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Abstract We present a novel information-theoretic approach for thresholding-

based segmentation that uses the excess entropy to measure the structural infor-

mation of a 2D or 3D image and to locate the optimal thresholds. This approach is

based on the conjecture that the optimal thresholding corresponds to the segmen-

tation with maximum structure, i.e., maximum excess entropy. The contributions

of this paper are severalfold. First, we introduce the excess entropy as a measure

of the spatial structure of an image. Second, we present an adaptive thresholding

method based on the maximization of excess entropy. Third, we propose the use of

uniformly distributed random lines to overcome the main drawbacks of the excess

entropy computation. To show the good performance of the proposed segmenta-

tion approach different experiments on synthetic and real brain models are carried

out.
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1 Introduction

The main objective of image segmentation is to divide an image into regions that

can be considered homogeneous with respect to a given criterion such as color or

texture. Segmentation is an essential part of any image analysis system and espe-

cially in medical environments, where segmented images provide valuable infor-

mation for diagnosis. Image thresholding, which segments an image by dividing

its intensity histogram into a set of thresholds, is one of the most used segmen-

tation techniques, because of its simplicity and efficiency [13,19]. In the case of

bimodal images, two main approaches of this technique can be considered: (i) the

global thresholding that compares all the image pixels to a same value, which may

be constant or be chosen from the image histogram [13], and (ii) the local thresh-

olding that computes an independent threshold for each pixel over a local window

whose center is the pixel being binarized. In this paper we will focus on a global

thresholding not restricted to bimodal images.

The excess entropy, first introduced by Crutchfield and Packard [9], is a mea-

sure of global correlation or structure for spatial systems in any dimension. It is

commonly used and well understood in one dimension, but some difficulties are

found in its extension to higher dimensions. In this paper, we propose a thresh-

olding technique that uses the excess entropy to find the optimal thresholds of a

2D or 3D image automatically. Our approach is based on the assumption that a

medical image is structured in regions, such as tissues or organs, and the conjec-

ture that the optimal thresholding corresponds to the segmentation with maximum

structure, i.e., maximum excess entropy. Hence, we present a thresholding method
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that uses the maximization of excess entropy to determine the optimal thresholds.

The computation of the excess entropy for a 3D dataset requires, for each voxel,

an adequate selection of a sequence of neighbor voxels. Depending on how these

neighbor voxels are selected, different problems such as high-dimensionality, spar-

sity, and non-invariance to rotation appear. To overcome these problems, excess

entropy is computed using uniformly distributed random lines [3]. Experimental

results analyze the behavior of our approach for different image modalities.

This paper is organized as follows. In Section 2 some background and related

work are reviewed. In Section 3 the excess entropy is introduced as a measure

of the spatial structure of an image. In Section 4, a new method is presented for

thresholding segmentation using the excess entropy. In Section 5, different exper-

iments on synthetic and real medical images are carried out. Finally, conclusions

are summarized in Section 6.

2 Background and Related Work

We review some basic information-theoretic measures [7,11] and the image seg-

mentation method based on thresholding.

2.1 Information-Theoretic Measures

Let X be a finite set, let X be a random variable taking values x in X with distri-

bution p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values y
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in Y . The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑

x∈X
p(x) log p(x)

and measures the average uncertainty of random variable X . If the logarithms are

taken in base 2, entropy is expressed in bits.

We review now the definitions of entropy rate and excess entropy. The notation

used here is inspired by the work of Feldman and Crutchfield [11].

Given a chain . . . X−2X−1X0X1X2 . . . of random variables Xi taking values

in X , a block of L consecutive random variables is denoted by XL = X1 . . . XL.

The probability that the particular L-block xL occurs is denoted by the joint prob-

ability p(xL) = p(x1, x2, . . . , xL). The Shannon entropy of length-L sequences

or L-block entropy is defined by

H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (1)

where the sum runs over all possible L-blocks. The entropy rate is defined by

h = lim
L→∞

H(XL)
L

= lim
L→∞

h(L), (2)

where

h(L) = H(XL)−H(XL−1) (3)

is the entropy of a symbol conditioned on a block of L− 1 adjacent symbols. The

two terms of Equation (2) are shown to be equivalent in [8,11]. The entropy rate

of a sequence quantifies the average amount of information per symbol x and the

optimal achievement for any possible compression algorithm [7]. The entropy rate
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is always equal or lower than the Shannon entropy and is only equal when there is

no correlation between consecutive symbols.

