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A b s t r a c t 

Designers of field-programmable gate arrays (FPGAs) are always striving to improve 

the performance of their designs. As they migrate to newer process technologies in search 

of higher speeds, the challenge of interconnect delay grows larger. For an FPGA, this 

challenge is crucial since most FPGA implementations use many long wires. 

A common technique used to reduce interconnect delay is repeater insertion. Recent 

work has shown that FPGA interconnect delay can be improved by using unidirectional 

wires with a single driver at only one end of a wire. With this change, it is now possible 

to consider interconnect optimization techniques such as repeater insertion. 

In this work, a technique to construct switch driver circuit designs is developed. Using 

this method, it is possible to determine the driver sizing, spacing and the number of 

stages of the circuit design. A computer-aided design model of the new circuit designs is 

developed to assess the impact they have on the delay performance of FPGAs. Results 

indicate that, by using the presented circuit design technique, the critical path can be 

reduced by 19% for short wires, and up to 40% for longer wires. 
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C h a p t e r 1 

I n t r o d u c t i o n 

Field-programmable gate arrays (FPGAs) are large integrated circuits comprised of blocks of 

programmable logic interconnected with programmable routing circuits. The demand for 

increasing their performance has driven FPGA designers in search of the latest process 

technologies. With each new technology generation, FPGAs have grown larger and increasingly. 

dense, providing more logic with a smaller feature size. As one can expect, the wiring demands 

of these devices have also increased. 

In deep submicron process technologies, interconnect has been identified as one of the most 

critical challenges facing integrated circuit designers [1]. In an FPGA, this is even more 

important, as 60-80% of the delay is caused by the interconnect [2]. Although extensive efforts 

have been made on interconnect optimization by means of repeater insertion for ASIC designs, 

few studies have investigated the optimization of circuit design for FPGA interconnect. 

Techniques used in general ASIC interconnect optimization cannot be directly applied 

because the FPGA interconnect design problem is different in nature. Fortunately, due to its rigid 

structure and point to point nature, the topology of FPGA interconnect does not possess the 

complex fanout trees found in ASIC designs as seen in Figure 1.1. 
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Figure 1.1 - Routing Example of a Net in an ASIC 

Instead, routing resources in an FPGA are made up of long straight wires which make up the 

predetermined paths of the routing resource architecture, as shown in Figure 1.2. This 

simplification is welcome as it considerably reduces the complexity of the circuit design problem. 

However, it is not without its own challenges. 

Figure 1.2 - Routing Example of a Net in an F P G A 

Like an ASIC, wires still fanout to numerous points in FPGAs, but whether or not a fanout is 

used in an FPGA interconnect is not known until after a user circuit is fully implemented. 

During operation, the path of a signal can occupy either a part or the entire length of a wire. Our 

experiments have demonstrated that 50% to 87% of signal paths in an FPGA routing solution 

leave the wire before arriving at the end. Such turns are called early turns (Figure 1.3). In order 

to assess early turn delays, this work will often consider the delay to several points along the 

interior of a wire. In general, these delays are referred to as the midpoint delays of a wire. To 

the author's knowledge, the concept of early turns and midpoint delay has not been previously 

examined in FPGA research. 

The other major difference between FPGA and ASIC interconnect is that the FPGA 

interconnect must be programmable. This requirement introduces multiplexer circuits which can 
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adversely affect delay. The closed form models often used in. the development of general 

interconnect optimization techniques are less accurate at modeling such circuits, making it 

difficult to apply the techniques from previous work on FPGAs. While closed-form analytical 

techniques are useful for rough approximations, they are not accurate enough to compare 

significantly different circuit implementations. This accuracy is vital to obtaining the best 

possible speed performance from FPGAs. 

Figure 1.3 presents an example of an FPGA interconnect made up of wires, multiplexers and 

drivers. This research attempts to address the problem of wire delay in FPGAs by developing an 

accurate approach to design and evaluate interconnect driver circuits for FPGAs. 

FPGA Interconnect 

Figure 1.3 - Example of F P G A Interconnect 

By taking advantage of the recent shift to FPGA architectures with a single driver per wire [3], it 

is possible to reduce midpoint delays, in addition to end-to-end (or endpoint) delay, to speed up 

performance in FPGAs through the use of distributed driver designs. As an example, Figure 1.4 

presents a distributed driver design which could be used to implement the interconnect switch 

driver and the programmable wire in Figure 1.3. This sample driver circuit is made up of 2 

distributed drivers of size BO and B I . Using a path delay profile (PDP), the delay of the signal 

can be examined from its origin to the end of the wire, or to any point in between. PDPs for two 
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designs, a lumped driver and a distributed driver, are shown in Figure 1.4. It can be seen that the 

midpoint delays of the first half of the wire are significantly faster than midpoint delays of the 

lumped-design PDP. This indicates that distributed driver design has the potential to improve the 

delay of the early turn shown in Figure 1.3. 

0% 30% 50% 100% 

Distance Travelled Along Wire 

Figure 1.4 - Example of a Switch Dr ive r Path Delay Profile 
Using modified C A D tools, it is possible to model the improvements from these circuit designs. 

Our results demonstrate that critical path delay due to these improved circuit designs can be 

reduced by up to 46%. 

1.1 Motivations and Objectives 

In the past, it was not possible to consider interconnect optimization techniques, such as 

repeater insertion, on FPGA wires because a long wire was shared by multiple tri-state drivers 

located at different points along the interconnect. In [3], it was shown that implementing 

directional wires with a single, lumped driver at the beginning of the wire improves both the 
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delay and area efficiency of an FPGA architecture. One way to take further advantage of 

directional wires that was not explored in [3] is to uniformly insert additional repeaters in order 

to reduce the delay of the wire. 

The impact on FPGA performance from the use of additional repeaters is, as yet, unclear. 

Distributed buffering, has potential to improve not only endpoint delay, but midpoint delays as 

well. This is of particular benefit to FPGA designs as signals often turn off a wire before 

reaching the end. However, the only way to determine how much of a wire is used is by routing 

circuits on the FPGA using C A D tools. A large component of this research is to assess circuit 

design options using a C A D model which accurately considers the impact of early turns on 

critical path delay. 

1.2 Contributions 

The contributions of this research are a circuit design methodology and evaluation of 

interconnect drivers for long wires in FPGAs to improve midpoint delays and end-to-end delay. 

Key findings of this work can be organized into three categories: circuit design, FPGA 

architecture and C A D modeling. 

Circuit Desifin 

• A circuit design methodology for FPGAs was produced which when given a fixed 

wirelength, can determine the number of buffers, size of buffers and spacing between 

buffers to achieve near-optimal delay. 

• Using the circuit design approach, it is shown that distributed buffering is effective at 

reducing delay for wires, but only i f the wires are of sufficient length (greater than 2mm 

in a 180nm technology with a minimally spaced and minimally sized wire) 

5 



FPGA Architecture 

• Increasing the length of the wire between multiplexers (switch boxes) can improve the 

signal velocity and achieve near-ASIC interconnect speeds. 

• Turns at the end of a wire (normal turns) are not critical. As fast paths and proper turn 

modeling are introduced, the frequency of normal turns decreases. Also, 50-87% of turns 

are before the end of the wire. These facts suggest that it maybe possible to remove or 

reduce frequency of normal turns in the architecture. 

• Fast paths through the switch block multiplexer were verified to improve critical path 

delay by up to 8% for short architectural wirelengths. 

C A D Modeling 

• FPGA C A D tools which are capable of improved modeling were developed and used to 

evaluate proposed circuit designs. The improved modeling alone resulted in a 10% 

improvement in critical path delay. 

• Distributed buffering yields a modest delay improvement of about 3%. 

1.3 Overview 

This thesis is composed of 5 chapters. Chapter 2 starts with an overview of FPGA architecture 

and C A D , and presents concepts of interconnect design theory. Chapter 3 presents the circuit 

design of FPGA interconnect drivers by providing detail on the development of a driver design 

methodology. Chapter 4 describes the modeling improvements incorporated into FPGA C A D 

tools which were used to assess the circuit designs produced in the previous chapter. Finally, 

Chapter 5 summarizes the conclusions drawn throughout the thesis and provides suggestions for 

future work. 
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Chapter 2 

Background 

In this chapter, the background information for this thesis is presented. The first half presents 

an overview of FPGA architecture and the supporting C A D flow. Particular emphasis will be 

placed upon the topics related to routing. 

The second half of this chapter is focused on interconnect design theory. This section presents 

methods used for designing and optimizing interconnects in deep-submicron integrated circuits. 

Important fundamentals such as device parasitics, wire models and interconnect driver design 

techniques will be described in detail. 

2.1 FPGA Overview 

An FPGA is an integrated circuit equipped with programmable logic and programmable 

routing resources. The reconfigurable elements allow an FPGA to be programmed after 

fabrication to implement virtually any digital logic function. The majority of FPGAs provide 

programmable logic using lookup tables (LUTs). An individual k-input lookup table, or k-LUT, 

is capable of implementing any k-input combinational logic function. In order to support 

sequential logic, flips flops are placed at the LUT output; this combination is referred to as a 

basic logic element (BLE). In most modern FPGAs, BLEs are grouped together in larger blocks 

called configurable logic blocks (CLBs) and are configured using S R A M memory elements. 
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Connectivity between logic blocks is achieved through the programmable routing resources. 

These resources are made up of metal tracks arranged in channels running vertically and 

horizontally across the FPGA. A channel is made up of a number of tracks, typically referred to 

as the channel width. A track is made up of wire segments of fixed length. These wire segments 

are placed end-to-end to span the length of the channel. The architectural or logical length of a 

wire is defined by the number of CLBs it spans. The physical length of a wire is equal to the 

logical length times the physical width of the C L B layout tile. Wires are connected to each other 

using switch blocks, and to the logic blocks using connection blocks. 

Figure 2.1 presents a typical mesh or island-style FPGA architecture which is assumed in this 

work. An example of an architectural length 2 wire, also denoted as L2, is indicated. The 

connection blocks are labeled as C blocks and the switch blocks are labeled as S blocks. 

This work is focused on the transistor-level circuits inside the switch blocks which are located 

at the intersection of horizontal and vertical channels. These blocks contain multiplexers which 

connect tracks together across the intersection in predefined patterns [4]. The switch block 

contains large buffers that are used to drive the long metal traces which make up the wire 

segment. These buffers occupy considerable area in the switch block which represents a 

significant proportion (roughly 1/3) of overall FPGA area [4]. 
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Figure 2.1 - F P G A Architecture with Switch Block Detail 

2.1.1 Routing 

The functional design of these interconnect circuits is governed by the routing resource 

architecture. The routing resource architecture defines the precise connections and turns a signal 

may follow in the routing resource network. There are two main routing resource architectures: 

bidirectional and unidirectional. 
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Bidirectional Architecture 

' C block 
i 

Shared Track / Wire 

S block C block 

Figure 2.2 - Representation of a Wire in a Bidirectional Architecture 

In a bidirectional routing network (Figure 2.2), a wire can transmit a signal in either direction. 

This approach provides a more flexible routing network which allows efficient use of available 

metal tracks. This means that the drivers of these wires must be tristate drivers so they can be 

disabled when not in use. 

Interconnect 

\ x n w / 

Figure 2.3 - Tristate Driver Example 

A common approach to building tristate buffers in FPGAs is to use an NMOS passgate placed 

at the output of the regular driver (Figure 2.3) [5]. The use of this design confines the layout of 

the driver near to the point where the driver is connected to the wire. This means the driver 

design cannot be distributed along the wire. The output passgate affects both speed and area 

negatively by adding resistance to the output drive, producing a V T drop in the signal swing, and 

adding area to the circuit layout. Furthermore, since only one of the tristate drivers connected to 
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each wire can be enabled after programming, this approach causes a significant waste of active 

area. 

Unidirectional Architecture 

C block 

Track / Wire 

Track / Wire 

C block S block 

Figure 2.4 - Representation of a Wire in a Unidirectional, Single-Driver Architecture 

In a unidirectional routing network (Figure 2.4), each track can only transmit data in one 

direction. This topology reduces the flexibility of the routing resources and suggests that the 

channels contain pairs of wires. Despite this restriction, work done in [3] demonstrates that this 

approach is more efficient in terms of area and provides improved delay over the bidirectional 

architecture. 

J Z MUX 

\ x n i / M / 

Interconnect 6- • • • Interconnect 

1 
Figure 2.5 - Unidirectional Driver Example 

An additional restriction known as single-driver wiring ensures each wire is only driven by 

one driver, as opposed to multiple drivers as in the bidirectional architecture (Figure 2.5). This 

simplifies the routing network, eliminating the ability to connect at arbitrary points in the middle 
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of the wire. Instead, C L B outputs can only connect to the starting-points of nearby wires. A key 

benefit of this is that tristate operation is no longer required. Note, however, that the buffers, 

which make up the driver no longer have to be in the physical vicinity of the source. Instead, 

they can be located at various positions along the length of the wire. In this research, it is shown 

that the relaxation of this constraint can produce an improvement in the delay of the wire 

segment, particularly when the wire is of sufficient length. 

2.1.2 F P G A C A D Flow 

Before a user's logic circuit can be implemented on an FPGA it must under go certain 

processing steps known as the FPGA design flow to map the circuit onto an FPGA device. The 

FPGA C A D flow is comprised of 5 main steps: synthesis, technology mapping, clustering, 

placement and routing. 

The first two steps in the C A D flow are synthesis and technology mapping. In these steps, the 

circuit is converted from a hardware description language into a network of FPGA-specific logic 

blocks which implement the functionality of the original circuit. After this point, logic blocks in 

the network are grouped together into clusters during the clustering step. This step controls the 

number of BLEs which are packed into a C L B and can be used as a rough method to manipulate 

the overall size of the circuit implementation on an FPGA. The following steps are placement 

and routing. Placement determines the locations for each C L B on an FPGA device. Routing uses 

detailed information of the FPGA routing resources to efficiently connect all the clusters 

together and implement the connections between logic blocks. In this work, particular emphasis 

is placed on developing the model of the routing resources used in the routing step. 

12 



F P G A C A D Experimental Methodology 

The standard FPGA C A D experimental methodology involves running a suite of user circuits 

as benchmarks through the C A D flow multiple times, each time modifying the C A D step under 

study. In this work, the first 4 C A D flow steps are applied once on each benchmark circuit. The 

final step, routing, is applied multiple times. The first time the router runs, it searches for the 

lowest channel width which can successfully route the circuit design. Once this value is 

determined, it is increased by one complete set1 of directional tracks to produce a new larger 

channel width. The router is run again, but this time it only routes the design once using the new 

calculated channel width. This gives some flexibility to the router, which tends to improve the 

quality (delay performance) of the routing results. 

2.1.3 VPRx 

For the place and route steps in the C A D flow, the academic tool V P R [6] is used. A heavily 

modified version, known as VPRx [3,4], is used because it supports unidirectional wiring. Both 

VPR and VPRx use the same core routing and delay calculation algorithms. In the following two 

subsections, details on the routing resource graph and the VPRx delay model is provided. 

Routing Resource Graph 

VPRx models all routing paths in the FPGA using a routing resource graph. This data 

structure represents all possible connections which can occur in the FPGA routing network. In 

essence, the routing resource graph is a directed graph of wires, switches and pins at different 

locations on the FPGA. In the graph, wires and pins are represented as nodes while switches 

1 The number of tracks in a set is equal to twice the architectural length. Further details can be found in [3]. 
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between wires are represented as directed edges connecting nodes. Figure 2.6 presents the 

routing resource graph for a set of logic blocks connected by two wires. In this example, the 

bidirectional switch on wire 1 is modeled as a pair of directed edges, where the directional 

switch on wire 2 has only one edge. 

Logic 
Block A 

• 
E Logic 

Block B 

A in A in2 H B_out 

• E l • 
wire 3 

wire 4 

1 SRAM 

Input Pin of the Logic Block 

Output Pin of the Logic Block 

Switch 
Block 

wire 1 

wire 2 

wire 1 

wire 3 

A in1 

B out 

sink 

Figure 2.6 - Example of a Rout ing Resource G r a p h [6] 

wire 2 

wire 4 

A in2 

Delay Calculat ion 

The routing algorithm used in VPRx is a modified version of the Pathfinder routing algorithm 

[6, 7]. This algorithm uses the Elmore delay calculation [8] as the primary metric to optimize the 

delay of routing paths. For this reason, it is important to ensure that the delay calculation is 

accurate. Fortunately, the routing resource graph is designed to facilitate the calculation of the 

delay of a signal path through the graph. Each node in the graph contains the capacitance and 

resistance of the wire being modeled. Similarly, each switch edge contains the delay of the 

switch, its input capacitance, output capacitance and its ability to drive an RC load in the form of 

an equivalent resistance. VPRx uses an incremental Elmore approach to calculate the delay [6]. 
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The Elmore delay to a given node in an RC tree can be calculated by iterating over all the 

capacitances in the tree. For a signal path with no branches, this computation is straightforward. 

