires.

5.1 Future Work

This work has attempted to lay the preliminary ground work for further research into

interconnect optimization for FPGAs. As long as FPGAs continue to use wires, approaches to

reduce delay will be welcome. Since this research is mainly divided into two parts,

recommendations are grouped into two categories: Circuit design and C A D .

107

5.1.1 Circuit Design

There are numerous choices involved in the circuit design approach. Some related to circuit

design and other related to modeling. The following topics present some suggestions on future

work related to the circuit design component of this work.

Advanced circuits

The SPICE simulator allows complex circuits to be simulated with great accuracy. This opens

the door to a large variety of circuits which do not have an equivalent Elmore model. Low swing

signaling circuits can offer reduced power consumption and higher performance. For noise

immunity, one can consider the benefits of differential circuits as well.

Noise Modeling

Throughout this work, the effect of deep-submicron challenges were mentioned, but not

directly addressed. Noise from inductance and coupling capacitance can impact performance and

functionality of the circuits.

Coupling capacitance is typically modeled using the Miller Coupling Factor. In this work, it is

assumed that there are no transitions on surrounding wires. Work done in [26] shows that the

Miller Coupling Factor does not affect trends, but it will certainly affect the absolute values of

the resulting design.

Similarly, modeling of inductance is recommended. Unfortunately, assessing the amount of

inductances will be very difficult without prior knowledge of the IC layout. However, since the

effects of worst case inductance are not substantial [9], it might be possible to explore a range of

reasonable inductance values.

108

Process Variation

As feature sizes shrink the effect of process variations can be important. One study which

examines the effects of process variations on the buffers insertion problem is [36]. This work is

valuable to those considering further investigation of process variation effects on buffer insertion

because the results show that the buffer insertion problem is "immune" to process variations [36].

Power and Area Modeling

In the buffer design problem, larger buffers mean more area and more power. In this work,

power and area data is omitted although the SPICE based circuit design methodology can

produce power data for the circuit designs. Further development of the circuit design

methodology could introduce area and power awareness to the design flow.

5.1.2 Future Work for C A D

Area Modeling

Accurate area modeling from VPRx would provide an additional metric for comparison from

the new circuit designs.

Heterogeneous Wiring

Since VPRx does not support multiple architectural wirelengths, the results in this work are

based on single architectural wirelengths. A more realistic model should include multiple

architectural wirelengths as they are present in modern FPGAs.

Detailed Turn Analysis

In this work turn counts were used to justify the importance of midpoint delays and to better

understand the effects of the new circuit designs on the router. Although it is possible to identify

109

if an early turn occurs, it is not known where, on the wire, the early turn took place. Furthermore,

since turn counts are computed by tracing individual sinks instead of examining an entire net,

they do not encompass the actual utilization of a wire. Turn locations would aid designers by

identifying exactly what part of the wire is most susceptible to improvements from a better PDP.

Using complete turn data, it might even be possible to construct a PDP which would be ideal for

FPGAs. Afterwards, an effort could be made to design a circuit to realize this ideal PDP.

Accurate Delay L o o k u p for the Router

Incorporating the PDP into VPRx would allow a more accurate method of delay computation

instead of using the first-order Elmore model. This would also avoid any quantization errors

introduced by modeling distributed buffers with E T M nodes.

Runtime Improvements for V P R x

The runtime of VPRx with E T M on long architectural length wires is very long. The main

reason for this is the expansion of the routing resource graph. Any technique to reduce the

number of nodes would be beneficial for runtime. One possibility is to join E T M nodes with

similar delays. The largest changes in the PDP occur at the buffer locations. By collapsing the

intermediate nodes, it will be possible to reduce the runtime complexity of the routing algorithm

Another potential improvement would be to add heterogeneous wire support in VPRx. In this

way, a shorter set of wires can be added to the architecture, reducing the amount of long wires in

the design. Since E T M is most beneficial for longer wires, additional reductions in runtime could

be achieved by disabling E T M for the shorter wirelengths.