A complementary measure to the entropy rate is the excess entropy, which is a

measure of the structure of a system. The excess entropy is defined by

E ≡
∞∑

L=1

(h(L)− h) (4)

and captures how h(L) converges to its asymptotic value h. Figure 1(a) is a graph-

ical representations of the excess entropy measure, which is represented by the

shaded area, corresponding to the sum of differences between h(L) and the limit

h.

If one inserts Equation (3) into Equation (4), the sum telescopes and one arrives

at an alternate expression for the excess entropy [11]:

E = lim
L→∞

[H(XL)− h · L]. (5)

Hence, excess entropy is the y-intercept of the straight line to which H(XL)

asymptotes as indicated in Figure 1(b).

It is important to note that, when we take into account only a few number

of symbols in the entropy computation, the system appears more random that it

actually is. This excess randomness tells us how much additional information must

be gained about the configurations in order to reveal the actual uncertainty h [12].
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(a) (b)

Fig. 1 Two different graphical representations of the excess entropy measure, correspond-

ing to the Equations (4) and (5), respectively. Images obtained from [12].

2.2 Image Segmentation based on Thresholding

Because of its simplicity and efficiency, thresholding is a widely used technique

for image segmentation, especially in applications where speed is an important fac-

tor. The main objective in thresholding is the selection of the threshold values that

properly isolate the different parts of the image. To locate the thresholds, para-

metric and nonparametric approaches can be used. In the first case, a gray level

distribution of a region is assumed, while, in the second case, no assumptions are

made. In this case, the thresholds are obtained in an optimal manner according to

some criteria. The nonparametric methods are more robust, and usually faster than

the parametric ones. Thresholding is best suited for bimodal distribution, such as

solid objects resting upon a contrast background [19] and it can be also effectively

used as the initial step in more sophisticated image analysis tasks.

Information theory has been applied to define some of the thresholding criteria.

A first method was proposed by Pun [15] and enhanced by Kapur et al. [14]. The

histogram is separated into independent classes so that its entropy is maximized.



Image Segmentation using Excess Entropy 7

(a) (b) (c)

Fig. 2 (a) Global lines are cast from the walls of the bounding box, (b) intensity values are

captured at evenly spaced positions over the global lines from an initial random offset and

(c) neighbor intensity values are taken in L-blocks.

Brink [4] extended this method to two dimensions by introducing spatial informa-

tion. More recently, Rigau et al. [16] introduced an algorithm for medical image

segmentation based on the mutual information maximization of the information

channel between the histogram bins and the regions of the partitioned image.

3 Spatial structure of an image

In this section, the excess entropy is introduced as a measure of the spatial structure

of a 2D or 3D image. Structure here is taken to be a statement which expresses

the degree of correlation between the components of a system. Excess entropy,

which provides us with a measure of the regularities present in an image, can

be also interpreted as the the degree of predictability of a pixel (or voxel) given

its neighbors. From the concepts introduced in Section 2.1, we analyze how the

excess entropy can be computed from Equation (5).
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In the context of an image, X represents the set of clusters or bins of the image

histogram and xL is given by a set of L neighbor intensity values. In order to com-

pute the excess entropy, two main considerations have to be taken into account:

– The first is the definition of the neighborhood concept pixel or voxel. While

neighborhood is unique and unambiguous in 1D, its extension to 2D or 3D

introduces ambiguity, since a sequence of L-block neighbor pixels or voxels

can be selected in different manners [11].

– The second is the computation of L-block entropies when L →∞. In practice,

L-block entropies for high L are not computable, since the number of elements

of the joint histogram (required to compute joint probabilities p(xL)) is given

by NL, where N is the cardinality of the system. Note that in our case, N is the

number of clusters or bins of the segmented image histogram, i.e., the number

of colors of the image. Thus, a tradeoff between the accuracy of the measure,

given by L, and the number of clusters |X | is required.

To overcome the neighborhood problem, uniformly distributed random lines,

also called global lines [18] are used. Global lines sample the 3D-volume stochas-

tically in the sense of integral geometry, i.e., invariant to translations and rota-

tions [17]. These lines are generated from the walls of a convex bounding box

containing the volume [5]. This can be done taking a random point on the surface

of the convex bounding box and a cosinus distributed random direction as it is

illustrated in Figure 2(a). The sequence of intensity values (L-block XL) needed

to estimate the joint probabilities is captured at evenly spaced positions over the

global lines from an initial random offset, that ranges from 0 to the step size (see
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(a) E = 0.885 (b) E = 0.885

(c) E = 0.782 (d) E = 0.001

Fig. 3 Synthetic images and their excess entropy values.