As the router expands along the routing resource graph, the delay of the next node is computed 

incrementally by adding the contribution of its parasitics to a running delay value. The equation 

used at each node is tdel =tdel + Rupslream x C n o d e . The value of Rupstream is increased as the nodes are 

added to the routing solution. This approach works well for calculating the approach to the end 

of an RC tree where there are no fanouts to add extra capacitive loading. Greater detail on 

Elmore delay calculations will be described shortly in Section 2.2.2 

2.2 Interconnect Design Theory 

Interconnect design is an increasingly important consideration for integrated circuits built on 

deep-submicron process technologies. In this section, background on interconnect design is 

presented to provide the reader with an understanding of tools and techniques used to design 

circuits which drive interconnects. Topics such as interconnect models and interconnect driver 

design techniques are provided to ensure that the reader is familiar with the concepts in the 

subsequent chapters. 

2.2.1 Deep-Submicron Interconnect 

Interconnect in deep-submicron process technologies has several important issues that affect 

the performance and design of high speed circuits. Problems such as signal integrity, inductive 

coupling, IR drop and electromigration are among the many growing challenges which face IC 

designers. However, the most prevalent challenge for interconnect design in deep-submicron 

design is signal delay. 
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The primary factors controlling interconnect delay are wire parasitics. The parasitics of 

interest, resistance (R) and capacitance (C), are physical properties of the wire. The resistance 

and capacitance of an interconnect act like an RC load in the signal path which causes 

propagation delay. The amount of resistance and capacitance is determined by the physical 

dimensions of the interconnect and the materials used. 

Parasitic Resistance 

The resistance is determined from the cross-sectional area of the interconnect. A larger area 

implies a lower resistance. However, as technology shrinks, wires in nanometer technologies 

tend to be thinner than before. The overall effect is an increase in parasitic resistance for a 

minimum width wire. For example, the resistance of a minimum sized wire in 90nm is roughly 

twice the resistance of a minimum sized wire in 180nm. 

Improved materials such as copper interconnect have been introduced in order to reduce 

interconnect resistance. At most, this provides a one-time improvement; the resistance continues 

to increase as wire geometries continue to shrink. In the meantime, the most straightforward 

solution is to increase the wire width in order to reduce resistance. Unfortunately, this is not 

always possible because an increase in wiring density is needed to keep up with the increase in 

logic density as transistors are scaled. 

Parasitic Capacitance 

Parasitic capacitance of an interconnect is caused by coupling with neighboring conductors. 

The amount of capacitance is related to the ratio of the conductive areas facing each other to the 

distance separating the two conductors. Figure 2.7 shows a typical construction of a deep-

submicron interconnect with the most dominant parasitic capacitances labeled. Plate capacitance 
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is caused by the area at the top and bottom of the wire. In earlier technologies, this value was the 

dominant factor. However, with the narrower wires in nanometer technologies, the coupling 

capacitance has grown to be the major capacitance contribution. 

Figure 2.7 - Deep-submicron Parasitic Capacitances 

As with resistance, advanced materials such as low-k dielectric insulators are being introduced to 

lower the parasitic capacitances. However, in cases where a designer requires even lower 

capacitance, the easiest solution is to increase the distances between wires. With the increase in 

importance of coupling capacitance, wire spacing has become an even more effective tool at 

reducing delay. However, the benefits of increasing the wire spacing are limited by diminishing 

returns and can only be used at the cost of losing interconnect density. 

Inductance 

One important parasitic effect which is omitted in this research is that of inductive effects. 

Severe inductive effects include overshoots and undershoots in signal waveforms. These signal 

integrity faults can potentially manifest themselves as glitches or worse, as false transitions at the 

end of wires. Inductance is caused by electrical loops formed on integrated circuits that generate 
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corresponding magnetic fields. The interaction of magnetic fields on large integrated circuits can 

cause inductive interference which is very difficult to locate and solve. 

In the past, inductance was not a serious concern since the resistive component of a wire 

dominated the impedance. However, now that the frequencies are increasing, the effect of the 

inductive component is growing. 

In this work, inductance was ignored for several reasons. The first reason is that it is very 

difficult to predict the effective interconnect inductance because it depends strongly on the 

overall construction of the integrated circuit. Unlike capacitance, which is based strongly on 

neighboring features, inductive effects have a much larger spatial range. The second reason is 

that inductive effects do not severely affect the signal or propagation delay of interconnects. As 

shown in [9], the worst case inductance would cause an 8% reduction in the delay. 

2.2.2 Interconnect Delay Models 

In order to design interconnect circuits one must be able to model the delay of a signal 

traveling along the wire. Interconnect delay models range from a simple lumped capacitance 

model to complex transmission line representations which are good at modeling high-order 

effects but are computationally intensive [10]. For the purposes of this research, a distributed 

R C circuit model is used with two computational models: Elmore delay and HSPICE delay. 

Elmore Delay 

There are many approaches used to compute the signal delay of a wire. Different methods 

trade off accuracy with computation speed. The fastest and most common approach is the 

Elmore delay [8]. This method offers high fidelity with a very fast runtime. Despite this, it is 

important to understand that the Elmore delay is only a first order approximation of the true 
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delay of an RC network. Other methods based on the Elmore delay offer improved accuracy with 

similar runtime [11]. However, these techniques do not have the ability to accurately model 

complex circuits such as pass transistors, level-restorers, or other active elements. 

Elmore delay can be computed using a straightforward algorithm described in [12]. For any 

RC tree, the delay to node i can be computed using 

r,=2Kxtf,,) 
k 

Ck is the capacitance at node k and R;k is the sum of all the resistances from the source to node k 

that are in common with the path from the source to node i. 
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Figure 2.8 - Elmore Delay Example [12] 

Figure 2.8 shows an example of a circuit from [12]. The Elmore delay to each node is calculated 

as follows. 

r, = RXCX + RXC2 + RXC3 

r2=RxCx+(Rx+R2)C2+RxC3 

r3 = RXCX + RXC2 + (RX+R3) C3 

Using this method, the Elmore delay for a distributed RC model of a wire made up of N stages is 

N + \ 
expressed asRC ^ , where R is the total resistance and C is the total capacitance. For large 
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values of N , this expression becomes RC . This can also be written as 
rcl2 

, where r and c are 
2 2 

values of resistance and capacitance per unit length and / is the length of the wire (R = rl, C = ct). 

This demonstrates that the delay of the wire is a quadratic function of its length. 

S P I C E - L e v e l Simulat ion 

In order to achieve high accuracy when modeling more complex driver circuits, it is necessary 

to use the HSPICE circuit simulator [13]. A SPICE simulator is capable of modeling a larger 

range of electrical effects while providing a higher level of confidence in the quantitative results 

in comparison to first-order approaches such as Elmore delay. 

HSPICE is capable of modeling interconnects as transmission lines using a 2D filed solver. 

However, these approaches have lengthy runtimes. Instead, wires are modeled in HSPICE using 

numerous distributed RC stages which produce an error of less than 3% i f proper care is taken 

[10]. The value of resistance and capacitance can be extracted from process technology 

documents and/or first characterizing the RC manually using the 2D field solver in HSPICE. 

Further details on interconnect parasitics are provided in Appendix A . 

2.2.3 Interconnect Dr ive r Design 

The delay of a wire is a quadratic function of its length. This delay can be reduced to a linear 

one by inserting additional buffers along the wire. Careful sizing and positioning of the buffers 

can further improve the delay. In this section, several approaches used to design buffers to 

improve interconnect delay are described. 
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Driver Modeling 

In addition to modeling interconnect, it is important to be able to model delay of a driver 

circuit in order to determine the overall delay of the driver and interconnect. One common 

approach is to model a buffer using a resistance and capacitance. This method of using an RC 

time constant to represent a buffer, allows the delay of the buffer to be easily included in an 

Elmore delay computation. 

In this approach, a buffer is modeled by an effective resistance or on-resistance, a gate 

capacitance and an output capacitance as shown in Figure 2.9. The gate capacitance is seen as a 

load on the previous stage, while the output stage is modeled as a step input driven through a 

resistance. This buffer model can be combined with an interconnect model to form an RC 

network which can be evaluated using the Elmore delay. 

Using this simplistic method has some drawbacks, the most notable being that it cannot 

accurately model the effects of reduced signal swing or smaller input slew. Also, the accuracy of 

this model is strongly dependant on the value of the effective resistance. Since the on-resistance 

of a transistor in operation is not constant, deriving an accurate effective resistance can be tricky. 

Although this approach is often used, there are other methods to model the delay of a buffer. 

[14, 15] uses an alpha-law model [16, 17] which is based on the I-V curve of the transistor model. 

Although this approach yields more accurate results, it involves complicated Laplace domain 

Figure 2.9 - RC Model of a Buffer 
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calculations. For first-order calculations, use of the RC model was continued due to its simplicity 

and existing implementation in FPGA C A D tools. 

Repeater Insertion 

A common technique for improving delay performance on long wires is to use repeater 

insertion [10, 12, 18-20]. Conventionally, this involves placing single stage repeaters, at 

uniformly spaced intervals along the wire. One derivation of this approach is based on a careful 

application of the Elmore delay model as shown in [12]. Results show that the number of stages 

required to drive a wire of length / is 

where r and c are the resistance and capacitance per unit length, respectively. R e q n is the effective 

resistance of the driving transistor. C G and Co are the input and output capacitance of a minimum 

size buffer. Finally, p is the ratio of PMOS to NMOS sizes used in the buffer. 

This repeater insertion technique is a simple solution to the interconnect problem. 

Unfortunately, the approach has some drawbacks. The resulting equations compute the optimum 

spacing and sizing of the repeaters based solely on the process characteristics. In practice, it 

should also depend upon the circuit preceding the interconnect. Furthermore, the optimum 

repeater size is usually quite large and unrealistic. Also, start driving this large load, a chain of 

cascaded inverters is typically used to drive the first stage [21]. However, the delay of this initial 

cascaded buffer arrangement can represent a significant fraction of the overall delay [22] and this 

The size of each buffer (relative to a minimum sized buffer) is 
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is ignored in the equations above. Previous work in [22] has shown that it is possible to integrate 

this cascaded buffer with the preceding logic, however, this approach does not apply well to 

FPGA switches due to the limited amount of active logic in the switch block. 

An alternative design approach is non-uniformly inserted repeaters [22]. This technique uses 

buffers of increasing size to drive progressively longer wire segments. This particular work uses 

a geometric relationship for the sizes and wirelengths of successive segments. Although [22] 

offers a change from the classical uniformly-spaced buffer insertion approach, it still relies on a 

constrained solution space. In one component of this research, a more general design space will 

be considered to determine i f further improvements can be gained from a fully non-uniform 

design. 

Other Buffer Insertion Optimization Approaches 

A substantial amount of work has been done on the development of interconnect circuit 

design optimization techniques. Many recent studies are focused on delay minimization using 

closed-form expressions [1, 9, 14, 18, 23-25], but there also exists some work which uses SPICE 

level analysis [22, 26]. In addition to delay, other important metrics such as power and area 

reduction are considered in [14, 18, 24, 27]. 

Although much of the previous work assumes CMOS buffers, there are other more exotic 

circuit architectures which can reduce interconnect delay [28-30], Regardless of what circuit 

topology is used, it is clear that interconnect delay is a significant problem that will continue to 

be studied. 
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2.3 Remarks 

In this work, FPGA architecture and interconnect circuit optimization are combined. FPGA 

architecture introduces both constraints and simplifications to the general interconnect problem. 

The requirement of programmability places constraints on the circuit design and, in particular, it 

introduces complications with the delay model used in most closed-form expressions. However, 

the rigid and programmable structure of an FPGA allows the designer to avoid the more general 

problem of inserting buffers into interconnect trees. To this day, there has been an enormous 

amount of work done in both interconnect circuit optimization and FPGA circuit design. But to 

the best of our knowledge, no previous work has been attempted to combine the two concepts to 

produce optimized interconnects for FPGAs. 
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C h a p t e r 3 

C i r c u i t D e s i g n o f U n i d i r e c t i o n a l I n t e r c o n n e c t 

This chapter develops a circuit design technique for an FPGA switch driver. The first step is 

to revisit the problem of FPGA switch circuit design with a particular focus on designing for 

single-driver routing. From this discussion, design objectives and parameters are obtained. The 

next step is a rapid exploration of the design space which provides insights that facilitate the 

development of an accurate circuit delay modeling technique. Finally, this technique is used to 

determine the values of the design parameters which make up a complete FPGA switch driver 

design. 

3.1 Design of Unidirectional FPGA Switch Drivers 

In this section the problem of FPGA switch driver design is defined for use in a single-driver 

routing architecture. In the FPGA architecture shown in Figure 3.1, the switch driver for an 

architectural length 2 wire is represented as a part of the switch block. Although this is logically 

valid, the switch driver can be physically distributed along the entire wire. But before that can be 

discussed, it is important to investigate the design of the components which make up an FPGA 

switch driver. 

25 



Length 2 Wi re 

Figure 3.1 - Architectural Location of F P G A Switch Drivers 

3.1.1 Components of F P G A Switch Drivers 

Interconnect 

Programmable 
Component 

Signal Driver 

Figure 3.2 - F P G A Switch Driver Components 

A block diagram of the switch driver is shown in Figure 3.2. A switch driver consists of a 

programmable component and a signal driving component. The programmable component 

allows a variety of sources to access the driver and is typically implemented using a multiplexer. 

The driver circuit transmits the signal down the wire to surrounding logic blocks and I/O pads. 

What follows is a description of some of the possible implementations of the multiplexer and the 

driver. 

Multiplexer Design 

The use of a multiplexer allows the device to select the signal to be driven from a variety of 

inputs of the switch block. Since multiplexers are prevalent throughout an FPGA, it is important 
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to appreciate that their circuits contribute to a large portion of the chip area. For this reason, 

area-efficient multiplexer designs are preferred in FPGA devices. 

A multiplexer can be built using either active CMOS gates or passgates. The former uses 

CMOS logic gates to achieve full rail-to-rail signals. Although this approach is convenient, it is 

inefficient in terms of area and delay, especially as the fanin of the multiplexer increases. The 

latter design uses pass transistors or transmission gates to select the desired signal. This approach 

is commonly used because it provides good area and delay performance. Multiplexers using 

NMOS pass transistors have the smallest area, but suffer from reduced signal swing which 

causes downstream gates to operate slowly and leak at steady state. One solution to this problem 

is to use a level-restoring circuit, shown in Figure 3.3, integrated with the driver circuit. 

Unfortunately, this technique introduces non linear models into the circuit, making it difficult to 

use an analytical approach to compare with other circuits. 

One compromise between area and delay is to use the CMOS transmission gate. This design 

is fast and provides a full swing signal to drive downstream gates. However, CMOS transmission 

gates require more than twice the area of an NMOS passgate due to the use of PMOS transistors. 

Figure 3.3 - Level-Restoring Circuit with 2:1 NMOS Pass Transistor Multiplexer 

Once the passgate implementation is determined, the next step is to consider the multiplexer 

architecture. For multiplexers built using pass transistors, there are two common architectural 

choices. 
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Figure 3.4 - Binary Tree Multiplexer 

The first option is the folly-encoded binary tree structure. This design folly encodes the 

control signal input to make efficient use of the configuration R A M and reduce the area 

overhead. The signals are selected using a binary tree structure as shown in Figure 3.4. For an N -

input multiplexer of this architecture, the number of configuration R A M bits used is equivalent 

to the number of levels in the tree, hence f"log2 N~\ . The signal delay in this design is 

proportional to the number of levels squared, or |~log2 N~f. 

SRAM SRAM SRAM SRAM 

7 7 7 7 
Figure 3.5 - Flat Multiplexer 

An alternative approach is the flat, decoded multiplexer as in Figure 3.5. This architecture 

uses one configuration R A M bit and one passgate for each signal input. This design requires the 

largest S R A M area overhead, but limits the delay for any signal to that of one passgate plus the 

loading effect of additional junction capacitance from neighboring transistors. The number of 

transistors used in this design is equal to the number of signal inputs. 
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Comparison of Multiplexer Architectures 
(N = fanin of MUX) 

Parameter Fully Encoded Flat Decoded 2-Level 
Parameter 

Multiplexer Multiplexer Multiplexer 

Delay Levels riog2 Ari 1 2 

Loading 
(junction capacitance) 

[log 2 iV] 
(distributed) 

N - l 
(lumped) 

Configuration R A M \og2N N 

Passgates Required 2N-2 N 

Table 3.1 - Comparison of Multiplexer Architectures 

Figure 3.6 - 2-Level Multiplexer 

A combination of the aforementioned designs can be seen in the Stratix II architectural paper 

[31]. This approach uses a combination of encoded and decoded designs to produce a tree with 

multiple branches. This design attempts to reduce the delay by limiting the number of levels a 

signal must pass to two levels. For a 16:1 multiplexer, this design requires about half the amount 

of configuration R A M cells as the flat decoded multiplexer but 25% more passgates. Since 

configuration R A M is usually quite large in comparison to a passgate, this design can still result 

in area savings. Table 3.1 compares the characteristics of the three multiplexer designs. 