110

References

[I] R. H. J. M . Otten, "Global Wires: Harmful?," in ISPD '98: Proceedings of the
1998 international symposium on Physical design. Monterey, California, USA:
A C M Press, 1998, pp. 104-109.

[2] M . Sheng and J. Rose, "Mixing Buffers and Pass Transistors in FPGA Routing
Structures," in International Symposium on Field Programmable Gate Arrays.
Monterey, California, 2001.

[3] G. Lemieux, E. Lee, M . Tom, and A. Y u , "Directional and Single-Driver Wiring
in FPGA Interconnect," in IEEE International Conference on Field-
Programmable Technology, 2004, pp. 41-48.

[4] G. Lemieux and D. Lewis, Design of Interconnection Networks for
Programmable Logic. Boston: Kluwer Academic Publishers, 2004.

[5] V . Betz and J. Rose, "Circuit Design, Transistor Sizing and Wire Layout of FPGA
Interconnect," in IEEE Custom Integrated Circuits. San Diego, California, United
States, 1999, pp. 171-174.

[6] V . Betz, J. Rose, and A . Marquardt, Architecture and CAD for Deep-Submicron
FPGAs. Boston: Kluwer Academic Publishers, 1999.

[7] L. McMurchie and C. Ebeling, "PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs " in International Symposium on Field-Programmable
Gate Arrays, 1995.

[8] W. C. Elmore, "The Transient Response of Damped Linear Networks with
Particular Regard to Wideband Amplifiers," Applied Physics, pp. 55-63, 1948.

[9] K . Banerjee and A . Mehrotra, "Analysis of On-Chip Inductance Effects fo
Distributed R L C Interconnects," IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 21, pp. 904-915, 2002.

[10] J. M . Rabaey, A . Chandrakasan, and B. Nikolic, Digital Integrated Circuits A
Design Perspective, 2nd ed: Prentice Hall, 2003.

[II] A . I. Abou-Seido, B. Nowak, and C. Chu, "Fitted Elmore Delay - A Simple and
Accurate Interconnect Delay Model," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, pp. 691-696, 2002.

[12] D. A . Hodges, H. G. Jackson, and R. A . Saleh, Analysis and Design of Digital
Integrated Circuits: In Deep Submicron Technology, 3rd ed: McGraw-Hill, 2004.

[13] S. Inc., "HSPICE."
[14] V . Adler and E. G. Friedman, "Repeater Insertion to Reduce Delay and Power in

RC Tree Structures," in Conference on Signals, Systems & Computers, vol. 45.
Pacific Grove, CA, 1997, pp. 607-617.

[15] A . Nalamalpu and W. Burleson, "Repeater Insertion In Deep Sub-Micron CMOS:
Ramp-Based Analytical Model and Placement Sensitivity Analysis," in IEEE
International Symposium on Circuits and Systems. Geneva, Switzerland, 2000, pp.
766-769.

I l l

[16] T. Sakurai and A. R. Newton, "A Simple Short-Channel MOSFET Model and its
Applications to Delay Analysis of Inverters in Series-Connected MOSFETs," in
IEEE International Symposium on Circuits and Systems. New Orleans L A , 1990,
pp. 105-108.

[17] T. Sakurai and A. R. Newton, "Alpha-Power Law MOSFET Model and its
Applications to CMOS Inverter Delay and Other Formulas," IEEE Journal of
Solid State Circuits, vol. 25, pp. 584-594, 1990.

[18] S. Dhar and M . A . Franklin, "Optimum Buffer Circuits for Driving Long Uniform
Lines," IEEE Journal of Solid State Circuits, vol. 26, pp. 32-41, 1991.

[19] H. Bakoglu, Circuits, Interconnections and Packaging for VLSI: Addison-Wesley,
1990.

[20] L. P. P. P. van Ginneken, "Buffer Placement in Distributed RC-tree Networks for
Minimal Elmore Delay," in IEEE International Symposium on Circuits and
Systems. New Orleans, L A , USA, 1990.

