Skip to main content
Log in

On Bandwidth Selection in Local Polynomial Regression Analysis and Its Application to Multi-resolution Analysis of Non-uniform Data

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper studies adaptive bandwidth selection method for local polynomial regression (LPR) and its application to multi-resolution analysis (MRA) of non-uniformly sampled data. In LPR, the observations are modeled locally by a polynomial using least-squares criterion with a kernel having a certain support or bandwidth so that a better bias-variance tradeoff can be achieved. In this paper, two bandwidth selection methods, namely the Fan and Gijbels’s bandwidth selection (FGBS) method (Fan and Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall, London, 1996; Fan and Gijbels, Stat Sin 57:371–394, 1995) in the statistical community and the intersection of confidence intervals (ICI) method commonly used in the signal and image processing communities, are reviewed and compared in terms of their performance and implementation complexity using standard testing data sets. Furthermore, using the result of Stankovi (IEEE Trans Signal Proc 52:1228–1234, 2004), a new refined ICI-based adaptive bandwidth selection method for LPR and its associated reliability analysis are proposed. In addition, recursive implementations of LPR with the two classes of bandwidth selection methods are considered for online applications. Simulation results show that the performances of the FGBS method and the refined ICI method are comparable for the data sets tested. Since LPR with adaptive bandwidths can be naturally applied to non-uniformly sampled noisy observations, we propose to use it as a pre-processing step to a conventional MRA so that a MRA of non-uniformly sampled data can be realized. Simulation results show that the proposed LPR-based MRA gives better results than conventional linear interpolation of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fan J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall.

    MATH  Google Scholar 

  2. Fan, J., & Gijbels, I. (1995). Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation.Stat. Sin., vol. 57, 1995, pp. 371–394.

    MATH  MathSciNet  Google Scholar 

  3. Stanković, L. J. (2004). Performance analysis of the adaptive algorithm for bias-to-variance tradeoff. IEEE Transactions on Signal Processing, 52(5), 1228–1234, May.

    Article  MathSciNet  Google Scholar 

  4. Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. London: Chapman and Hall.

    MATH  Google Scholar 

  5. Fan, J., Gijbels, I., Hu, T. C., & Huang, L. S. (1996). A study of variable bandwidth selection for local polynomial regression. Statistica Sinica, 6, 113–127.

    MATH  MathSciNet  Google Scholar 

  6. Ruppert, D., Sheather, S. J., & Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90(432), 1257–1270.

    Article  MATH  MathSciNet  Google Scholar 

  7. Ruppert, D., & Wand, M. P. (1994). Multivariate locally weighted least squares regression. Annals of Statistics, 22, 1346–1370.

    Article  MATH  MathSciNet  Google Scholar 

  8. Ruppert, D. (1997). Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. Journal of the American Statistics Association, 92(439), 1049–1062.

    Article  MATH  MathSciNet  Google Scholar 

  9. Vieu, P. (1991). Nonparametric regression: Optimal local bandwidth choice. Journal of the Royal Statistics Society, B, 53, 453–464.

    MATH  MathSciNet  Google Scholar 

  10. Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistics Society, B, 53, 683–690.

    MATH  MathSciNet  Google Scholar 

  11. Hall, P., Sheather, J. S. J., Jones, M. C., & Marron, J. S. (1991). On optimal data-based bandwidth selection in kernel density estimation. Biometrika, 78, 263–269.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lepskii, O. (1990). On a problem of adaptive estimation in Gaussian white noise. Theor. Prob. Appl., 35(3), 454–466.

    Article  MathSciNet  Google Scholar 

  13. Lepski, O., Mammen, E., & Spokoiny, V. (1997). Ideal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selection. Annals of Statistics, 25(3), 929–947.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lepski, O., & Spokoiny, V. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Annals of Statistics, 25(6), 2512–2546.