For this work, the two-level passgate architecture was selected because it reduced delay 

without incurring a large increase in area. Also, the delay of this design remains fairly linear with 

increasing fanin due to its constant depth. This linearity simplifies modeling of the multiplexer 

delay during FPGA architectural explorations where the fanin depends on the channel width. 
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Figure 3.7 - Multiplexer Fast Path 

Multiplexer "Fast Path" 

Regardless of which multiplexer design is used, it will always be a significant source of delay 

in the circuit. To further exacerbate this problem, directional routing architectures require 

multiplexers which are larger than those found in bi-directional routing architectures. The 

multiplexers used have large fan-in (e.g., 20:1, 40:1) resulting in large propagation delays. In 

order to avoid this, an isolated path called the "fast path" was created. Also referred to as the 

"fast input" in [31], this path allows one signal to bypass the majority of the multiplexer inputs 

and arrive at the driver input after going through one passgate as shown in Figure 3.7. When the 

fast path is taken, the remainder of the multiplexer design can be ignored since it is shielded by 

the disabled passgates. Since it is expected that this is the common case for high-speed signals 

that must cross the chip, the buffer design will be optimized for this fast path by reducing the 

multiplexer structure to a simple 2:1 multiplexer. 

Multiplexer Design Results 

The delay of three multiplexer implementations (NMOS pass transistor, NMOS pass 

transistor with level restorer, and the CMOS transmission gate) were compared using HSPICE. 

Circuit simulations of the fast path were performed using a 2-1 multiplexer driving a single 

buffer of various sizes. Sweeping the size of the passgate transistors yielded minimal 
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improvements for the end-to-end delay of the multiplexer-buffer-wire path, as a result minimum-

sized transistors were used in order to conserve area. 

Simulation results also confirmed that the CMOS transmission gate yielded the fastest delay. 

In addition, this option offers full signal swing, eliminating the need for any level restoring 

circuitry. Because of this, a CMOS transmission gate was used with the 2-level multiplexer and 

fast path. The final design is shown in Figure 3.7b. 

Driver Designs 

The component following the multiplexer is the driver circuit. The purpose of this circuit is to 

"drive" the multiplexed signal down the wire. Although there are many ways to implement a 

signal driver, our focus is restricted to designs using CMOS inverters, also referred to as a 

buffer or a repeater. The standard CMOS inverter is built with one NMOS and one PMOS 

transistor (Figure 3.8). The PMOS to NMOS transistor size ratio is dependant on the input signal 

and therefore related to the multiplexer design. For example, a buffer following an NMOS pass 

transistor multiplexer will require a much larger NMOS transistor to sense the weak ' 1' input 

signal [4]. In this work, a 2:1 PMOS to NMOS sizing ratio is assumed for simplicity and because 

weak input signals do not occur with the CMOS transmission gate. 
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Buffer 1 Buffer 2 Buffer 3 

Figure 3.8 - Ubiquitous CMOS 
Figure 3.9 - Driver Example 

Buffer 

A driver is made up of one or more buffers connected in series as shown in Figure 3.9. The 

buffers in this design are progressively larger in size. Since physical distance between the buffers 

is very small, it is referred to as a "lumped" driver design. An alternative approach is to space 

the buffers apart along the length of wire they must drive. This is referred to as a "distributed" 

driver design. The key unknowns regarding driver design are the transistor sizes of the buffers, 

the number of buffers, and the distance between buffers. Within a driver, the combination of a 

buffer and a wire is referred to as a "stage". Often, the length of a wire following a buffer is used 

to indicate the spacing between buffers, and it is also referred to as the wirelength of the stage. 

3.1.2 Switch Driver Design Goals 

As mentioned in the background, the elimination of tristates allows single-driver interconnect 

architectures to use distributed buffering and subsequently, to consider midpoint delay as well as 

endpoint delay. 

Distributed Buffering 

Conventional VLSI practices suggest that distributed drivers are the best design for 

minimizing end-to-end delay of an interconnect [10]. However, in order for a distributed driver 

to become beneficial, the wire must be long enough and resistive enough to take advantage of 
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the additional repeaters. One of the goals of this work is to determine how long must a 

programmable interconnect be, before distributed buffering can benefit an FPGA. 

Modeling Early Turns 

Another benefit of distributed drivers for FPGAs is the improvement of early turn delays. As 

mentioned in the introduction and shown in the following Chapter, place and route results 

demonstrate that early turns occur very often in directional FPGAs with long wires. Intuitively, 

distributed driver designs can offer improved early turn delay since all the inverters are not 

lumped at the front of the wire. However, in order to guarantee this, an ideal design would have 

to improve delay to all points along the wire, in addition to the endpoint delay. 

The delay to all points along a wire is shown in a "path delay profile" (PDP). This metric 

will be used as a qualitative tool to determine i f a circuit design can offer improved early turn 

delay. For example, two PDPs are shown in Figure 3.10. Both circuits have similar delay to the 

end of the wire. However, the signal of circuit A arrives before the signal of circuit B for the 

majority of locations along the length of the interconnect, particularly at points between 0 and 

0.75mm. This suggests that circuit A would yield better performance in an FPGA architecture i f 

there are turns before 0.75mm. 
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Figure 3.10 - Path Delay Profile 

In summary, the circuit design goals of the switch driver are to take advantage of 

unidirectional interconnect architectures to optimize for midpoint and end-to-end delay. In 

particular, this work will attempt to determine i f distributed driver designs are beneficial for use 

in FPGA interconnect. It will identify what wirelengths benefit in end-to-end delay from a 

distributed driver approach and using the PDP, identify designs that improve early turn delays. 

3.1.3 Switch Driver Design Parameters 

This section summarizes the key design parameters of the circuit design problem. The design 

parameters are listed in Table 3.2. Figure 3.11 presents a block diagram indicating the various 

design parameters. 
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Driver Design Parameters 
Parameter Symbol Description 

Total Wirelength L Length of interconnect. Architecturally, this is the 
distance between multiplexers (typically in mm) 

Number of Driver 
Stages N 

Number of buffer-wire stages which make up the 
total interconnect, including the programmable 
component as the first stage 

Buffer Sizing Bi 
Size of the buffer /, normalized to a minimum 
sized buffer 

Buffer Spacing Li 
Length of wire following buffer i 
(typically in mm or in % of L) 

Table 3.2 - Driver Design Parameters 

L 

Number of stages N 

Figure 3.11 - Block Diagram Identifying Driver Design Parameters 

Interconnect Characteristics 

Thus far, the geometry issues of interconnect have not been discussed. In most FPGAs, long 

interconnects are manufactured on mid-level layers (e.g., metal 3 in a 6 metal process). 

Therefore this work assumes that metal layer 3 is used to build the wires. Two combinations of 

wire widths and spacings were considered for 180nm and 90nm process technologies: l x 

minimum width/lx minimum spacing (denoted as l x l x ) and 2x minimum width/2x minimum 

spacing (2x2x). Results are presented for designs built using 180nm l x l x and 90nm 2x2x 

interconnects. These combinations are chosen because they represent the range of delays 

achievable, as 180nm l x l x is the slowest and 90nm 2x2x is the fastest. 
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3.2 Rapid Design Space Exploration 

By developing a model based on the design parameters from the previous section, the general 

problem of sizing and placing buffers on a wire can be explored. A quick-to-compute Elmore 

model is created and used to rapidly explore the design space of a system with three buffers. The 

results from this exploration suggest that distributed buffering can improve results at certain 

wirelengths. Furthermore, the results indicate that the design space is fairly insensitive to small 

changes in buffer size and wirelength, which allows for some flexibility in choosing an optimal 

design. 

3.2.1 Ana ly t ica l Delay M o d e l 

In this study, the design parameters will be exhaustively swept using a simple Elmore delay 

model. The difference between this exploration and previous work [14, 22, 23, 32] is that the 

search here does not impose relationships between subsequent inverters. Most approaches 

constraint the size of successive inverters to be equal or related to one another based on a 

geometric series. Unfortunately, by not introducing any constraints, the design space becomes 

very large and unwieldy. To reduce the dimensionality of the design space, the number of stages 

is restricted to 3 stages as in previous FPGA switch driver designs [3, 33]. Another constraint is 

that the size of the first inverter is fixed to minimum. This is done because the Elmore model 

approach does not take into account the input capacitance of the first gate. Also, using a smaller 

sized buffer will minimize the impact of loading on the preceding circuitry. 

The delay model uses standard VLSI techniques [12] presented in the background. Figure 

3.12 shows a buffer of size s driving a wireload of length / and a downstream buffer of size s'. 
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Figure 3.12 - Elmore Model of Buffer & Wire Delay 

The Elmore delay equation for the wire has the time constant: 

T = —(c0s + cl + cgs') + ̂ Y- + (rlxcgs') ^ 

where r and c are the resistance and capacitance per unit length of a wire, c0 and cg are the output 

and input capacitance of a minimum sized buffer and rx is the equivalent resistance of a 

minimum-sized transistor. Although the value of rx depends on the type of transistor used, most 

approaches do not distinguish the value. In this work, the Elmore-delay computation code 

distinguishes between a rising and falling scenario and takes the average of the delays. Table 3.3 

lists typical values of the parasitics in a 180nm process technology. 

Parasitics in 180nm Process Technology 
Parameter Description Typical Values [12] 

Co Output capacitance 1 fF/um 
cs Gate Capacitance 2 fF/ urn 
c Wire capacitance per unit length (min width & spacing) 0.1-0.25 fF/um 
r Wire resistance per unit length (min width) 125-300 mQ/um 

rP Equivalent resistance of a PMOS transistor 30 kQ/um 
rn 

Equivalent resistance of an NMOS transistor 12.5 kQ/um 
Table 3.3 - Typical Parasitics in Deep Submicron Process Technology 

The total delay through the chain of inverters is calculated by summing up the delay through 

all three stages. Typical Elmore delay modeling applies a ln(2) = 0.69 factor to x to calculate 

50% propagation delay, however, it was found that a l.Ox factor was more accurate due to the 
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non-ideal (ramp) inputs used to drive the circuits [12]. With this model, the delay of a three-stage 

driver for any given combination of inverter sizes, inverter spacings and total wirelength can be 

calculated. 

driversize sweep 

wire distribution sweep 

L 1 

Figure 3.13 - Parameters Being Swept 

3.2.2 Design Space Sweeps 

Using the general delay model, a set of nested sweeps was used to search the design space for 

a variety of wirelengths. The inner sweep is a driver-size sweep and the outer sweep is a wire-

distribution sweep. The driver-size sweep calculates the delay for all possible combinations of a 

set of predetermined buffer sizes. From the sweep, the buffer sizes which produce the smallest 

delay and the smallest area-delay product can be determined. Similarly, the wire-distribution 

sweep generates the best buffer spacing configuration for each wirelength setting. The pseudo­

code for this exhaustive search is shown in Figure 3.14. This pseudo-code was implemented in 

Matlab. The calculate_delay_of_() function computes the Elmore delay as described in the 

previous section (3.2.1). 
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driver_sizes_weep(wirelengths_array [wl w2 w3]) { 
/* mindelaymetric can represent delay or areadelay */ 
mindelaymetric = largenumber; 
for a l l b l s i z e s [bl] { 

for a l l b2sizes [b2] { 
for a l l b3sizes [b3] { 

/ * b u i l d c i r c u i t with b u f f e r s i z e s [bl b2 b3] 
and w i r e d i s t r i b u t i o n s [wl w2 w3] */ 

c i r c u i t = b u i l d _ c i r c u i t ( [bl, b2, b3], [wl w2 w3] ); 
delaymetric (bl,b2,b3) = ca l c u l a t e _ d e l a y _ o f ( c i r c u i t ); 
/* Grab the best design */ 
i f (delaymetric (bl,b2,b3) < mindelaymetric) { 

mindelaymetric = delaymetric (bl,b2,b3); 
b e s t c i r c u i t = c i r c u i t ; 

} 
} 

} 
} 
return b e s t c i r c u i t ; 
} 

wire_distribution_sweep(wirelength) { 
/* mindelaymetric can represent delay or areadelay */ 
mindelaymetric = largenumber; 
fo r a l l Lllengths [LI] { 

for a l l L21engths [L2] { 
L3 = wirelength - LI - L2 ; 
c i r c u i t = driver_sizesweep([LI L2 L3]) 
delaymetric (L1,L2) = calc u l a t e _ d e l a y _ o f ( c i r c u i t ); 
/* Grab the best design */ 
i f (delaymetric (L1,L2) < mindelaymetric) 

delaymetric = delay (Ll,L2); 
b e s t c i r c u i t = c i r c u i t ; 

} ' 
} 
return b e s t c i r c u i t ; 

} 

Figure 3.14 - Design Space Sweep Pseudo Code 

3.2.3 Results 

Table 3.4 presents the best wire distribution, buffer sizes and resulting delays for wirelengths 

ranging from 1mm to 16mm in a 180nm process using wires with l x minimum spacing and lx 

minimum width. The best wire distribution is shown as three values which represent the length 

of wire following buffer 1, 2 and 3, respectively, these values are normalized to the total 

wirelength and sum to 1.0. Similarly, best buffer sizes are listed as the size of buffer 1, 2 and 3, 

respectively. The delay for the best design is shown in column 4 and the delay for the 

corresponding lumped design is shown in column 5. The final column indicates the performance 
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difference between the two designs. For example, the 2.5mm design is made up of lx , 7x and 

38x buffers followed by wirelengths which make up 0%, 15% and 85% of the total wirelength, 

respectively. This design has a delay of 379.8ps. In comparison, the best 3 stage lumped design 

for a 2.5mm design would have a delay of 382.3ps, approximately 1% slower. 

With only three stages in this design, it is unlikely that any wires as longer than 4-5mm will 

even be considered. Data for wirelengths up to the 16mm long are shown because that is when 

the design becomes fully uniform. The most interesting region is around 2-3mm, where the best 

designs begin to shift from lumped designs to distributed designs. 

Delay-Driven Results 

Wirelengths 
Best wire 

distribution 

Best 
Buffer 
Sizes 

Delay 
Best delay for 

Lumped Design 
Performance 
Difference 

1mm 0.00 0.00 1.00 1 4 21 185.4ps 185.4ps 0% 
2mm 0.00 0.00 1.00 1 5 36 305.8ps 305.8ps 0% 

2.5mm 0.00 0.15 0.85 1 7 38 379.8ps 382.3ps 1% 
2.8mm 0.00 0.25 0.75 1 8 37 423.5ps 434.3ps 2% 
3mm 0.00 0.25 0.75 1 8 39 453.2ps 471.5ps 4% 
4mm 0.00 0.35 0.65 1 10 39 613.5ps 687.4ps 11% 
5mm 0.00 0.40 0.60 1 12 39 796.6ps 956.6ps 17% 
6mm 0.00 0.40 0.60 1 12 39 1004ps 1281ps 22% 
7mm 0.00 0.45 0.55 1 14 36 1237ps 1662ps 26% 
8mm 0.00 0.45 0.55 1 14 36 1496ps 2098ps 29% 
9mm 0.00 0.45 0.55 1 16 39 . 1781ps 2590ps 31% 
10mm 0.00 0.45 0.55 .1 16 39 2094ps 3138ps 33% 
12mm 0.00 0.45 0.55 1 18 39 2802ps 440lps 36% 
16mm 0.00 0.50 0.50 1 22 36 4539ps 7596ps 40% 

Table 3.4 - Delay-Driven Results 

One concern with the delay driven analysis based on Elmore delay calculations is that buffer 

sizes tend to increase rapidly. A commonly used method to reducing the area usage is to use the 

area-delay product metric to improve the tradeoff between area and delay. The results in Table 

3.5 are determined using the area-delay metric. 
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AreaDelay-Driven Results 

Wirelengths 
Best wire 

distribution 

Best 
Areadelay 

Buffer 
Sizes 

AreaDelay 
driven 
Delay 

Best AreaDelay 
driven delay 
For Lumped 

Design 

Performance 
Difference 

1mm 0.00 0.00 1.00 1 3 13 194.7ps 194.7ps 0% 
2mm 0.00 0.00 1.00 1 3 16 334.6ps 334.6ps 0% 

2.5mm 0.00 0.00 1.00 1 3 17 422.1ps 422.1ps 0% 
2.8mm 0.00 0.35 0.55 1 6 15 469.2ps 484.1ps 3% 
3mm 0.00 0.40 0.60 1 7 14 502.8ps 528.2ps 5% 
4mm 0.00 0.45 0.55 1 8 14 677.3ps 803.4ps 16% 
5mm 0.00 0.45 0.55 1 8 14 884.3ps 1117ps 21% 
6rnrri 0.00 0.50 0.50 1 9 13 1117ps 1507ps 26% 
7mm 0.00 0.50 0.50 1 9 12 1397ps 1936ps 28% 
8mm 0.00 0.50 0.50 1 9 12 1688ps 2454ps 31% 
9mm 0.00 0.50 0.50 1 9 12 2007ps 3085ps 35% 
10mm 0.00 0.50 0.50 1 9 12 2354ps 3747ps 37% 
12mm 0.00 0.50 0.50 1 8 11 32 Hps 5140ps 37% 
16mm 0.00 0.50 0.50 1 8 10 5200ps 8843ps 41% 

Table 3.5 - AreaDelay-Driven Results 

Once again, results indicate that as the wirelengths increase beyond 2-3mm, a distributed 

arrangement begins to demonstrate improvement over a lumped design. It is interesting to note 

that as in the delay driven results, slightly non-uniform distributed solutions are good for certain 

wirelengths. However, the range of wirelengths with non-uniform solutions shrinks from 2.5mm-

12mm to 2.8-5mm through the use of the area-delay metric. These wire distribution results 

suggest two conclusions: 

1) The first two driver stages should be lumped together (L = 0) 

2) For wires longer than 2mm (in 180nm with minimum wire width and spacing), the 

design should be distributed, and wire segment lengths in subsequent stages should be 

approximately equal 

The first result is strongly tied to the initial assumption that the first buffer should be of 

minimum size. However, as mentioned earlier, this is a realistic assumption since the first stage 

is a sense stage. This reinforces the notion that ASIC interconnect designers should consider 
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tapering logic which proceeds large interconnect drivers [22]. The second conclusion verifies 

that common design approaches which assume equally spaced repeaters are valid. To further 

understand these conclusions, it is beneficial to examine figures 3.15 and 3.16. 