[21] H. B. Bakoglu and J. D. Meindl, "Optimal Interconnection Circuits for VLSI,"
IEEE Journal On Electron Devices, vol. 32, pp. 903-910, 1985.

[22] S. Srinivasaraghavan and W. Burleson, "Interconnect Effort - A Unification of
Repeater Insertion and Logical Effort," in ISVLSI '03: Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI'03). Washington, DC,
USA: IEEE Computer Society, 2003, pp. 55.

[23] V . Adler and E. G. Friedman, "Uniform Repeater Insertion in RC Trees," IEEE
Transactions on Circuits and Systems, vol. 47, pp. 1515-1524, 2000.

[24] V . Adler and E. G. Friedman, "Repeater Design to Reduce Delay and Power in
Resistive Interconnect," IEEE Transactions on Circuits and Systems, vol. 45, pp.
607-617, 1998.

[25] C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N . Sze, "Accurate Estimation of
Global Buffer Delay Within a Floorplan," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, pp. 1140-1147, 2006.

[26] P. Saxena, N . Menezes, P. Cocchini, and D. A . Kirkpatrick, "Repeater Scaling
and Its Impact on C A D , " IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, pp. 451-464, 2004.

[27] K. Banerjee and A . Mehrotra, "A Power-Optimal Repeater Insertion Methodology
for Global Interconnects in Nanometer Designs," IEEE Transactions on Electron
Devices, vol. 49, pp. 2001-2007, 2002.

[28] M . R. Greenstreet and J. Ren, "Surfing Interconnect," in IEEE International
Symposium on Asynchronous Circuits and Systems, 2006.

[29] A . Maheshwari and W. Burleson, "Differential Current-Sensing For On-Chip
Interconnects," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, pp. 1321 - 1329, 2004.

[30] A . Nalamalpu, S. Srinivasan, and W. Burleson, "Boosters for Driving Long
Onchip Interconnects - Design Issues, Interconnect Synthesis, and Comparison
With Repeaters," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, pp. 50-62, 2002.

[31] D. Lewis, E. Ahmed, G. Baeckler, V . Betz, M . Bourgeault, D. Cashman, D.
Galloway, M . Hutton, C. Lane, A . Lee, P. Leventis, S. Marquardt, C. McClintock,
K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K.

112

Stevens, R. Yuan, R. Cliff, and J. Rose, "The Stratix II logic and routing
architecture," in Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays. Monterey, California, USA:
A C M Press, 2005.

[32] N . Mohamed and S. Yvon, "Optimal Methods of Driving Interconnections in
VLSI Circuits," in IEEE International Symposium on Circuits and Systems, 1992,
pp. 21-24.

[33] G. Lemieux and D. Lewis, "Circuit design of routing switches," in Proceedings of
the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays. Monterey, California, USA: A C M Press, 2002.

[34] S. Sood, "A Novel Interleaved and Distributed FIFO," in Electrical and Computer
Engineering, vol. Masters of Applied Science. Vancouver: University of British
Columbia, 2005.

[35] D. Lewis: Altera, private communication, 2005.
[36] L. Deng and M . D. F. Wong, "Buffer Insertion Under Process Variations for

Delay Minimization," in IEEE/ACM International conference on Computer-Aided
Design. San Jose, C A 2005, pp. 317-321.

113

Appendix A - Wire Models

The purpose of this section is to demonstrate how parasitic parameters for wire models

can be obtained for use with HSPICE, and how these values can affect delay. Typically,

parasitic of interconnects are provided by the foundry, however these documents are not

always available to researchers. Fortunately, it is possible to use the physical geometries

of the interconnect to determine the wire resistance and parasitic capacitance of

interconnect.

Using the HSPICE 2D field solver it is possible to build 4 a transmission line model of

an interconnect using data provided by the foundry, such as dielectric values, wire

dimensions, spacing and geometries, and metal conductivity. The field solved

transmission line is then used to generate a path delay profile for a simple driver design.