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldenshluger, A., & Nemirovski, A. (1997). On spatial adaptive estimation of nonparametric regression. Mathematical Methods of Statistics, 6(2), 135–170.

    MATH  MathSciNet  Google Scholar 

  16. Katkovnik, V. (1999). A new method for varying adaptive bandwidth selection. IEEE Transactions Signal Processing, 47(9), 2567–2571, Sept.

    Article  Google Scholar 

  17. Katkovnik, V. (1996). Wavelets and local polynomial approximation. In Proc. IEEE-SP International Symposium Time-Freq. Time-Scale Anal., (pp. 237–240). Paris, France.

  18. Katkovnik, V. (1998). On adaptive local polynomial approximation with varying bandwidth. In Proc. of IEEE International Conference of Acoustics, Speech and Signal Processing, (pp. 2321–2324). Seattle, Washington, USA.

  19. Katkovnik, V. (1998). On multiple window local polynomial approximation with varying adaptive bandwidths. COMPSTAT International Symposium on Computational Statistics, Bristol, United Kingdom.

  20. Katkovnik, V. (2005). Multiresolution local polynomial regression: a new approach to pointwise spatial adaptation. Digital Signal Process., 15, 73–116.

    Article  Google Scholar 

  21. Chan, S. C., & Zou, Y. X. (2004). A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: Fast algorithm and convergence performance analysis. IEEE Transactions on Signal Processing, 52(4), 975–991, April.

    Article  MathSciNet  Google Scholar 

  22. Hall, P. & Turlach, B. A. (1997). Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Annals of Statistics, 25, 1912–1925.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kovac, A., & Silverman, B. W. (2000). Extending the scope of wavelet regression methods by coefficient-dependent thresholding. Journal of the American Statistics Association, 95(449), 172–183.

    Article  Google Scholar 

  24. Cai, T., & Lawrence, D. B. (1998). Wavelet shrinkage for nonequispaced samples. Annals of Statistics, 26(5), 1783–1799, Oct.

    Article  MATH  MathSciNet  Google Scholar 

  25. Daubechies, I., Guskov, I., Schröder, P., & Sweldens, W. (1999). Wavelets on irregular point sets. Phil. Trans. R. Soc. Lon. A, 357(1760), 2397–2413.

    Article  MATH  MathSciNet  Google Scholar 

  26. Jansen, M. (2000). Wavelet thresholding on non-equispaced data. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds), Nonlinear Estimation and Classification. Springer Verlag, Lecture notes in Statistics, 171, 261–272.

  27. Vanraes, E., Jansen, M., & Bultheel, A. (2002). Stabilized wavelet transforms for non-equispaced data smoothing. Signal Processing, 82(12), 1979–1990, Dec.

    Article  MATH  Google Scholar 

  28. Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425–455.

    Article  MATH  MathSciNet  Google Scholar 

  29. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1995). Wavelet shrinkage: Asymptopia? Journal of the Royal Statistics Society Series, B, 57, 301–369.

    MATH  MathSciNet  Google Scholar 

  30. Chan, S. C., & Zhang, Z. G. (2004). Robust local polynomial regression using M-estimator with adaptive bandwidth. In Proc. of IEEE International Symposium of Circuits and Systems, (vol. 3, pp. 333–336). Vancouver, Canada.

  31. Chan, S. C., & Zhang, Z. G. (2004). Multi-resolution analysis of non-uniform data with jump discontinuities and impulsive noise using robust local polynomial regression. In Proc. of IEEE International Conference of Acoustics, Speech and Signal Processing, (vol. 2, pp. 769–772). Montreal, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. G. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.G., Chan, S.C., Ho, K.L. et al. On Bandwidth Selection in Local Polynomial Regression Analysis and Its Application to Multi-resolution Analysis of Non-uniform Data. J Sign Process Syst Sign Image Video Technol 52, 263–280 (2008). https://doi.org/10.1007/s11265-007-0156-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-007-0156-4

Keywords

Navigation