Figure 3.15 shows the effects of wire distribution on delay. In the figure, the wirelengths of 

the stages are represented by L I , L2 and L3, respectively. Since LI + L2 + L3 = 1.0, it is 

sufficient to plot only LI and L2, as the third length can be determined from their sum (i.e., L3 = 

1 - LI - L2). The plot shows that the effect of LI has a large influence on the delay, where as the 

effect of L2 has little effect on the delay. This confirms that to minimize delay, LI should be 

fixed at 0 and L2 can be selected for minimum overall delay. 

Delay of Minimum-Areadelay for varying L1 and L2 

Figure 3.15 - Areadelay-Driven Min imum-De lay W i r e Distr ibut ion Plot for a 4mm W i r e 
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Figure 3.16 - Areadelay-Driven Minimum-Delay Wire Distribution Plot for a 4mm Wire 

Zoomed in on L2 Axis 

Figure 3.16 presents the same plot as Figure 3.15, but it is enlarged from the perspective of the 

L2 axis. It shows that L2 can easily be stretched from 35% (683ps) to 50% (688ps) with only a 

0.7% change in minimum delay. This suggests that uniformly dividing the wire between stages 2 

and 3 can achieve near-minimum delay, supporting the notion that a uniform spacing of the 

subsequent stages is an acceptable choice for design. Moreover, it reassures the designer that the 

design is robust to minor shifts in the placement of the latter driver stages, provided they are 

already within the vicinity of the optimal configuration. 

3.2.4 Summary 

Results from the design space exploration provided an understanding of where distributed 

buffering becomes applicable and how much tolerance the design has for deviations. Although 
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certain distributed designs are non-uniform, the tolerance in delay to minor shifts in the design 

suggests that uniform spacing still provides an adequate solution. 

One apparent limitation to this analysis is that the number of stages is fixed. However it is 

unlikely that introducing additional stages will change these conclusions. Placing an additional 

stage in the design would continue to result in a uniform arrangement with shorter wire segments. 

Furthermore, adding unnecessary stages will only result in increasing the overall delay of the 

design. 

Using results from this study it is possible to make good assumptions which will help to 

reduce the design space of the general problem and develop a more detailed circuit model with 

fewer unknowns. Conclusions based on the wire distribution results suggest that the circuit 

model can be divided into two sections; a lumped front end and a distributed back end. The 

lumped front end will contain two buffers, starting with the minimum sized buffer to sense the 

input. Since this work is for programmable interconnects the front end will also need to include a 

multiplexer. For this reason, this section is referred to as the multiplexer stage. The distributed 

back end, referred to as the distributed stages, will be made up of multiple driver stages 

consisting of buffer-wire segments of equal length. This is an important constraint because, the 

ability to assume that the back end of the circuit is uniformly distributed greatly reduces the 

design complexity. Now that the circuit sections are defined, our attention turns to the 

development of a more detailed delay model. 

3.3 A ccurate Switch Driver Circuit Delay Modeling 

The rapid design space exploration used a simplified model to calculate the delay of the 

circuit. Unfortunately, this model lacks the ability to accurately predict the effects of passive 

devices such as passgates, model the initial input buffer loading, or properly account for reduced 
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drive strength due to a weak input signal. These inaccuracies make it difficult to incorporate and 

compare the delay of different multiplexer designs. This section addresses the problem of how to 

determine the overall delay of the switch driver circuit accurately and rapidly, by taking 

advantage of the design space constraints determined in the previous section. 

3.3.1 Delay Modeling through Circuit Characterization 

Figure 3.17 provides an example of a circuit which contains elements that are difficult to 

evaluate and compare using an Elmore model. However, these complex elements in multiplexer 

designs such as pass transistors and level restorers can be accurately modeled and compared 

using HSPICE. The major drawback to HSPICE is that its runtime is long and care must be taken 

in order to avoid a lengthy optimization process. 

Figure 3.17 - Programmable Driver Example 

In this section, the delays of different circuit stages are characterized using HSPICE. This 

data is then loaded into an array which acts as a lookup table for delay calculations. The circuit 

stages characterized represent either a multiplexer stage or a distributed stage of the overall 

circuit design. There are several different types of multiplexer stages that are defined by the type 

of multiplexer used and the driver. These designs are summarized in Table 3.6. 
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Various Characterized Stage Types 
Characterized Sections Description 
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Table 3.6 - Characterized Sections 

46 



3.3.2 Circuit Characterization Process 

The first step in the characterization process is to build a parameterized SPICE circuit model 

(SPICE deck) which allows for using variable buffer size and wirelengths. The parameterized 

circuit model is then plugged into a testbench circuit which is built to model the input and output 

conditions of the circuit. This testbench arrangement is shown in Figure 3.18. 

Delay Measurements 

Input Waveform 

Input shaping Driver design under test Output loading 

Figure 3.18 - Testbench Configuration 

Next, a Matlab interface to HSPICE is developed. This function is capable of modifying the 

SPICE deck parameters, launching the spice job and collecting the desired data. Additional 

Matlab scripts were written to perform two dimensional HSPICE based sweeps on the buffer 

sizes and the wirelengths of each circuit type. These scripts call the underlying HSPICE 

simulator to generate delay data and load the lookup table array. In the following section, this 

data is examined to identify certain characteristics about the technology and produce design 

information. 

3.3.3 Characterization Results & Analysis 

The characterization process produces a three dimensional mesh plot of delays as shown in 

Figure 3.19. In this plot, the x-axis represents the buffer size in multiples of minimum size 

buffers and the y-axis represents wirelength in mm. The delay in picoseconds is produced along 

the z-axis for each buffer size-wirelength pair. 

47 
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Figure 3.19 - Delay vs. Buffer size and Wirelength for 180nm l x l x nomux Design 
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Figure 3.20 - Delay vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux Design 

- Wirelength Axis 

Since the plot is in 3D, it helps to view it from various perspectives to help identify local 

minima. Figure 3.20 presents the delay from the wirelength axis perspective. It simply shows 
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that the minimum delay is achieved with the shortest wire, which is a fairly intuitive result. 

However, using a different metric, it is possible to identify which wirelength achieved the fastest 

end-to-end signal propagation speed. This metric is referred to as the "delay-per-millimeter" 

and can be calculated by dividing the delay by the distance traveled. A similar metric is 

described in [34]. 

Buffersize vs Delay/mm 

80 0 

Figure 3.21 - Delay/mm vs. Buffer size and Wirelength for 180nm lxlx nomux Design 

Figure 3.21 presents a 3D plot similar to Figure 3.19. The difference is that the z-axis now 

presents the delay in terms of delay-per-millimeter. 
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Wiresize vs Delay/mm 
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Figure 3.22 - Delay/mm vs. Wirelength for Different Buffer sizes for 180nm l x l x nomux 

Design - Wirelength Axis 

As before, Figure 3.22 presents a view of Figure 3.21 from the wirelength axis. This 

perspective clearly indicates that in this technology, using wires approximately 1mm in length 

will achieve the best delay-per-millimeter. 

For the distributed (non-multiplexed) stages, the wirelength corresponding to the minimum 

delay-per-millimeter represents the optimal distributed drive stage wirelength. This is the 

spacing that would be used by an ASIC uniform repeater insertion process. In a given process 

technology, this spacing represents a lower bound on the delay-per-millimeter of ASIC 

interconnect. However, it is important to keep in mind that this only applies to designs using the 

same metal layer, wire width and pitch. 
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Best Delay-per-millimeter Values for Various Circuit Sections 

Process Characterized 
lx spacing 
lx width 

Delay (ps/mm) 

2x spacing 
2x width 

Delay (ps/mm) Technology Stages 

lx spacing 
lx width 

Delay (ps/mm) 

2x spacing 
2x width 

Delay (ps/mm) 
nomux 108 69.1 

dblbuffer 179 -
Wmux 322 -

180nm Wmuxl 340 -
wmuxsqrbuffX 215 -

Wcmux 262 -
wcmuxsqrbuffX 207 138 

90nm 
nomux 90.9 57.9 

90nm wcmuxsqrbuffX 199 131 
Table 3.7 - Best Delay-per-millimeter for Various Sections 

Table 3.7 summarizes some of the delay-per-millimeter values for the different characterized 

sections. Of the multiplexer stage types in 180nm, wcmuxsqrbuffX was the fastest design and is 

assumed for the remainder of the work. This circuit is made up of a CMOS passgate multiplexer 

followed by a two-stage lumped driver as shown in last row of Table 3.6 (page 46). The size of 

the first buffer is equal to the square root of the size of the second buffer. From this point 

forward, any discussions involving the "size" of this driver will be referring to the size of the 

second buffer. Since this design was selected and because characterization is a time-consuming 

process, only the nomux circuit and the wcmuxsqrbuffX circuit were characterized for other 

technology configurations, as shown in Table 3.7. 

Selecting Buffer Sizes 

The characterization data also provides valuable information which is used for accurate 

selection of buffer sizes. As an example, Figure 3.23 presents buffer size curves for wirelengths 

0.1mm to 4.0mm for the 180nm l x l x nomux stage. Buffer sizes which yield the minimum delay 

at each wirelength are marked with x's and connected with another line. 
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Delay vs. Buffersize for Wirelengths (mm): 

10 20 30 40 50 60 70 
Buffersize 

Figure 3.23 - Buffer size Selection for 180nm lx lx nomux 

Since the delay curve is quite shallow towards the minimum delay, it is common practice to 

use a buffer size corresponding to a modest delay increase instead of the minimum delay to save 

significant transistor area. In this work, the buffer size corresponding to a delay which is 10% 

above the minimum delay was extracted. Figure 3.24 presents buffer size data for both minimum 

delay and the 10%-off minimum delay for the 180nm l x l x nomux design. 

Note that the curve representing the minimum-delay buffer sizes is not smooth. This is due to 

the coarseness of the characterization data and the fact that the delay surface is very flat. This 

sometimes leads to minor variations in the results of future computations based on these buffer 

sizes. 
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Figure 3.24 - Buffer size Selections for 180nm lxlx nomux Design 

10 

3.3.4 Delay Concatenation 

In this section, a technique is described which uses the pre-characterized data as a lookup 

table to produce the delay of an arbitrary circuit driver design. This technique assumes that the 

overall interconnect circuit design is constructed through some combination of the pre-

characterized stages. Figure 3.25 presents an example of how stages can be concatenated 

together to produce a total interconnect driver solution. Since all the internal sections of the 

circuit are fully buffered, it is reasonable to assume the delay is additive. This assumption will be 

verified in the following section. 
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Multiplexer Stage Distributed Stages 

delay 

Figure 3.25 - Circuit Concatenation Example 

3.3.5 Verification of Delay Concatenation 

In order to verify accuracy of the concatenation approach several circuit designs were built 

and their delays were computed using both HSPICE and the concatenation technique. As 

suggested in section 3.2.4, the circuits are built using two sections, the multiplexer stage and the 

distributed stages which are made up of identical buffer-wire drive stages. The circuit designs 

had 2 to 5 stages and total wirelengths ranging from 2.0mm to 3.0mm. These ranges were chosen 

because they represent the range of the design space where distributed driver designs begin to 

outperform lumped designs. The delays of the test circuits are shown in Tables 3.8 and 3.9. 

180nm lx spacing lx width 

Total 
Wirelength 

(mm) 

Number 
of Stages 

Multiplexer 
Stage 

Length 
(mm) 

Distributed 
Stage Buffer-
wire Segment 

Length 
(mm) 

Concatenated 
Delay/mm 

HSPICE 
Delay/mm % error 

2 0.80 1.20 198 192 .3.2% 
2.0 3 0.15 0.93 196 203 -3.4% 

4 0.15 0.62 202 210 -4.1% 
2 1.50 1.50 178 172 3.6% 

3.0 
3 0.60 1.20 171 168 1.7% 3.0 
4 0.36 0.88 170 170 0.2% 
5 0.36 0.66 174 174 0.0% 
Table 3.8 - Concatenation Verification Results (180nm) 
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90nm 2x spacing 2x width 

Total 
Wirelength 

(mm) 

Number 
of Stages 

Multiplexer 
Stage 

Length 
, (mm) 

Distributed 
Stage Buffer-
wire Segment 

Length 
(mm) 

Concatenated 
Delay/mm 

HSPICE 
Delay/mm % error 

2 0.80 1.20 110 108 1.9% 
2.0 3 0.15 0.93 103 105 -1.6% 

4 0.15 0.62 103 105 -2.2% 
3 0.60 1.20 95 94 0.5% 

3.0 4 0.30 0.90 91 91 -0.2% 
5 0.26 0.69 90 91 -1.0% 

Table 3.9 - Concatenation Verification Results (90nm) 

The results show that the concatenated delay model can achieve delay estimates within 4% of 

HSPICE. The accuracy of this approach appears to degrade when the stage lengths become 

extremely short (under 200um). Table 3.9 presents similar results based on a 90nm technology. 

Here, the accuracy is improved to within 2.2% of HSPICE. 

3.4 Design Parameter Search 

In the previous section, a circuit modeling method capable of rapidly and accurately 

determining the delay of a circuit design based on lookup tables was presented. This section 

describes an approach which uses the aforementioned circuit modeling technique to determine 

values for the buffer sizes, number of stages and buffer spacings used to construct a complete 

FPGA switch driver. 

3.4.1 Circuit Construction 

Results from section 3.2.4 showed that it is possible to construct a driver design using two 

separate sections: the multiplexer stage and the distributed stages. This simplification 

substantially reduces the search space, particularly when considering higher N values (number of 

stages), by making it possible to only consider 2 wirelengths and 2 buffer sizes. Figure 3.26 
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presents a general template of how a driver circuit will be constructed using the aforementioned 

restrictions. (Recall from Section 3.1.3 that the symbols B r represent the size of the buffer 

driving a wire of length Li). 

FPGA Mux stage Distributed Stages 

Number of stages N 

Figure 3.26 - Driver Construction Template 

The multiplexer stage in Figure 3.26 is made up of the wcmuxsqrbuffX stages described in 

the characterization step (mux-buffer-wire). The distributed stages can be constructed using one 

or more buffer-wire pairs (nomux stages) to make up a uniformly distributed buffer arrangement. 

Driver Delay Equation 

Using the template described above, several equations can be written to relate the lengths and 

delays of the entire circuit design. The first equation relates the stage wirelengths to the number 

of stages (N) and the total wirelength (L). 

L = L0 + (N-l)xLl (2) 

This equation will primarily be used to solve for L I , given any L, N and LO. Once LO, L I , L and 

N are known, the delay of each buffer-wire segment can be extracted from the pre-characterized 

data, by looking up the appropriate buffer size and delay corresponding to a wirelength LO or L I . 

The final design delay is calculated as the sum of the segment delays. 

delay = dmux(L0) + (N-\)xddistrib(Ll) (3) 

56 



Where dCirCuittype{x) is the delay of wirelength x for a circuit stage determined by the pre-

characterized lookup table data. 

Given a total wirelength (L) and a number of stages (N), this process of calculating the 

wirelength, looking up the delay and buffer size must be performed for all values of LO and L I . 

However, since LO and LI are related, the search degenerates into a single sweep referred to as 

the segment length sweep, or the LO sweep. 

3.4.2 Segment Length Sweep 

The segment length sweep involves sweeping the length of the first stage (LO) to determine 

the best delay for a particular configuration of total wirelength (L) and number of stages (N). 

Plotting the delay of the resulting circuit design against LO reveals a curve which contains a 

minimum. Figure 3.27 presents the effect of changing LO on the delay. In this example the best 

delay-driven circuit design should have L0=0.15mm to achieve a delay just over 390ps. 

Delays for different LO lengths 
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Figure 3.27 - L0 Sweep for a 2mm Wire in 180nm lxlx for N=3 Stages 
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Figure 3.28 - Buffer sizes Used for LO Sweep in 180nm lxlx 

It is noted that the LO sweep in Figure 3.27 is not completely smooth and contains some kinks 

in the curve. This is due to changing buffer sizes according to the data shown in Figure 3.28. In 

this figure, the curve for the distributed stage gives the buffer size B l to use with wirelength L I , 

while the curve for the multiplexer stage gives the buffer size BO to use with the wirelength LO. 