Figure 2(b)). Points chosen on each line provide us with the intensities to calculate

the L-block entropies, required to compute the excess entropy (see Figure 2(c)).

In this manner, the 3D-neighborhood problem is reduced to 1D, where the concept

of neighborhood is well defined. In our implementation, N is taken as an input pa-

rameter of the algorithm, while L is determined from N such that the computation

of the joint histogram is attainable.

To illustrate the behavior of the excess entropy as a measure of the image struc-

ture, we use the 2D images of Figure 3. The two first images (a) and (b) represent

the same scene with the colors interchanged. In this case, the excess entropy val-

ues are the same since the structure of the image is not dependent on the colors.

In the third image (c), some additional shapes are added to the original image (a),
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keeping the same probability for each color. Because of the higher variability of

the obtained image, the excess entropy measure decreases, reflecting a lower spa-

tial structure. The last image (d) has been generated by swapping 200000 points

of image (a). Each swapping has been done by choosing two random points of the

image and interchanging their intensity values. Observe that now the image has

not spatial structure (no shape can be detected) and, therefore, the excess entropy

is close to 0. It is important to remark that the values of the Shannon entropy of

all the images of Figure 3 are the same, since the probabilities of each color have

remained unaltered.

4 Thresholding based on Excess Entropy

In this section, a thresholding segmentation method that uses the excess entropy to

obtain the optimal thresholds is presented.

We propose a nonparametric approach to segment the image without a priori

assumptions about the underlying data. As it has been described in the previous

section, excess entropy can be used as a measure of the structure of a system.

From the assumption that an image is structured in regions, we conjecture that

the optimal thresholding should provide us with the maximum structure. Conse-

quently, the selection of thresholds will be formulated as a histogram quantization

problem using the maximization of excess entropy. That is, the optimal histogram

quantization should correspond to the maximum excess entropy of the resulting

image. Figure 4 shows an example to illustrate the behavior of our method com-

pared to the k-means algorithm [10]. Figure 4(a) is a four-colored synthetic image
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(a) (b)

(c) (d)

Fig. 4 Preliminary experiment: (a) 4-colored image, (b) test image, (c) segmentation result

of the k-means algorithm and (d) segmentation result of the proposed method.

with two nested squares on a background with two different colors randomly dis-

tributed. Figure 4(b) has been obtained by adding 1% of Gaussian noise to the

original image. Figures 4(c) and 4(d) show the segmentation of the image (b) in

three different clusters obtained by the k-means algorithm, one of the most pop-

ular clustering algorithms, and the excess entropy method applied to the noisy

image, respectively. Observe that the k-means method separates the background

in two colors and merges the two nested square shapes. This behavior is due to

the fact that the number of background pixels is greater than the number of pix-

els of the squares and this causes that the intensity error classification is lower if

the background is split into two different clusters. Using our method, the spatial
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Fig. 5 Excess entropy values of the image 4(b) with 3 colors for different threshold levels.

information is taken into account and, hence, the square shapes have been mainly

preserved. Observe that the misclassified pixels are caused by the Gaussian noise

of the input image (Figure 4(b)).

The kernel of our method is the computation of excess entropy given by the

Equation (4), where N , the number of colors of the segmented image, and L,

the block length, are input parameters of the segmentation algorithm. If C is the

number of colors of the original image and N − 1 the number of thresholds, the

quantity of possible combinations of different threshold levels is C!
(C−(N−1))! . Note

that for standard medical images (with a minimum of 256 colors) this number be-

comes intractable when N is greater than 4 or 5. Therefore, except for the case of

thresholding in two or three groups, it will be impossible to explore all the pos-

sible solutions. For instance, in the segmentation process of Figure 4, all possible

threshold levels have been checked. In the cases that the number of threshold levels

is high, certain optimization criterion must be used.
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Fig. 6 Block diagram showing the excess entropy-based thresholding method.

In Figure 5, we plot the values of excess entropy values of the image 4(b)

segmented with two different threshold values, ranging from 0 to 255. As it can be

seen, the function has a smooth behavior and therefore an optimization process can

easily converge to the optimal solution. In our implementation, in order to properly

locate the thresholds avoiding local minima, that can appear for a higher number

of optimization parameters, a global genetic-based strategy is applied, since this

is robust to these local minima. If high accuracy results are required, a second

optimization process based on a gradient descent approach is applied.

Taking into account all these considerations we propose the iterative algorithm

represented in Figure 6 and described below:

1. Input parameters: the image, the number of colors (N ), the block length (L)

and the number of iterations (I).
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2. Threshold initialization. This module computes the image histogram and dis-

tributes uniformly N − 1 thresholds.