Similar PDPs are generated using T-models, 7i-models and double-7i models. The

capacitance values of these models are determined by adjusting them until the PDP of the

transmission line matches the PDP of the n models. Wire resistance is a straightforward

calculation using conductivity and wire geometries. An example of the PDPs is shown

below.

Through comparison with known data, this method was shown to be an acceptable

method to determine interconnect parasitics.

4 Details of the field solving technique can be found in the SOC C A D document "Interconnect

Modeling in Spice.doc".

114

Interconnect Model Calibration
7e-10

6e-10 h

5e-10 h

co 4e-10
>>
ro
cu

Q 3e-10 h

2e-10 \-

1e-10 h

" T "
— i — T Model

n Model
Double n Model

B Transmission Line Model

0.2 0.4 0.6
Distance Travelled (%)

0.8

Effects of Spacing and Wire Sizing

In addition to performing the above characterization, the effects that wire spacing and

sizing have on delay were briefly examined. The trends are predictable, but results are

useful to guide the selection of sizes when considering delay. The following simulations

were performed on a 2 Ox buffer driving a 4mm wire

115

Spacing

Delay vs Wire Spacing Normalazed to F 0 4
(wire sizing fixed at 1x min)

CD
"O

O

CD
T3

35

30

25

20

15

10

5

•90nm
•180nm

1 2 3

x minimum spacing

Sizing

The following wire sizing data was obtained by fixing the spacing at 2x from the above

data.

Delay vs Wire Sizing Normalazed to F 0 4
(spacing fixed at 2x min)

>
TO
CD

"O
-<*

o

35

30

25

20 H

15

ra
CD

T3

ro 10

5

0

-90nm
•180nm

2 3

x minimum sizing

Spacing and Wire Sizing can be used to achieve improvements of 60% end-to-end (going

from lx spacing lx sizing to 2x and 2x, respectively).

116

Appendix B - VPRx Results

Critical Path Results from VPRx

0.5 mm L4 Critical Path Delay (ns)

Benchmark FPT04 FPT04
+ETM Lumped Lumped

+Fast
Lumped
+ETM

Lumped
+ETM
+Fast

alu4 15.6 15.1 14.2 13.3 14.0 12.9
apex2 20.3 19.5 18.1 16.5 17.8 16.5
apex4 17.1 16.4 15.5 13.8 15.2 13.7
bigkey 11.1 10.4 9.7 8.2 9.6 8.5
clma 40.0 37.9 35.0 29.8 34.4 29.9
des 16.1 15.1 14.4 13.6 14.1 13.4
diffeq 16.6 16.6 15.3 15.1 15.2 15.1
dsip 9.4 9.0 8.4 7.6 8.4 7.3
elliptic 27.0 25.3 24.4 21.9 23.6 22.2
exlOlO 28.3 26.6 24.5 20.3 24.1 20.1
ex5p 17.6 17.0 16.1 14.9 15.9 14.9
frisc 34.5 32,7 31.8 30.8 31.4 30.2
misex3 17.1 16.4 15.5 14.1 15.3 14.1
pdc 29.4 26.7 25.7 22.2 24.3 20.4
s298 33.2 30.7 29.4 27.9 29.0 27.5
s38417 26.0 25.0 23.0 20.1 22.6 20.3
s38584.1 18.6 17.7 16.8 15.3 16.5 15.6
seq 17.0 16.6 15.2 14.1 15.0 13.7
spla 24.1 22.8 21.3 18.6 21.0 18.3
tseng 17.2 16.7 16.4 16.4 16.2 16.8

117

2.0mm L 1 6 C r i t i c a l Path Delay (ns)

Benchmark FPT04 FPT04
+ETM Lumped Lumped

+Fast
Lumped
+ETM

Lumped
+ETM
+Fast

Distrib N2
(+ETM)

Distrib N3
(+ETM)