As discussed in 3.3.3, the discrete jumps in Figure 3.28 are due to the flat delay curve and the 

coarseness of the characterization data. However, because the delay curves are insensitive with 

respect to buffer sizes, this does not interfere with establishing a circuit design which achieves 

close to minimum delay. 
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Figure 3.29 - Mult i -N L0 Sweep for a 2mm Wire in 180nm lxlx 

Multi-Segment Length Sweeps 

Using L0 plots it is possible to compare designs with different numbers of stages (N). An 

example of a multi-N L0 sweep is shown in Figure 3.29. This plot shows that there is a value of 

N which yields the delay curve containing a minimum delay. In this example, the optimal design 

parameters are: L = 2mm, N = 3, L0 = 0.15mm and L\ = ——— -0.925mm . Buffer sizes are 

N-\ 

extracted from Figure 3.28 to yield B0 = 6 from the minimum delay curve, and B l = 22 from the 

10%-off minimum delay curve. 

In Figure 3.29 the effect of the number of stages appears to have a minimal impact on the best 

delay, however, this is dependant on the wirelength and technology. Figure 3.30 presents a 

similar plot, except for a 4mm long wire. In this case, the effect of changing N has a larger 

impact on the overall delay, particularly between N=2 and N=3. 
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Figure 3.30 - Multi-N L0 Sweep for a 4mm Wire in 180nm lxlx 

3.5 Circuit Design Results & Analysis 

The multi-N LO-sweep was performed for a variety of total wirelengths (L) and number of 

stages (N) to produce optimal circuit designs for various total wirelengths. Each solution 

provides the four parameters required to build the circuit. For the multiplexer stage, the length is 

L0 and the buffer size is B0. For the distributed stages, there are N - l buffer-wire segments with 

B l sized buffers and wires of length L I . This arrangement was depicted in Figure 3.26 (page 56). 

Results of the multi-N LO-sweep for different wirelengths are presented in Tables 3.10 and 

3.12. Circuit designs built in 180nm process technology with wires at lx minimum width and lx 

minimum spacing are shown in Table 3.10. Similar results for 90nm with wires at 2x minimum 

width and 2x minimum spacing are shown in Table 3.12. In addition to the six design parameters 

used to construct the circuit, the estimated delay-per-millimeter is shown. For each wirelength, 
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the design which yields the best delay (ps/mm) is in bold. It is interesting to note that the LI 

lengths of the fastest designs are closest to the length of wire shown to achieve the minimum 

delay-per-millimeter in the delay characterization process. 

180nm - lx spacing lx width 

Wirelength Number 
of Stages 

(N) 

Multiplexed 
Stage 

Distributed 
Stage Buffer-wire 

Segment Delay 
(mm) 

Number 
of Stages 

(N) Driver 
Size BO 

Length 
L0 

Buffer 
S i z e B l 

Length 
LI 

(ps/mm) 

(x min) (mm) (x min) (mm) 

, 0.5 2 3.0 0.05 14.0 0.45 414 
, 0.5 

3 3.0 0.05 14.0 0.23 462 
2 6.0 0.15 22.0 0.85 266 

1 3 5.0 0.10 19.0 0.45 283 
4 5.0 0.10 19.0 0.30 306 
2 17.0 0.80 27.0 1.20 198 

2 3 6.0 0.15 22.0 0.93 196 
4 6.0 0.15 22.0 0.62 202 
2 20.0 1.50 26.0 1.50 178 
3 14.0 0.60 27.0 1.20 171 

J 4 11.2 0.36 26.0 0.88 170 
5 11.2 0.36 26.0 0.66 174 
2 22.0 2.00 25.0 2.00 174 

A 3 19.0 1.20 26.0 1.40 162 
H 4 14.0 0.60 27.0 1.13 157 

5 11.2 0.36 26.0 0.91 157 
Table 3.10 - Distributed Driver Design Results or 180nm 

Lumped Design Results 180nm - lx spacing lx width 
Wirelength Number of Stages Buffer Sizes Delay 

(mm) (N) (x min) (ps/mm) 
0.5 , 2 3.74, 14.0 408 
1 3 4.0, 10.0,30.0 260 
2 3 4.0, 9.0, 35.0 192 
i 3 3.3, 11.1,37.0 184 
J 4 2.6,6.7, 17.4, 45.0 186 
A 3 3.4, 11.5,39.0 194 

4 2.7,7.1, 18.9,50.0 191 
Tab e 3.11 - Lumped Driver Design Results for 180nm 
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90nm - 2x spacing 2x width 

Wirelength Number 
of Stages 

(N) 

Multiplexed 
Stage 

Distributed 
Stage Buffer-wire 

Segment Delay 
(mm) 

Number 
of Stages 

(N) Driver 
Size BO 

Length 
LO 

Buffer 
Size B l 

Length 
LI 

(ps/mm) 

(x min) (mm) (x min) (mm) 
2 31.0 0.80 49.0 1.20 110 

7 3 12.0 0.15 43.0 y 

43.0 ' 
0.93 103 

L 4 12.0 0.15 
43.0 y 

43.0 ' 0.62 103 
5 12.0 0.15 43.0 0.46 105 
3 27.0 0.60 50.0 1.20 95 
4 19.0 0.30 48.0 0.90 91 

3 5 17.2 0.26 47.1 0.69 90 
6 17.2 0.26 47.1 0.55 91 
5 22.0 0.40 49.0 0.90 85 

A 6 19.0 0.30 48.0 0.74 84 
4 7 19.0 0.30 48.0 0.62 84 

8 17.4 0.26 47.2 0.53 85 
Tab e 3.12 - Driver Design Results for 90nm 

Lumped Design Results 90nm - 2x spacing 2x width 
Wirelength Number of Stages Buffer Sizes Delay 

(mm) (N) (x min) (ps/mm) 
2 3 4.0, 16.2,65 115 
3 5 2.6, 6.6, 16.8,43.0, 110.0 115 
4 5 2.6, 6.8, 17.7,46.1, 120.0 125 

Table 3.13 - Lumped Driver Design Results for 90nm 

Data for the best lumped driver designs is shown in Tables 3.11 and 3.13 for comparison with 

the distributed driver design results. These circuits are designed by assuming a geometric 

relationship between each successive driver and running an HSPICE-based search on the final 

drive stage for a range of N values. Once the final drive stage is determined, the design is 

optimized by hand to reduce any delays caused by a non-ideal drive stage ratio. Since the delay 

of the lumped design is strongly dependant on the final drive stage, rigorous tuning of the 

intermediate buffers is not crucial. 
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Analysis of the driver design results yield several useful conclusions regarding FPGA 

architecture and distributed buffering. 

3.5.1 Multiplexing Intervals 

In Figure 3.31 the delay-per-millimeter of the programmable interconnect designs in 180nm 

process technology can be compared to the best ASIC delay found in Table 3.7. It is expected 

that the programmable multiplexed design will always be slower than the ASIC equivalent. 

However, as the length of the programmable interconnect grows the delay-per-millimeter of the 

design improves. This has significance to FPGA architecture since the length of the 

programmable interconnect is essentially the distance between multiplexers in the FPGA device, 

or the "multiplexing interval." 

Best Muxing Interval for FPGA Interconnect Wires 
(one 2:1 multiplexer every X mm) 

300 n : 

50 

0 i 1 1 1 1 1 1 1 1 1 

0 1 2 3 4 5 6 7 8 9 1 0 

Multiplexing Interval (mm) 

Figure 3.31 - Multiplexing Intervals for various Technologies 
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This means that an FPGA architect can choose to select a longer multiplexing interval in order to 

achieve a delay-per-millimeter which is sufficiently close to that of an ASIC. Identifying the best 

physical wirelength is important for FPGA architecture because it can be translated directly into 

an architectural wirelength when the tile size is known. Although Figure 3.31 suggests that using 

the longest possible wire can produce the smallest delay, it is important to note that this is often 

impractical due to many other tradeoffs. For instance, the larger logical lengths that come about 

from longer wires will increase the minimum channel width required to ensure the start of a wire 

is located at all CLBs. In contemporary FPGAs, 3mm [35] is a reasonable length for long wires. 

3.5.2 Distr ibuted Buffering 

Using the driver design results, the suitability of distributed buffering can be assessed. The 

delay of the distributed driver designs in Tables 3.10 and 3.12 will be compared with those of the 

lumped designs using path delay profiles. PDPs provide a qualitative assessment of the benefits 

of distributed driver design on midpoint delays in addition to a direct comparison with the end-

to-end delays. 

Figure 3.32 presents PDPs for 0.5mm to 4mm for a 180nm process. From the plots it is clear 

that the distributed driver designs offer improved end-to-end performance for longer wires. In 

this technology, wirelengths beyond 2mm benefit from distributed designs when compared to 

lumped designs. In the case where end-to-end delay is roughly equal, distributed designs can 

offer smaller midpoint delays. For example, a 2mm distributed N=2 design uses roughly the 

same total buffer size area as the 2mm lumped N=3 design and both have the same end-to-end 

delay. However, the distributed design offers smaller delay to early turns up to 800pm down the 

wire. At 800um, the distributed design offers a turn delay which is approximately 18% faster 

than the lumped design. The actual net benefit of achieving this early midpoint delay is not clear 
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without proper modeling and simulation using a real C A D router and timing analysis. This is the 

objective of the next chapter. 
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Figure 3.32 - Path Delay Profile Plots for 180nm lxlx for lmm-4mm 
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C h a p t e r 4 

C A D C i r c u i t A r c h i t e c t u r e M o d e l i n g a n d E v a l u a t i o n 

In the previous chapter a method to design FPGA switch drivers was presented. Given the 

nature of FPGAs it was not clear how the proposed designs would improve performance. In this 

chapter, an FPGA C A D tool, VPRx, is modified to model the proposed switch driver circuits in 

order to evaluate their performance. It begins with a discussion on the goals of the circuit 

evaluation, and proceeds to develop the model of the proposed circuits in VPRx. Later sections 

will present critical path delay results of using the new switch designs in an FPGA. 

4.1 Goals of the CAD Circuit Evaluation 

In the previous chapter, the design with the best delay was constructed using a 2:1 CMOS 

passgate multiplexer followed by 2 inverters and then by a uniformly distributed driver. In this 

chapter, that circuit design is modeled in VPRx to measure the impact of early turns and the new 

design on delay. Using a router which is aware of precise delays of early turns, it is investigated 

how often early turns are used and whether a performance improvement can be attained using 

circuits which offer reductions in midpoint delay. This requires that the C A D tools be capable of 

a) modeling the midpoint delays during routing, and b) making decisions based on this 

information. 
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Another architectural question involves the effect of adding fast paths to the FPGA routing 

resources. The new circuit design uses a simplified high-speed fast path to operate near 

maximum speed for straight connections. To determine the effect of these changes, they must be 

evaluated in the FPGA C A D framework as well. 

Modification of C A D tools to fully support the proposed circuit designs is the first goal of this 

chapter. The second goal of the chapter is to use the modified C A D tools to implement 

benchmark circuits using a C A D framework to determine the overall improvement in FPGA 

performance. 

4.1.1 Comments on Area Overhead 

The goal of this thesis is to obtain the best possible delay performance from long wire 

interconnect. As such, area is only a secondary concern. To mitigate concerns over area 

overhead, we note two things. First, by stepping back delay by 10% from optimal, considerable 

area is saved. Second, the number of high-performance long wires in an FPGA device is 

expected to be a small fraction of the total amount of interconnect. Hence, even though large 

buffers are used, they appear infrequently (few long wires) and one spaced far apart 

(approximately 1mm apart). For this reason the remainder of this thesis will not be concerned 

with measuring area overhead. 
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4.2 Experimental Methodology 

Depopulate 
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Complete 

No 

Figure 4.1 - Exper imental Methodology F low 

The experimental methodology shown in Figure 4.1 follows the flow described in Chapter 2. 

Steps are added to depopulate circuits to generate larger FPGA arrays for use with longer wires. 

Also shown, is a process to generate architecture files based on the proposed circuit designs. 

Details on this process are provided in section 4.3.5. 
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4.3 Circuit A rchitecture Modeling 

In order to evaluate the new circuit designs using FPGA C A D tools, proper support needs to 

be added to the C A D models. In particular, VPRx must be able to use early turns and fast paths 

while accurately assessing their respective costs. Modifications made to VPRx can be broken 

down into circuit modeling and router awareness. 

Circuit modeling allows accurate representation of the circuit designs in VPRx. The existing 

wire model built into VPRx lacks the resolution required to distinguish the benefits of the new 

designs from the previous designs. In order to increase the detail of the wire model and to model 

new circuit designs, VPRx was modified to model wires made up of multiple wire-segments and 

driver designs using distributed buffering. Another VPRx model that required revision is the 

multiplexer delay model. Since the two-level flat multiplexer design has delay properties which 

differ from the original tree-based design, a new multiplexer modeling scheme is introduced in 

section 4.3.4. 

The second component of the modified C A D tool is router awareness. This requires that the 

C A D algorithms are capable of understanding and exploiting the routing options provided by the 

new circuit models. For instance, the router should be able to recognize the presence of a fast 

path and take advantage of it when applicable. In the following sections, detailed discussions of 

the new features added to VPRx are presented. 

4.3.1 Early Turn Modeling (ETM) 

In an FPGA, a turn occurs when a signal leaves a wire for another destination. In a 

unidirectional architecture, a turn which occurs at the end of a wire is referred to as a normal 

turn since it uses the entire interconnect resource. When a turn takes place before reaching the 

end of the wire it is referred to as an early turn. A n example of the two types of turns is provided 
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in Figure 4.2. The reason why it is important to distinguish the two is because the delay of an 

early turn can be substantially smaller than that of a normal turn. 

CLB CLB CLB CLB 
1 2 • • • N-1 N 

J J J J J J J J _ 
i i i i i i i in 

Y 
Early Turns 

J 
Normal Turns 

Figure 4.2 - Early Turns 

Initial turn counting experiments indicated that early turns occurred often in unidirectional 

FPGA designs. Unfortunately, in the existing VPRx tool the delay of such turns is not modeled 

accurately because both normal turns and early turns are treated as i f they have the same delay. 

Turn Modeling Error 

Treating the delay of all turns equivalently introduces error into the timing calculations. This 

affects the accuracy of the critical path calculation and the metrics used during the routing search. 

An idea of the error that can occur in the delay of the wire can be obtained by using an Elmore 

tree calculation as follows. 

R C 

The delay of a normal turn is the delay to the end of the wire: w'"^ w , r e 

The delay of an early turn occurring at !4 of the wirelength: 
wire/ wire/ D I/"1 

/ 4 /4_ + _Kwire i{^wire_ 2 
7R.,^C.,ir. 

4 4 

wire wire 
32 
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In this example, the normal turn delay is roughly 2.3 times larger than the early turn delay. To 

account for this, VPRx assumes that all turns occur at the halfway point of the wire and estimates 

R C 

all turns to have delay w i r e w i r e . In this work, VPRx was modified to model early turns in order 

to compute wire delay more accurately based on the actual turn location . 

As the wirelength increases the potential difference in delay between an early turn and a 

normal turn grows larger. Hence, from a circuit design modeling standpoint, ignoring early turns 

cannot be tolerated when longer wires are used. 

Proper early-turn modeling allows the timing analyzer to extract more accurate delays for the 

critical path. It also allows the router to make informed decisions on whether or not to use early 

turns instead of normal turns. Most importantly, early turn modeling makes it possible to assess 

the benefits of circuits offering improved delay to early turns. 

Rout ing Resource G r a p h Modifications 

A new option was added to the VPRx code called " E a r l y T u r n M o d e l i n g " or E T M . 

Implementation of E T M involved building a new routing resource graph which could 

accommodate the level of detail appropriate for modeling early turns at the routing-resource 

graph level. 

2 When VPRx is not using early turn modeling, timing calculations revert to their original behavior. 
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Figure 4.3 - Original Routing Resource Graph of VPRx 

In the original VPRx, wire segments are modeled as discrete elements represented by nodes in 

the routing resource graph. An example highlighting where early turns are possible is shown in 

Figure 4.3. E T M was implemented by breaking up the existing wires into sub-wires; each sub-

wire spans one C L B . To model this in the routing resource graph, the nodes are split apart into 

E T M sub-nodes and strung together using special E T M edges to form a multi-segment wire 

model. Once the new E T M sub-nodes are created, the edges representing early turns are 

connected directly to the closest E T M sub-node. Figure 4.4 shows the resulting routing resource 

graph. 
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Figure 4.4 - Routing Resource Graph for VPRx with E T M Enabled 
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The result of this modification is a larger routing resource graph with more nodes and more 

edges, but it is now capable of modeling all possible turns. Although it is possible to obtain 

additional detail by breaking the wires into even smaller segments, this increases the complexity 

of the routing resource graph unnecessarily. The cost for the accuracy of E T M is increased 

runtime and memory use by the router. The amount that the routing resource graph grows is 

directly related to the architectural wirelength of the wire being modeled. For example, an L4 

wire architecture E T M adds 3 additional nodes and wires for every existing wire. Similarly for 

an LI 6 architecture, enabling E T M adds 15 nodes and 15 wires for each existing wire, 

expanding the routing resource graph by 15 times. Note, however, this is roughly equivalent to 

the overhead needed i f the architecture used LI wires everywhere. 