3. Segmented image generation. The input image is segmented using the last com-

puted thresholds.

4. Excess entropy computation. This module computes the excess entropy E of

the previous segmented image.

5. If E is maximum, the thresholds of the image are stored as the optimal thresh-

olds.

6. If the number of iterations is not reached, we recompute thresholds by adding

a noise term to the optimal thresholds. This noise is generated following a

gaussian distribution. Then we go to step 3.

7. Final segmentation. The input image is segmented using the optimal thresh-

olds.

At the end of the process, if high accurate threshold locations are needed, the

gradient descent algorithm is applied.

5 Results

The proposed segmentation approach has been developed using ITK [1] and VTK [2]

libraries, and integrated in the medical image visualization and processing frame-

work developed in our laboratory. It has been evaluated on different synthetic and

real sequences of brain images.

An important limitation to be considered when segmenting brain images is the

overlapping intensity values between different tissues. To illustrate such a limi-
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Fig. 7 Histogram of the T1 image with 3% of noise.

tation (see Figure 7), the histogram of a T1 image from Brainweb database [6]

is plotted. In this plot, each one of the ten tissues represented in the T1 image

is shown with a different color. Note how different intensity values overlap and

consequently thresholding methods are not capable to isolate one from the other.

For instance, both cerebro spinal fluid and skin intensity values range from 20 to

80 and, hence, they are not distinguishable. Due to this limitation, the main pur-

pose of segmentation techniques is not the separation of all real brain tissues but

only the most important ones which in general correspond to background, cerebro

spinal fluid, grey matter, white matter and skull. Therefore, in our experiments the

number of clusters to be considered has been 4, 5 or 6 (i.e. 4 ≤ N ≤ 6). The L

parameter has been set to 6 and the number of iterations to 200.

The first experiment has been designed to evaluate the performance of the pro-

posed approach for images with different levels of noise. With this purpose a set

of synthetic magnetic resonance (MR) images from the Brainweb database [6] is

used. The method with N = 5 is applied to T1 and T2 image modalities with three

different levels of noise 0%, 3% and 7%, respectively.
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(T1, noise=0%) (T2, noise=0%)

(T1, noise=3%) (T2, noise=3%)

(T1, noise=7%) (T2, noise=7%)

Fig. 8 T1 (first column) and T2 (third column) images of Brainweb database with different

degrees of noise. In the second and fourth columns, the corresponding segmented images

with N = 5.

The obtained results are illustrated in Figure 8. In the first row, we show, from

left to right, the T1 image without noise and the obtained segmentation, and the

T2 image without noise and its corresponding segmentation. In a similar way, the

second and third rows represent the results obtained from the T1 and T2 images

with 3% and 7% of noise, respectively. Observe that, in the case of T1 without

noise, background, skull and cerebro spinal fluid (CSF) are correctly separated,
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while the classification gets worse when noise increases. Such a behavior is typical

of the thresholding approach. Similar results are obtained with noisy T2 images. In

the case of T2 without noise, CSF and grey matter are grouped in the same cluster,

while background is split into two clusters. Observe also the rectangular shape that

surrounds the brain in the segmented image. This shape affects the excess entropy

measure leading to an uncorrect segmentation. This undesirable effect disappears

in the case of noisy images, achieving a correct segmentations. We want to remark

that these patterns do not appear in real images and hence such a bad behavior is

not expected for real data.

In our second experiment, the segmented images of the first experiment are

compared with the true standard that corresponds to a brain image segmented in

ten tissues [6]. The goal of this comparison is to evaluate which tissues and how

the tissues of the true images have been grouped into the five clusters used for

the image segmentation. To illustrate the obtained results for each one of the test

images we have generated a bar plot (see Figure 9). Each bar represents one of

the ten tissues of the true standard, from left to right, air, CSF, grey matter (GM),

white matter (WM), fatty tissue, muscle and skin, mostly skin, skull, glial tissue

and other tissue. To represent the five clusters used for segmentation five different

colors have been considered. The bars have been filled with one or more colors

according to the % of pixels of the corresponding tissue in the different clusters.

For instance, in plot 9(a) corresponding to T1 image without noise, we can see

from the first bar that air pixels have been grouped into two different clusters, 75%

into cluster 1 and 25% into cluster 2.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Fig. 9 Comparison of the segmented images of Figure 8 with the true image. T1 (first row)

and T2 (second row) results with 0%, 3% and 7% of noise are plotted. Columns of each plot

represent: (1) air, (2) cerebro spinal fluid, (3) grey matter,(4) white matter, (5) fatty tissue,

(6) muscle and skin, (7) mostly skin, (8) skull, (9) glial tissue and (10) other tissue.