Distrib N2
(+ETM)

+Fast
alu4 29.1 26.6 20.7 19.7 19.4 18.3 18.7 18.8 17.8
apex2 29.6 27.4 21.7 20.6 20.5 19.3 19.9 20.0 18.6
apex4 25.4 23.3 18.1 17.2 16.8 16.0 16.3 16.3 15.4
bigkey 12.6 11.8 9.0 8.3 8.4 7.8 8.2 8.1 7.5
clma 57.0 51.8 41.0 39.1 37.9 36.0 36.6 37.0 34.7
des 22.7 21.1 16.9 16.2 15.7 15.1 15.1 15.1 14.5
diffeq 33.6 31.8 27.1 26.7 25.5 25.1 24.9 24.5 24.5
dsip 11.7 10.7 8.5 8.0 8.2 7.5 7.9 8.0 7.2
elliptic 47.1 42.5 35.3 34.7 33.1 32.5 32.2 32.1 31.6
exlOlO 36.3 33.5 25.4 23.1 23.7 21.6 23.0 23.0 20.9
ex5p 27.0 25.2 19.6 19.0 18.4 17.8 17.9 17.9 17.2
frisc 63.3 57.3 48.2 46.8 44.1 42.7 42.8 42.7 41.3
misex3 25.1 23.1 18.6 18.0 17.5 16.9 16.9 16.9 16.3
pdc 42.7 39.5 29.5 27.1 28.0 25.1 27.2 27.0 24.2
s298 50.0 45.9 36.5 35.3 33.7 32.4 32.7 32.5 31.3
S38417 39.9 36.5 28.6 27.0 26.6 25.5 25.9 26.0 24.6
S38584.1 29.4 27.7 22.2 21.5 21.0 19.8 20.4 20.3 19.2
seq 25.5 24.4 19.1 17.8 18.3 17.0 17.7 17.7 16.4
spla 35.4 32.7 24.5 22.8 23.2 21.7 22.6 22.7 21.0
tseng 33.3 30.2 25.9 26.0 24.0 24.0 23.3 23.2 23.2

118

3.0mm L16 Critical Path Delay (ns)

Benchmark FPT04 Lumped Lumped
+Fast

Lumped
+ETM

Lumped
+ETM
+Fast

Distrib N4
(+ETM)

Distrib N4
(+ETM)
+Fast

alu4 36.0 24.7 23.4 22.2 21.1 19.4 18.6
apex2 36.6 25.6 24.2 23.4 21.9 20.9 19.7
apex4 31.8 21.6 20.6 19.3 18.4 17.3 16.3
bigkey 15.5 10.7 9.9 9.6 8.9 8.6 8.0
clma 70.4 48.6 46.2 43.2 40.9 38.1 36.2
des 27.5 19.7 18.9 17.5 16.7 15.4 14.8
diffeq 38.6 29.9 29.4 27.1 26.6 24.8 24.4
dsip 14.7 10.0 9.5 9.3 8.6 8.3 7.6
elliptic 57.8 40.6 39.0 36.2 35.4 33.2 32.5
exlOlO 45.5 30.7 28.2 27.6 25.1 24.5 22.4
ex5p 33.4 23.2 22.5 21.0 20.2 18.6 18.0
frisc 76.6 55.4 53.6 48.2 46.4 44.0 42.3
misex3 30.5 21.7 20.9 19.7 19.0 17.6 17.0
pdc 54.1 36.0 33.0 33.0 29.6 28.9 26.1
s298 61.4 43.0 41.4 37.8 36.4 33.7 32.5
s38417 49.5 34.0 31.9 30.6 29.0 27.1 25.8
S38584.1 35.6 25.7 25.0 23.8 22.3 21.3 20.1
seq 31.6 22.2 20.7 20.9 19.3 18.7 17.5
spla 44.7 29.7 27.1 27.7 25.4 24.2 22.5
tseng 39.9 29.2 29.2 25.7 25.7 23.5 23.5

119