E T M Delay Calculations 

The introduction of E T M requires some modifications to the router delay estimation code. 

Like before, the router must be able to calculate the incremental delay from any point in the 

E T M routing resource graph to its neighbors. However, this time the neighbor can either be the 

start of a new wire or an adjacent sub-wire in the middle of an E T M wire. Before E T M , during 

the routing wavefront expansion, the only thing that is known to the router is the return path to 

the source. Now, there are situations where the router must consider downstream information 

from as-yet-unvisited nodes of the routing resource graph. This scenario occurs when the router 

is considering adding the first segment of a long wire to the routing solution. The effect of the 

latter segments of the wire is manifested in the concept of downstream capacitance. 

E T M requires that the router is able to calculate the delay to all midpoints of the wire both 

accurately and incrementally. The following derivation demonstrates how to calculate the delay 
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to the midpoint of a wire using Elmore tree analysis. Afterwards, the resulting equation is 

manipulated into a form which is practical for incremental calculation. 

Source 

uu 

A A A -

Sinks 

R i 
VNAA 

© 
VVNA-

© 
-V\AA 

R x © 

Segment 1 Segment 2 Segment 3 

Single Wire Model 

Figure 4.5 - Wire Delay Calculation Example 

Figure 4.5 presents an example of a wire model made up of three lumped RC segments. The 

wire is driven through an upstream resistance R u p . The end of the wire is connected to an RC 

load represented by R x and C x . In this example, the router is expanding only along the wire made 

up of segments 1 through 3 and it is not aware of the RC load located at the end of the wire. 

The delay from the source to each of the three labeled nodes can be determined using an 

Elmore tree calculation: 

Delay to node 1: r, = (RUP + R] )(C, + C 2 + C 3 ) 

Delay to node 2: r 2 = (RUP + Ri)cI+(RUP+R]+R2)(C2 + C3) 

Delay to node 3: r 3 =(i^p+i?1)c i +(RUP+R] +R2)C2 + (R„P+R] +R2+R})C} 

Rewriting the equation for X2 gives us: 

r 2 =K +*.)C. + K + / ? . + ^ ) ( C 2 +C 3 ) 

= (KP +A) (c, + c2 + c3)+R2 (c2+c3) 
= r 1 + J R 2 ( C 2 + C 3 ) 
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Similarly, for T3: 

h =(KP +* , )C , +(RUP +R, +R2)C2 +(RUP+R, +R2 +R3)C2 

= (RUP+R,)c.+(RUP+RL+R2){CZ+CI) + R3C, 

In the above equations, it is common to have sum of all the capacitances starting from the 

current node to the end of the wire (e.g., C, +C2 +C 3 for node 1). This sum is referred to as 

"downstream capacitance." 

It is interesting to look at the wire in terms of segments since each segment represents a sub-

wire in the E T M model. Thus the delay to node 1 is effectively the delay of segment 1. This can 

be rewritten as: 

^ firstsegment (^upstream ^segment ) ^downstream (4) 

For the remaining sinks on the wire, the delay of the previous sink can be used to form the 

basis of the delay. This is apparent in the rearrangement of the equations. The delay is calculated 

using the delay to the previous sink plus the product of the resistance to the current sink and the 

downstream capacitance. Again in terms of wire segments, the delay of a mid-wire segment is: 

^midwiresegment ~ ^ previoussegment ^segment^^downstream (^) 

Using these two equations, it is possible to incrementally calculate the delays to the midpoints 

of an E T M wire. When the router encounters the first segment in an E T M wire, it will calculate 

the delay using Equation (4). As the router examines the adjacent segments, it will determine the 

delays using Equation (5). 

It is important to note that the above equations only apply once the router is aware it is 

working on an E T M wire. The concept of downstream capacitance only applies internally to an 

E T M wire. This is because once an E T M segment is included in the routing solution, then all the 
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downstream capacitance must be included along with it. However, it is not apparent what will be 

included in the routing solution from beyond the routing resource nodes which make up the wire. 

This is why the previously described equations do not include the effect of R x and C x ; they are 

not part of the current wire being examined and so the router cannot assume they will be part of 

the solution. However, it is important to make sure that i f node 4 does become part of the 

solution, the delay equation will still be correct. According to the Elmore tree calculation the 

delay of node 4 is: 

r4 = ( R U P + R 1 ) C 1 + ( R U P + R L + R 2 ) C 2 + { R U P +/?, + R 2 + R 3 ) C 3 + ( R U P + R L + R 2 + R 3 + R X ) C X 

= T 3 + ( R U P + R 1 + R 2 + R 3 + R X ) C X 

However, since node 4 is not an E T M node, the router will use the conventional non-ETM 

equation described in section 2.1.3: 

^=h+(KPslream+K)Cx (6) 

This equation (6) applies only i f RUpStream is equal to R u p + Ri + R2 + R3 + Rx- Fortunately, this is 

the case, as the value of Rupstream is constantly being updated at each stage of an E T M wire even 

though it is not being used for E T M delay calculation. 

Accurate Delay Timing using E T M 

In the example presented above, the calculations discussed were "forward" looking 

estimations. This means that the router was attempting to produce a delay estimate based on the 

best available knowledge. However, the intermediate delay values calculated using this approach 

are not always accurate, due to the fact that the full signal routing path is unknown. This can be 

seen in the previous example where X4 is accurate (includes C x ) but xi, X2 and X3 have not yet been 

update to include C x . VPRx resolves this problem by eventually performing a full reverse 
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traversal of the routing tree for each source after the complete net has be formed. It builds a 

parallel routing tree which fully encompasses any downstream capacitance at all points in the 

tree. This allows a more accurate timing analysis which provides intermediate delay numbers 

throughout the tree. E T M modifications were made to the routing tree construction code in order 

to make it aware of the additional wiring detail. The extent of the modifications involved adding 

correct downstream capacitance to nodes modeling early turns. 

4.3.2 Distributed Buffering 

Once the E T M modifications are made to the routing resource grid, implementation of 

distributed buffering is the next logical step. The fact that a wire can be modeled using multiple 

sub-wires makes it possible to insert buffers in-between sub-wires to construct a distributed 

buffer design. 

Switches — • 
ET - Early Turns 
NT - Normal Turns 

From adjacent f wire A 
wirenode node J 

To adjacent 
wirenode 

Buffered ETM Edges 

Figure 4.6 - Routing Resource Graph with E T M and Distributed Buffers Shown 

One drawback to this approach is that often the prescribed locations for the buffers from the 

"best" circuit design do not align precisely with the E T M sub-wire segment divisions. This 

causes the buffer locations of the driver designs modeled in VPRx to be slightly different from 
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the actual "best" circuit design specifications. The amount of deviation that occurs is related to 

the architectural wirelength of the wire. Larger architectural wirelengths provide more 

"resolution" to model a distributed driver. For instance an LI6 wire will be composed of 16 

E T M wire segments, whereas in comparison, an L4 wire will only be made up of 4 E T M wire 

segments. Figure 4.7a illustrates how a distributed driver design is implemented in an LI 6 wire 

model. Alternatively, Figure 4.7b presents the design implemented in an L4 wire model. 

Driver Circuit 
Design 

L16 wire 
model 

a) L 1 6 Arch i tec tu ra l W i re leng th 

Driver Circuit 
Design 

L4 wire 
model 

b) L 4 A rch i t ec tu ra l W i re leng th 
Figure 4.7 - Modeling a Distributed Driver with Different Architectural Wirelengths 

Figure 4.8 illustrates the effect that architectural wirelength has on the distributed buffering 

model. As suggested by the PDP shown in Figure 4.8, larger architectural wirelengths can more 

closely match the "best" circuit designs found in Chapter 3. However, according to the results 

from the design space exploration in 3.2.3, small deviations from the "best" design point can be 

tolerated since overall delay is relatively insensitive to the precise location of downstream 

buffers. 
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Figure 4.8 - The Effect on the Path Delay Profile of Modeling Circuits with Different 

Architectural Wirelengths 

4.3.3 Fast Paths 

The modified VPRx is capable of modeling the fast path used by the new circuit designs. This 

option enables VPRx to be aware of fast paths and model them accordingly. Recall from Chapter 

3 that the fast path is a fast multiplexer bypass designed to aid cross-chip signal performance. It 

allows a signal which is traveling straight to bypass the wide fan-in multiplexers and take a faster 

path to the buffer input. 

In order to implement this feature in VPRx, the edge in the routing resource grid representing 

the path of adjacent wires is modified with the smaller delay of the fast path circuits. Figure 4.9 

demonstrates how the implementation of the fast path affects the routing resource graph. 
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Figure 4.9 - Signal Path through a Switch Block Using Normal or Fast Paths 

In Figure 4.9a, all the switches use the multiplexer and hence share the same switch design, 

indicated as "slow switches". In Figure 4.9b, two switch types are indicated, a fast switch and a 

slow switch. Since there can only be one fast edge per switch driver, all remaining edges which 

represent turns must use the slow multiplexer delay model. Details regarding this delay model 

are presented in the following section. 
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4.3.4 Multiplexer Delay Modeling 

Chapter 3 introduces a 2-level flat multiplexer design for use with routing switches. In order 

to model this multiplexer design in VPRx, a new multiplexer modeling scheme is used. 

In VPRx, the size (fanin) of the routing multiplexer in each switch is determined 

automatically. The size may vary depending on architectural parameter such as architectural 

wirelength or channel width. As the size of the multiplexer changes, so does its delay. The VPRx 

delay model accounts for these changes and provides a delay estimate for each instance of a 

multiplexer based on the fanin required by the architecture. 

The current VPRx multiplexer delay model assumes a fully encoded multiplexer tree. As 

shown in Chapter 3, this multiplexer architecture has a delay that is quadratic to the depth of the 

tree. Unlike the previous design, the 2-level flat design has a constant depth. When fanin 

increases, additional delay is caused by the junction capacitance of the added passgate devices. 

Experiments indicate that the delay of the 2-level flat design is actually linearly related to the 

logarithm of the fanin in the region of interest. Using this relationship, an accurate delay model 

of this revised multiplexer architecture is achieved. Figure 4.10 presents an example of this 

model using a 180nm l x l x process for a 2mm wire driven by a N=2 distributed driver design. 
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Figure 4.10 - Multiplexer Fanin Delay with a 2mm Wire 180nm lxlx 

4.3.5 Circuit Characterization for VPRx 

Up to this point, only wire modeling in VPRx has been described. Since the wire models have 

known parasitics, characterizing them for VPRx can be achieved by entering their capacitance 

per micron and the resistance per micron into the architecture file. The next step is to 

characterize the buffers so that they can be modeled in this framework. 

Wire Model 

VPRx Switch VPRx Switch 

-A/VV 
KJ2 

Switch 
Tdel 

-AAAr 
KJ2 

Figure 4.11 - How Switch Circuit Delay is Modeled in VPRx 
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In VPRx, the general term used to refer to a circuit driving a wire is a switch. The circuit can 

be a single buffer or multiple buffers lumped together used to drive a wire in the routing resource 

graph. In order to model a switch, a combination of fixed delays and equivalent resistances is 

used. A switch has several characteristics relevant to this discussion: 

• Tdel: Intrinsic switch delay 

• R^ : Equivalent Output Resistance 

• Cj„: Input Capacitance • • 

Each of these characteristics is used by VPRx to calculate the delay of the signal. Figure 4.11 

shows how these characteristics are used to model a switch using an RC circuit. The delay is 

calculated using the following equation: 

Delay = Tdel + { Req + ^ ] x C wire + {Req + % + x C„ (7) 
e q 2 2 V ^ ^ J 

Each of the parameters in the above equation are determined for use with VPRx as follows: 

Wire Parasitics ( R w i r g , C w i r e ) 

The wire parasitics are obtained from process geometries and technology documents. Details 

are provided in Appendix A . 
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Intrinsic Buffer Delay (Tdel) 

Tdel is also known as the intrinsic delay of the driver circuit. It is effectively the delay of the 

driver without a load; Note that this value includes the effect of the output capacitance of the 

output buffer. Using HSPICE, the value of Tdel can be measured through simulation. 

Input Capacitance ( Q n ) 

The input capacitance is process specific. It is characterized using an HSPICE simulation 

which determines input capacitance for a variety of gate sizes. 

Equivalent Resistance (R^) 

Unlike the aforementioned characteristics, the output resistance is not measured directly by 

HSPICE. Instead, it is used as a model fitting parameter to correlate HSPICE with VPRx delay 

calculations. Hence, the concept of an equivalent resistance is only used to model timing and 

does not represent a physical value. Calculation of the output resistance begins with a delay 

value obtained from an HSPICE simulation. Substituting this value into equation (7) yields an 

equation which has one unknown: R e q . By solving for the equivalent resistance the value used to 

represent the drive strength of the buffer is obtained. 

The above approach provides initial values for a VPRx architecture file. In the following 

section, an iterative calibration loop used to tune the architecture file is described. In this process 

the initial architecture file is used by VPRx to generate calibration data. This data is 

subsequently used to further tune the accuracy of the system. 

V P R x C i r cu i t M o d e l Cal ibra t ion Results 

In order to verify that the architecture files used by VPRx accurately represent HSPICE 

delays, a custom testbench circuit shown in Figure 4.12 was constructed. The delays at several 
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points in this path were computed by VPRx to construct a PDP. This VPRx-PDP was compared 

to a similar one generated using HSPICE. 

C L B C L B " . C L B "' • C L B C L B , C L B ' C L B C L B 

Mult ip le S i n k s 
. J 

Mult ip le S i n k s 

\s B L O C K ; B L O C K ; 

Figure 4.12 - VPRx Path Delay Profile Extraction 

Since the VPRx model is much simpler than the HSPICE model, it is expected that there will 

be differences in the outputs. Although absolute delay values can differ, fidelity must be ensured 

by preserving relative values. This means that end-to-end delays must be ranked accurately 

according to the original HSPICE PDP. Also, the midpoint rankings must behave similarly. The 

delay values of the beginning and end of each step in the PDP are examined and compared. This 

ensures that the relative shapes of the PDPs are consistent with one another. 
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Figure 4.13 - Path Delay Profiles for 2mm Wire in 180nm lxlx 

Any major discrepancies between the two PDPs are resolved by tuning the parameters such as 

Tdel and Req in the architecture file. Each time the architecture file is adjusted, a new VPRx 

PDP is generated and this process is repeated. 
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Figure 4.13 compares a calibrated VPRx PDP with the HSPICE equivalent for a 2mm wire in 

a 180nm technology using l x l x wires. Although the overall shape and ranking of the two curves 

is preserved, one can ascertain that there are certain differences in the output. The most notable 

one is the change in the delay of the lumped design. It appears that the Lumped delay is larger in 

the VPRx-PDP. One reason for this is that the model in VPRx contains architectural knowledge 

than the HSPICE model is missing. In VPRx, the effect of switch drivers which tap off the wire 

is added to the wire capacitance. Since the HSPICE model was constructed before the 

architectural length was specified, it does not model these additional loads. As expected, the 

VPRx PDP delays increase as a result of these loads. Notice however, that the increase is larger 

for the lumped design since all the additional wire load is added to the output of one buffer. In 

the distributed design, the additional load is spread among multiple buffers. This demonstrates 

another advantage of distributed designs. 

4.4 Experimental Results 

Using the modified VPRx developed in the previous section, 20 M C N C benchmark circuits 

are placed and routed several times using different combinations of modeling configurations. 

The different modeling configurations are described in the experiments subsection, but first the 

routing switch designs which are being modeled will be presented. 

4.4.1 Dr ive r Designs Modeled in V P R x 

Three physical interconnect lengths were chosen to be modeled in VPRx. For each length, an 

optimal buffer sizing and spacing was determined according to Chapter 3. 

The first length chosen is 2.0mm. This was selected because the 180nm design results from 

Chapter 3 suggested that 2.0mm designs are the crossover point where distributed buffer designs 
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demonstrate potential improvements over lumped buffers. In modern FPGAs, such as Altera's 

Stratix which is implemented in 130nm, long wires are approximately 3mm in length [35]. 

Furthermore, the PDPs of Chapter 3 indicate that distributed buffering begins to offer 

improvements in endpoint delay as well as midpoint delays at 3.0mm. For these reasons, a 

3.0mm wire is considered. 

The third wirelength which is examined is the 0.5mm design. This length is interesting 

because it represents the shorter wires (e.g., L4 wires). It also provides a point of comparison 

with previous work optimized for L4 wires. 