In the first row of Figure 9, the T1 images with 0%, 3% and 7% of noise are

plotted. Observe that in the case of T1 without noise (plot 9(a)) the four main

tissues (CSF, GM, WM and skull) and air are well classified, in the sense that

there is a good correspondence between the clusters of the segmented image and

the main tissues of the true image. In particular, 90% of CSF pixels are of cluster 3

and 10% of cluster 2; 65% of GM pixels are of cluster 4, 25% of cluster 5 and 10%

of cluster 3; 100% of WM pixels are of cluster 5; 95% of skull pixels are of cluster
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2 and the rest of cluster 1; and 75% of air is of cluster 1 and 25% of cluster 2. As

it was expected the quality of the T1 segmentation decreases when the percentage

of noisy increases. In spite of this, it can be seen that the method still groups the

main tissues in the same clusters (see plots 9(b) and 9(c)).

In the second row of Figure 9, the T2 images with 0%, 3% and 7% of noise

are plotted. In the case of T2 without noise (plot 9(d)), air is separated in two main

clusters (corresponding to the two background regions represented in Figure 8 (T2,

noise=0%), while CSF and grey matter are grouped in the same cluster. In the case

of noisy T2 images (see plots 9(e) and 9(f)), it can be seen that the main tissues

are well classified.

In the next experiment we evaluate the performance of the proposed approach

for different values of N . For the test we use the T1 image with 3% of noise

and N = 4..6. The results are listed in Table 1 where rows represent the ten

tissues of the true standard and the columns the clusters generated for each one

of the N values. The listed values represent the distribution of the tissue in each

cluster. If we analyze the distribution of tissues for the different cases, it can be

seen that white matter is perfectly segmented. Observe that the cluster containing

white matter also contains other brain tissues. This is an expected result due to the

overlapping intensity values (see Figure 7).

Finally, a set of real computed tomography and magnetic resonance brain im-

ages obtained from the Hospital Josep Trueta of Girona has been segmented. The

method has been tested with N = 6 and L = 6. The obtained results are shown in

Figure 10. In the case of MR images, represented in the first column, the main tis-
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Brain N=4 N=5 N=6

Tissue (1) (2) (3) (4) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (6)

air 60.4 39.6 60.4 39.6 60.4 38.0 1.6

CSF 94.2 5.8 28.0 72.0 48.9 51.1

GM 0.6 56.9 42.5 13.9 61.6 24.5 15.4 60.1 24.5

WM 100 100 100

FT 100 100 100

MS 8.4 84.4 7.2 56.9 39.6 3.5 60.8 35.7 3.5

SKN 98.6 1.4 39.5 60.5 0.1 57.6 42.3

SKL 20.2 79.8 20.2 79.8 20.2 54.2 25.6

GT 1.4 66.8 31.8 27.4 53.0 19.0 29.8 50.6 19.6

other 0.3 99.7 1.2 98.8 1.2 98.8

Table 1 Distribution of brain tissues in the different clusters after applying our method with

N = 4, N = 5 and N = 6. Rows represent, from top to bottom: air, cerebro spinal fluid

(CFS), grey matter (GM), white matter (WM), fatty tissue (FT), muscle and skin (MS),

mostly skin (SKN), skull (SKL), glial tissue (GT) and other tissues.

sues have been correctly separated. When segmenting the CT image of the second

column, the method not only has isolated the main tissues but it also has enhanced

a hidden pathological region. Finally, in the third column, a CT image of a patient

with an intracranial hemorrhage, where the image intensities have been appropri-

ately rescaled to a better visualization, is presented. In the segmented image, the

different image tissues, the lesion and the background are correctly separated, giv-

ing a good representation of the anatomical structures.
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(a) (b) (c)

Fig. 10 Original MR and CT brain images (first row) with their corresponding segmenta-

tions (second row).

6 Conclusions

An information-theoretic measure, called excess entropy, has been introduced to

quantify the image structure and to obtain a new adaptive thresholding method for

image segmentation. The main novelties of this paper are the use of excess en-

tropy as a measure of structural information of an image, the search for optimal

thresholds by maximizing the excess entropy, and the use of uniformly distributed

random lines to compute this measure. Experimental results have shown the good

behavior of the presented approach. Further research will be done in the applica-

tion of excess entropy to other image processing areas. We will also investigate the

use of other sampling strategies to calculate the excess entropy.
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