Driver design results show that the 0.5mm wirelength is too short to take advantage of 

distributed buffering. As a result, for 0.5mm only a lumped circuit design will be used. Using the 

lumped design, benefits due to E T M , the 2-level multiplexer design and use of the fast path are 

evaluated. For the longer 2.0mm and 3.0mm wirelengths, distributed drivers are compared to 

lumped driver designs. The driver designs to be evaluated are summarized in Table 4.1 and 

Table 4.2. 
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Lumped Driver I >esigns 

Wirelength 
(mm) 

Number of 
Stages (N) 

Driver Sizes 
(x min) 

0.5 2 3.74,14. 
2 3 4, 9, 35 . 
3 3 3.33, 11.1,37 

Table 4.1 - Lumped Driver Designs Used for Experiments 

Distributed Driver Designs 

Wirelength 
Number 
of Stages 

(N) 

Multiplexed 
Stage 

Distributed 
Stage Buffer-wire 

Segment 
(mm) 

Number 
of Stages 

(N) Driver 
Size BO 

Length 
LO 

Buffer 
Size B l 

Length 
L I 

(x min) (mm) (x min) (mm) 

9 2 17.0 0.80 27.0 1.20 
Z 3 6.0 0.15 22.0 0.93 
3 4 11.2 0.36 26.0 0.88 
Table 4.2 - Distributed Driver Designs Used for Experiments 

Each physical wirelength also corresponds to an architectural wirelength in VPRx. The 

0.5mm wire is modeled as an L4 architectural length wire made up of 4 C L B tiles of 125pm. 

This is roughly equivalent to the wirelength in FPT04 [3] which was approximately 0.46mm. 

The 2.0mm and 3.0mm designs are modeled as wires with an LI 6 architectural length. For the 

2.0mm design, the C L B tiles of this architecture are assumed to be 125pm. However, for the 

3.0mm design, the C L B tiles are assumed to be 187.5pm long. 

4.4.2 Benchmark Logic Circuits 

The 20 largest M C N C benchmark circuits were used for each experiment. Although these 

circuits are large enough to properly utilize the L4 architectural wirelength, they are not large 

enough to take advantage of LI 6 wires. To increase the size of the array used, the amount of 

C L B packing was decreased so as to spread out the circuit design. Circuits used for the LI 6 

experiments are packed such that only 1 LUT per C L B is used. This produces larger array sizes 
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which are large enough for experimentation with longer wires. Since the purpose of this research 

is to assess the interconnect circuit design and not the packing efficiency of the clustering tool, 

this is an acceptable solution. 

Table 4.3 presents the resulting array sizes used by each benchmark circuit. Since the arrays 

are square, only one dimension is listed. Columns 3 and 5 indicate the number of end-to-end 

wires which would be required to cross the entire array. Despite packing the CLBs to only 1/8 of 

the maximum logic capacity, it is still difficult to generate array sizes which would utilize the 

same number of end-to-end wires in the LI 6 array as there are in the L4 array. 

For all experiments using L4 wires, the same placement is used for each M C N C circuit. 

Similarly, all LI6 experiments share identical placements. This is necessary to remove noise 

generated by different placement solutions. In theory, delay could be further improved by 

placing each circuit with the additional knowledge provided by the E T M , but this is not explored 

in this work. 
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Architectural Wirelengths of Driver Circuit Designs 
L4 (0.5mm) L16 (2.0 & 3.0mm) 

Benchmark Number of L4 Number of L16 
Circuits Array Size wires required Array Size wires required 

to cross array to cross array 
alu4 14 3.5 40 2.5 

apex2 16 4.0 44 2.8 
apex4 13 3.3 36 2.3 
bigkey 18 4.5 42 2.6 
clma 33 8.3 92 5.8 
,des 21 5.3 40 2.5 
diffeq 14 3.5 . 39 2.4 
dsip 18 4.5 38 2.4 

elliptic 22 5.5 61 3.8 
exlOlO 25 6.3 68 4.3 

ex5p 12 3.0 33 2.1 
frisc 22 5.5 60 3.8 

misex3 14 3.5 38 2.4 
pdc 25 6.3 68 4.3 
s298 16 4.0 44 2.8 

S38417 29 7.3 81 5.1 
S38584.1 29 7.3 81 5.1 

seq 15 3.8 42 2.6 
spla 22 5.5 61 3.8 

tseng 12 3.0 33 2.1 
Table 4.3 - Benchmark Circuit Array Sizes 

4.4.3 Experiments 

Experiments can be divided into two groups: Lumped experiments and distributed 

experiments. Table 4.4 presents the different experiments performed. 

Lumped experiments are performed on lumped circuit designs for each wirelength. These 

experiments demonstrate the incremental benefit of adding E T M and the fast path. 

The distributed experiments apply to the longer wire circuits (2.0mm and 3.0mm) which have 

distributed circuit designs. These experiments demonstrate the benefits of distributed buffering. 

Note that the distributed designs can only be evaluated when E T M is enabled. 
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Overview of VPRx Experiments 
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Wirelengths 
(mm) 

0.5 
2.0 

0.5 
2.0 

0.5 
2.0 

0.5 
2.0 

0.5 
2.0 2.0 2.0 Wirelengths 

(mm) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Early Turn 

Modeling (ETM) No No No Yes Yes Yes Yes 

Distributed 
Buffering No No No No No Yes Yes 

Fast Path No No Yes No Yes No Yes 

Table 4.4 - Overview of Experiments 

Table 4.4 also shows the wirelengths which apply to each type of experiment. The column 

indicating 'baseline' experiments is unique in that it uses the exact same driver design for 0.5mm, 

2.0mm and 3.0mm wirelengths. This design was presented in FPT04 [3] and is optimized for an 

L4 wire of approximately 0.5mm in length. Although not optimized for 2.0mm or 3.0mm wires, 

the same buffer sizes will be used as a baseline. Hence, the results will also demonstrate the 

extent of performance loss that can occur i f a circuit is not appropriately designed for the 

wirelength. In all other cases the driver design is chosen as the "best" possible for the given 

wirelength according to Table 4.1 and Table 4.2. 

4.4.4 Critical Path Delay Results 

Critical path delay is used as the performance metric used in each experiment. Table 4.5 

presents the average critical path delay results for the 20 M C N C benchmark circuits. A l l values 

are normalized to the baseline design. Absolute delays for each circuit are provided in Appendix 

B. 
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N o r m a l i z e d C r i t i c a l P a t h D e l a y R e s u l t s 
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0 . 5 m m ( L 4 ) * 
1.0 

(20ns) 0.90 0.82 0.88 0.81 
(16.2ns) - -

2 . 0 m m ( L 1 6 ) * 
1.0 

(31ns) 0.73 0.70 0.69 0.65 0.67 (N=2) 
0.67 (N=3) 

0.63 (N=2) 
(19.5ns) 

3 . 0 m m ( L 1 6 ) * 
1.0 

(38ns) 0.70 0.67 0.63 0.60 0.56 (N=4) 0.54 (N=4) 
(20.5ns) 

* L4 packs CLBs until full, L16 packs only 1 L U T per C L B to spread out the circuit over a larger array 

Table 4.5 - Critical Path Results 

Each column in Table 4.5 provides insights on the benefits of each circuit feature combination. 

Below, the change in critical path caused by the proposed circuits, E T M , addition of the fast path 

and distributed buffering is discussed. 

One important limitation to note is that the results in this study are based on an FPGA 

architecture with a single wirelength in the routing architecture. This restriction arises from the 

fact that VPRx does not support heterogeneous routing resource wirelengths. 

Improved Circuit Design Results 

The change from the FPT04 design to the lumped circuit design involves two differences: the 

introduction of the 2-level flat multiplexer and buffer resizing to optimize delay. Results from 

the 0.5mm wirelength demonstrate that the new lumped circuit design produces about 10% 

improvement in critical path delay. Most of this improvement is due to the multiplexer design. In 

[31], a similar multiplexer design is cited to improve delay by 5%. 
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The 2.0 and 3.0mm results indicate larger gains of up to 30%.. This is mostly because the 

FPT04 circuit was not optimized for such long wirelengths. This stresses the importance of using 

properly designed circuits for different wirelengths. 

Early Turn Modeling Results 

The benefits of E T M can be observed by comparing the results in the Lumped column with 

the Lumped+ETM column. Addition of E T M shows minor improvements of 2.2% (0.02 points), 

for the L4 architectural wirelength. E T M produces larger improvements from 5.4% (0.04 points) 

up to 10% (0.07 points) on the longer LI6 architectural wirelength wires. 

These results appear reasonable as the L4 architecture provides only three E T M nodes for 

each wire. In comparison, the LI 6 architecture provides better detail and more opportunities to 

take advantage of early turns by adding 15 E T M nodes for each wire. Furthermore, these results 

are consistent with the idea that longer wires benefit more from E T M due to the larger error 

which occurs with longer wires. 

Fast Path Results 

The impact of the fast path is determined by adding the Fast Path option to the Lumped and 

Lumped+ETM experiments. Results show a consistent improvement in critical path delay 

ranging from 8.9% (0.08 points) on the L4 0.5mm wire to 4.1% (0.03 points) for the longer LI6 

2.0 and 3.0mm wires. Intuitively, adding a fast path to the architecture will improve delay by an 

amount related to the number occurrences of the fast path. As described in section 4.4.2, the 

array size of the L4 wires contains more wires arranged end-to-end and therefore, has a larger 

occurrence of fast paths. In comparison, the LI6 design has fewer instances of the fast path due 
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to the combination of array size, channel width and track staggering arrangements of an LI6 

wire. 

One other reason for the smaller improvement from fast paths on the longer wires can be 

attributed to the fact that the delay of the longer wires is large compared to the fast path savings. 

Since the fast path reduces the delay through the circuit by a constant amount, the relative impact 

of this improvement is larger for smaller L4 wires with a lower wire delay. 

Distributed Buffering Results 

Improvements due to distributed buffering are presented in the final two columns of Table 4.5 

which are only applicable to the long 2.0mm and 3.0mm wires. The design improvements differ 

between the 2.0mm wire and the 3.0mm wire due to key differences in the circuit designs. 

Compared to the lumped circuit design with E T M enabled, distributed buffering on the 

2.0mm wire is able to reduce critical path delay by about 2.8% (0.02 points). Recall from 

Chapter 3 that the PDP of the 2.0mm driver circuit design shows that the end-to-end delays are 

the same as the lumped designs delay, but the midpoint delays are improved. This experiment 

demonstrates that the improvements to midpoint delays can be used by early turn modeling to 

provide a modest increase in performance. 

In the 3.0mm design, the distributed circuit offers improved end-to-end delays in addition to 

reduced midpoint delays. The overall result is a larger reduction in delay just over 11% (0.07 

points). This demonstrates that distributed buffering can improve overall critical path delay, but 

not substantially until the wire is long enough. 
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Combined Gains 

When all the improvements are combined, the cumulative gains can be substantial. For the 

3.0mm wire, distributed buffering combined with the fast path produces a 46% improvement 

over the original FPT04 design driving an equivalently long wire. Since the FPT04 circuit design 

is not optimized for a 3.0mm wire, it makes sense to compare the final distributed design with 

the Lumped design for 3.0mm. The results for this comparison show that a distributed circuit 

design can still offer a 16 percentage point or 23% improvement when combined with the fast 

path. A breakdown of the improvements on a per-circuit basis are provided in Figures 4.14 to 

4.16. 
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4.4.5 Turn Count Analysis 

By keeping track of the number of turns in the final routed solution, it may be possible to 

better understand the impact of adding early turn modeling, distributed buffering and fast paths 

to the routing resource graph. Each routed solution has turn data which can be divided into three 

categories: Early Turns, Normal Turns and Straight Throughs. Early Turns represent turns which 

occur before the end of the wire. Normal Turns occur at the end of the wire and Straight 

Throughs represent the cases where the routing does not turn at all 3 . The sum of these three 

values is the total number of turns. 

In almost all the scenarios which follow, the addition of new features had little effect on the 

total turn count. This is likely because the number of turns in a routing solution are dominated by 

the placement and the circuit connectivity relative to the FPGA architecture. Turn counts can 

also be affected by other factors such as placement and congestion. Although this section 

attempts to explain some of the trends observed in the results, it is difficult to draw concrete 

conclusions without further examination of the router operation. 

3 Note that when fast paths are enabled, the number of straight throughs represents the number times the fast path 

is used. 
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Effect of Adding E T M on Turn Counts 

Designs 
Average Total 

Number of 
Turns 

Average Early 
Turns 

Average 
Normal Turns 

Average Straight 
Throughs 

FPT04 0.5mm 
+ E T M 

7617 
7604 

57.0% 
57.7% 

26.0% 
26.2% 

16.9% 
15.2% 

Lumped 0.5mm 
+ E T M 

7587 
7597 

57.3% 
58.9% 

25.7% 
25.1% 

16.0% 
15.0% 

FPT04 2.0mm 
+ETM 

10986 
11041 

87.4% 
87.3% 

7.0% 
7.5% 

5.0% 
4.4% 

Lumped 2.0mm 
+ETM 

10978 
11029 

87.6% 
89.0% 

6.9% 
6.4% 

4.9% 
3.7% 

Lumped 3.0mm 
+ETM 

10983 
11046 

87.5% 
88.8% 

6.9% 
6.6% 

5.0% 
3.8% 

Table 4.6 - Turn Count Changes Due to Addition o F E T M 

Effect of Early Turn Modeling on Turn Counts 

Table 4.6 presents the effects of E T M on turn counts for the three lumped circuit designs. For 

each circuit, two rows of data are shown. The first row provides the turn count data with no 

features enabled. The second row, indicated by +ETM, provides the turn data for circuits routed 

with E T M enabled. 

The table shows that the addition of E T M yielded slight increases in early turns for all cases 

except the FPT04 design running on long wires. The fact that the number of early turns increased 

by a small amount while the critical path decreased suggests that the improvements due to E T M 

are caused by a combination of changes. The biggest factor is most likely increased modeling 

accuracy, followed by smarter local choices in routing. An example of smarter routing is given 

in Figure 4.17. It presents a scenario where two routes are considered equivalent in a non-ETM 

L4 architectural wirelength model. Route B is slightly faster than route A , but only by virtue of 

the early turn. It is important to note that although the delay improves, the number of turns does 

not. This helps to explain why the number of total turns does not change substantially through 

the addition of E T M . 
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Figure 4.17 - Early Turn Routing Example for L4 Wires 

Effect of Adding Fast Paths on Turn Counts 

Designs 
Average Total 

Number of 
Turns 

Average Early 
Turns 

Average 
Normal Turns 

Average Straight 
Throughs 

Lumped 0.5mm 
+ Fast 

+ E T M & Fast 

7587 
7591 

. 7698 

57.3% 
57.3% 
59.2% 

25.7% 
24.2% 
20.8% 

16.0% 
17.5% 
18.9% 

Lumped 2.0mm 
+ Fast 

+ E T M & Fast 

10978 
10908 
11057 

87.6% 
88.4% 
88.4% 

6.9% 
6.4% 
5.1% 

4.9% 
4.5% 
5.3% 

Lumped 3.0mm 
+ Fast 

+ E T M & Fast 

10983 
10913 
11073 

87.5% 
88.3% 
88.2% 

6.9% 
6.5% 
5.2% 

5.0% 
4.5% 
5.5% 

Table 4.7 - Turn Count Changes Due to Addition of Fast Paths 

Effect of Fast Paths on Turn Counts 

Table 4.7 presents the effects of fast paths on turn counts for the three lumped circuit designs. 

For each circuit, three rows of data are shown. As in the previous table, the first row is the turn 

count data with no features enabled. The +Fast row indicates the changes in turn counts caused 
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by only enabling fast path modeling. The third row, indicated by "+ETM & Fast", provides the 

turn data for circuits routed with both Fast Paths and E T M enabled. 

Intuitively, one would expect that the introduction of fast paths would increase the number of 

straight throughs. According to Table 4.7, it appears that this is exactly what is occurring in the 

L4 0.5mm wire. Adding the fast path increased average straight throughs, while the average 

normal turns decreased slightly. This suggests that normal turns are being replaced at the 

junctions with straight throughs. A simple example here would be a staircase route turning into 

an L shaped route. 

In the case of the longer wires, the results are counter-intuitive. The average number of 

straight throughs and normal turns decrease, while the average number of early turns increases. 

For these longer wires, it appears that the lower cost of straight throughs causes more early turns 

to occur. 

Once E T M is enabled, the results are different. The introduction of fast paths causes a definite 

increase in the number of fast paths used. A specific example of this is the case where the 

combination of a fast path and an early turn provide a routing option which is faster than a 

normal turn plus an early turn. This is shown in Figure 4.18, where three possible routing 

choices are illustrated. The table in the figure shows how these routing choices would be ranked 

depending on what options where enabled in VPRx, assuming there is no congestion. In the 

standard VPRx, without E T M or fast paths, all the routes would be considered equivalent in 

timing. If Fast Path is enabled, route B has an advantage because the fast path has a smaller 

delay than early or normal turns. If both Fast Path and E T M are enabled, the superiority of route 

B becomes clear through the benefits of early turns. Similarly, as the router becomes aware of 

the benefits of early turns, it is likely to initially favour route C over A during the routing search. 
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These examples help illustrate why normal turns are less popular once Fast Paths and/or E T M 

options are enabled. 

A 

Fast Path 

Ranking of Routing Choices 

Routing 
No E T M 
No Fast 

No E T M 
+ Fast 

+ E T M 
+ Fast 

A - "Normal Turn" 1 2 3 
B - "Straight Through" 1 1 1 
C - " A l l Early Turns" 1 2 2 

Figure 4.18 - Routing Choices Due to Fast Paths with Early Turns in an L4 Architecture 

Effect of Distributed Buffering on Turn Counts 

Table 4.8 presents the turn count changes resulting from the addition of distributed driver 

designs. It is expected that the improved midpoint delays from the distributed driver designs 

would have promoted the use of early turns, increasing the early turn count even more. Instead, 

results indicate that the effect of adding distributed buffering does not have any significant effect 

on the overall turn count distribution. This suggests that the improvements in critical path delay 

are most likely due to reductions in the early turn delays and not changes to the routing solution. 
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Effect of Adding Distributed Buffering on Turn Counts 

Designs 
Average Total 

Number of 
Turns 

Average 
Early 
Turns 

Average 
Normal Turns 

Average 
Straight 

Throughs 
Lumped 2.0mm +ETM 11029 89.0% 6.4% 3.7% 

+ Distributed N2 11034 88.9% 6.5% 3.7% 
or Distributed N3 11063 89.1% 6.3% 3.8% 

Lumped 3.0mm +ETM 11046 88.8% 6.6% 3.8% 
+ Distributed N4 11055 89.1% 6.4% 3.7% 

Table 4.8 - Turn Count Changes Due to Addition of Distributed Features 

One thing which has not been examined is where the early turns took place. It is possible that 

the location of the early turns is influenced by new circuit designs. Ideally, the router would be 

able to strategically choose the best location for an early turn based on the staggered delay 

profile of the distributed drive design. Unfortunately, without data indicating the location of 

early turns, no clear conclusions can be drawn. 

4.4.6 Runtime 

Although not a major focus of this work, runtime is an important factor which must be 

considered by all C A D tools. By introducing the detailed circuit models which enlarged the 

routing resource graph, the complexity and therefore runtime, of the routing problem increased 

considerably. The amount the routing resource graph grows is largely dependant on the 

architectural length of the wires being modeled. In this work, architectural length of L4 and LI 6 

are used. For L4 designs, adding E T M increases runtimes by up to 3x. For the LI 6 designs, 

runtimes increase considerably, ranging from 3x up to almost 30x depending on the modeling 

options enabled in the experiment. The largest increases in runtime are observed in experiments 

involving only E T M . 

An interesting observation is that all the experiments which had Fast Path enabled had 

runtimes only 3-16x larger than the original. It appears that providing a routing option as 
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compelling as the fast path helps to reduce the runtime of the routing process. In the standard 

configuration without the fast path, the router has to negotiate between three equally slow 

choices. Introducing the fast path makes the best choice obvious. This allows the router to 

postpone expansion of slower neighboring nodes enough to reduce the overall routing runtime. 

This observation is useful because it shows that runtime can be reduced by providing clear 

choices for the router to pursue. 
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Chapter 5 

Conclusions and Future Work 

As the industry moves towards faster clock speeds and smaller devices, the challenge of 

interconnect delay will always be present. For FPGA designers, this is a significant concern as 

the wiring demands of programmable interconnects are intense. 

In this thesis, an attempt has been made to address the interconnect delay problem by 

investigating the design of programmable switch drivers for FPGAs. Our resulting circuit 

designs are based on routing architectures which were recommended by [3]. Prior to [3], FPGA 

routing architectures used shared wires that were driven from various points throughout the wire. 

This resulted in all FPGA drivers having tristate capability which restricted driver designs to 

lumped circuit architectures. In [3], it was shown that implementing directional wires with 

single-drivers can improve both the delay and area efficiency of an FPGA architecture. This 

thesis shows that by using directional wiring with single-drivers, it is possible to design circuits 

which can optimize the interconnect performance on FPGA wires. Optimized circuit designs are 

generated using a circuit design methodology which is capable of estimating the delay of a 

circuit design using SPICE generated delay data. The use of this method provides the flexibility 

and accuracy obtained from a SPICE-level simulator but has the advantage of shorter runtime. 

By examining the PDP of the optimized circuits, it can be seen that distributed driver designs 

can offer more to FPGAs than just improved endpoint delay. In comparison to lumped driver 
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designs, distributed driver designs can improve early turns which occur before the end of the 

wire. Using an enhanced version of VPR capable of accurately modeling the new circuits, the 

performance of several circuit designs were evaluated using standard benchmarks. Results show 

that early turn improvements alone can reduce delay by a modest amount of about 3%. Overall, 

the effects of the new circuits are substantial. When the benefits from improved modeling, 

optimized circuit design and other enhancements such as fast paths and faster multiplexers are 

combined, reductions in critical path delay by as much as 46% are observed. 

By examining the optimized circuit designs, several items which are useful to an FPGA 

architect are revealed. The first is that distributed buffering only outperforms lumped designs 

once wires are long enough. Results show that in 180nm technology, wires less than 2.0mm 

cannot reap the rewards of distributed buffering. The second discovery is that the length of the 

interconnect has particular influence on the best speed (delay-per-millimeter) at which the wire 

can transmit a signal. In the case of FPGAs, this means that using longer wires can help to 

achieve speeds closer to those found in general ASIC interconnect. This information is useful to 

an FPGA architect as it aids in the selection of wirelengths for long wires. 

5.1 Future Work 

This work has attempted to lay the preliminary ground work for further research into 

interconnect optimization for FPGAs. As long as FPGAs continue to use wires, approaches to 

reduce delay will be welcome. Since this research is mainly divided into two parts, 

recommendations are grouped into two categories: Circuit design and C A D . 
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5.1.1 Circuit Design 

There are numerous choices involved in the circuit design approach. Some related to circuit 

design and other related to modeling. The following topics present some suggestions on future 

work related to the circuit design component of this work. 

Advanced circuits 

The SPICE simulator allows complex circuits to be simulated with great accuracy. This opens 

the door to a large variety of circuits which do not have an equivalent Elmore model. Low swing 

signaling circuits can offer reduced power consumption and higher performance. For noise 

immunity, one can consider the benefits of differential circuits as well. 

Noise Modeling 

Throughout this work, the effect of deep-submicron challenges were mentioned, but not 

directly addressed. Noise from inductance and coupling capacitance can impact performance and 

functionality of the circuits. 

Coupling capacitance is typically modeled using the Miller Coupling Factor. In this work, it is 

assumed that there are no transitions on surrounding wires. Work done in [26] shows that the 

Miller Coupling Factor does not affect trends, but it will certainly affect the absolute values of 

the resulting design. 

Similarly, modeling of inductance is recommended. Unfortunately, assessing the amount of 

inductances will be very difficult without prior knowledge of the IC layout. However, since the 

effects of worst case inductance are not substantial [9], it might be possible to explore a range of 

reasonable inductance values. 
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Process Variation 

As feature sizes shrink the effect of process variations can be important. One study which 

examines the effects of process variations on the buffers insertion problem is [36]. This work is 

valuable to those considering further investigation of process variation effects on buffer insertion 

because the results show that the buffer insertion problem is "immune" to process variations [36]. 

Power and Area Modeling 

In the buffer design problem, larger buffers mean more area and more power. In this work, 

power and area data is omitted although the SPICE based circuit design methodology can 

produce power data for the circuit designs. Further development of the circuit design 

methodology could introduce area and power awareness to the design flow. 

5.1.2 Future Work for C A D 

Area Modeling 

Accurate area modeling from VPRx would provide an additional metric for comparison from 

the new circuit designs. 

Heterogeneous Wiring 

Since VPRx does not support multiple architectural wirelengths, the results in this work are 

based on single architectural wirelengths. A more realistic model should include multiple 

architectural wirelengths as they are present in modern FPGAs. 

Detailed Turn Analysis 

In this work turn counts were used to justify the importance of midpoint delays and to better 

understand the effects of the new circuit designs on the router. Although it is possible to identify 
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if an early turn occurs, it is not known where, on the wire, the early turn took place. Furthermore, 

since turn counts are computed by tracing individual sinks instead of examining an entire net, 

they do not encompass the actual utilization of a wire. Turn locations would aid designers by 

identifying exactly what part of the wire is most susceptible to improvements from a better PDP. 

Using complete turn data, it might even be possible to construct a PDP which would be ideal for 

FPGAs. Afterwards, an effort could be made to design a circuit to realize this ideal PDP. 

Accurate Delay L o o k u p for the Router 

Incorporating the PDP into VPRx would allow a more accurate method of delay computation 

instead of using the first-order Elmore model. This would also avoid any quantization errors 

introduced by modeling distributed buffers with E T M nodes. 

Runtime Improvements for V P R x 

The runtime of VPRx with E T M on long architectural length wires is very long. The main 

reason for this is the expansion of the routing resource graph. Any technique to reduce the 

number of nodes would be beneficial for runtime. One possibility is to join E T M nodes with 

similar delays. The largest changes in the PDP occur at the buffer locations. By collapsing the 

intermediate nodes, it will be possible to reduce the runtime complexity of the routing algorithm 

Another potential improvement would be to add heterogeneous wire support in VPRx. In this 

way, a shorter set of wires can be added to the architecture, reducing the amount of long wires in 

the design. Since E T M is most beneficial for longer wires, additional reductions in runtime could 

be achieved by disabling E T M for the shorter wirelengths. 
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Appendix A - Wire Models 

The purpose of this section is to demonstrate how parasitic parameters for wire models 

can be obtained for use with HSPICE, and how these values can affect delay. Typically, 

parasitic of interconnects are provided by the foundry, however these documents are not 

always available to researchers. Fortunately, it is possible to use the physical geometries 

of the interconnect to determine the wire resistance and parasitic capacitance of 

interconnect. 

Using the HSPICE 2D field solver it is possible to build 4 a transmission line model of 

an interconnect using data provided by the foundry, such as dielectric values, wire 

dimensions, spacing and geometries, and metal conductivity. The field solved 

transmission line is then used to generate a path delay profile for a simple driver design. 

Similar PDPs are generated using T-models, 7i-models and double-7i models. The 

capacitance values of these models are determined by adjusting them until the PDP of the 

transmission line matches the PDP of the n models. Wire resistance is a straightforward 

calculation using conductivity and wire geometries. An example of the PDPs is shown 

below. 

Through comparison with known data, this method was shown to be an acceptable 

method to determine interconnect parasitics. 

4 Details of the field solving technique can be found in the SOC C A D document "Interconnect 

Modeling in Spice.doc". 
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Effects of Spacing and Wire Sizing 

In addition to performing the above characterization, the effects that wire spacing and 

sizing have on delay were briefly examined. The trends are predictable, but results are 

useful to guide the selection of sizes when considering delay. The following simulations 

were performed on a 2 Ox buffer driving a 4mm wire 
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Spacing 

Delay vs Wire Spacing Normalazed to F 0 4 
(wire sizing fixed at 1x min) 
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Sizing 

The following wire sizing data was obtained by fixing the spacing at 2x from the above 

data. 

Delay vs Wire Sizing Normalazed to F 0 4 
(spacing fixed at 2x min) 
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Spacing and Wire Sizing can be used to achieve improvements of 60% end-to-end (going 

from lx spacing lx sizing to 2x and 2x, respectively). 
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Appendix B - VPRx Results 

Critical Path Results from VPRx 

0.5 mm L4 Critical Path Delay (ns) 

Benchmark FPT04 FPT04 
+ETM Lumped Lumped 

+Fast 
Lumped 
+ETM 

Lumped 
+ETM 
+Fast 

alu4 15.6 15.1 14.2 13.3 14.0 12.9 
apex2 20.3 19.5 18.1 16.5 17.8 16.5 
apex4 17.1 16.4 15.5 13.8 15.2 13.7 
bigkey 11.1 10.4 9.7 8.2 9.6 8.5 
clma 40.0 37.9 35.0 29.8 34.4 29.9 
des 16.1 15.1 14.4 13.6 14.1 13.4 
diffeq 16.6 16.6 15.3 15.1 15.2 15.1 
dsip 9.4 9.0 8.4 7.6 8.4 7.3 
elliptic 27.0 25.3 24.4 21.9 23.6 22.2 
exlOlO 28.3 26.6 24.5 20.3 24.1 20.1 
ex5p 17.6 17.0 16.1 14.9 15.9 14.9 
frisc 34.5 32,7 31.8 30.8 31.4 30.2 
misex3 17.1 16.4 15.5 14.1 15.3 14.1 
pdc 29.4 26.7 25.7 22.2 24.3 20.4 
s298 33.2 30.7 29.4 27.9 29.0 27.5 
s38417 26.0 25.0 23.0 20.1 22.6 20.3 
s38584.1 18.6 17.7 16.8 15.3 16.5 15.6 
seq 17.0 16.6 15.2 14.1 15.0 13.7 
spla 24.1 22.8 21.3 18.6 21.0 18.3 
tseng 17.2 16.7 16.4 16.4 16.2 16.8 
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2.0mm L 1 6 C r i t i c a l Path Delay (ns) 

Benchmark FPT04 FPT04 
+ETM Lumped Lumped 

+Fast 
Lumped 
+ETM 

Lumped 
+ETM 
+Fast 

Distrib N2 
(+ETM) 

Distrib N3 
(+ETM) 

Distrib N2 
(+ETM) 

+Fast 
alu4 29.1 26.6 20.7 19.7 19.4 18.3 18.7 18.8 17.8 
apex2 29.6 27.4 21.7 20.6 20.5 19.3 19.9 20.0 18.6 
apex4 25.4 23.3 18.1 17.2 16.8 16.0 16.3 16.3 15.4 
bigkey 12.6 11.8 9.0 8.3 8.4 7.8 8.2 8.1 7.5 
clma 57.0 51.8 41.0 39.1 37.9 36.0 36.6 37.0 34.7 
des 22.7 21.1 16.9 16.2 15.7 15.1 15.1 15.1 14.5 
diffeq 33.6 31.8 27.1 26.7 25.5 25.1 24.9 24.5 24.5 
dsip 11.7 10.7 8.5 8.0 8.2 7.5 7.9 8.0 7.2 
elliptic 47.1 42.5 35.3 34.7 33.1 32.5 32.2 32.1 31.6 
exlOlO 36.3 33.5 25.4 23.1 23.7 21.6 23.0 23.0 20.9 
ex5p 27.0 25.2 19.6 19.0 18.4 17.8 17.9 17.9 17.2 
frisc 63.3 57.3 48.2 46.8 44.1 42.7 42.8 42.7 41.3 
misex3 25.1 23.1 18.6 18.0 17.5 16.9 16.9 16.9 16.3 
pdc 42.7 39.5 29.5 27.1 28.0 25.1 27.2 27.0 24.2 
s298 50.0 45.9 36.5 35.3 33.7 32.4 32.7 32.5 31.3 
S38417 39.9 36.5 28.6 27.0 26.6 25.5 25.9 26.0 24.6 
S38584.1 29.4 27.7 22.2 21.5 21.0 19.8 20.4 20.3 19.2 
seq 25.5 24.4 19.1 17.8 18.3 17.0 17.7 17.7 16.4 
spla 35.4 32.7 24.5 22.8 23.2 21.7 22.6 22.7 21.0 
tseng 33.3 30.2 25.9 26.0 24.0 24.0 23.3 23.2 23.2 
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3.0mm L16 Critical Path Delay (ns) 

Benchmark FPT04 Lumped Lumped 
+Fast 

Lumped 
+ETM 

Lumped 
+ETM 
+Fast 

Distrib N4 
(+ETM) 

Distrib N4 
(+ETM) 
+Fast 

alu4 36.0 24.7 23.4 22.2 21.1 19.4 18.6 
apex2 36.6 25.6 24.2 23.4 21.9 20.9 19.7 
apex4 31.8 21.6 20.6 19.3 18.4 17.3 16.3 
bigkey 15.5 10.7 9.9 9.6 8.9 8.6 8.0 
clma 70.4 48.6 46.2 43.2 40.9 38.1 36.2 
des 27.5 19.7 18.9 17.5 16.7 15.4 14.8 
diffeq 38.6 29.9 29.4 27.1 26.6 24.8 24.4 
dsip 14.7 10.0 9.5 9.3 8.6 8.3 7.6 
elliptic 57.8 40.6 39.0 36.2 35.4 33.2 32.5 
exlOlO 45.5 30.7 28.2 27.6 25.1 24.5 22.4 
ex5p 33.4 23.2 22.5 21.0 20.2 18.6 18.0 
frisc 76.6 55.4 53.6 48.2 46.4 44.0 42.3 
misex3 30.5 21.7 20.9 19.7 19.0 17.6 17.0 
pdc 54.1 36.0 33.0 33.0 29.6 28.9 26.1 
s298 61.4 43.0 41.4 37.8 36.4 33.7 32.5 
s38417 49.5 34.0 31.9 30.6 29.0 27.1 25.8 
S38584.1 35.6 25.7 25.0 23.8 22.3 21.3 20.1 
seq 31.6 22.2 20.7 20.9 19.3 18.7 17.5 
spla 44.7 29.7 27.1 27.7 25.4 24.2 22.5 
tseng 39.9 29.2 29.2 25.7 25.7 23.5 23.5 
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