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Abstract
A method to perform 4D (3D over time) segmentation of the left ventricle of a mouse heart using a
set of B mode cine slices acquired in vivo from a series of short axis scans is described. We
incorporate previously suggested methods such as temporal propagation, the gradient vector flow
active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle.
The contributions of this paper are incorporation of a novel despeckling method and the use of
locally fitted superellipsoid models to provide a better initialization for the active surface
segmentation algorithm. Average distances of the improved surface segmentation to a manually
segmented surface throughout the entire cardiac cycle and cross-sectional contours are provided to
demonstrate the improvements produced by the proposed 4D segmentation.

I. INTRODUCTION
Modern medical imaging systems provide researchers and physicians the ability to view
inside living beings and observe organs in vivo. This allows observation of useful
anatomical and functional information. The ability to observe organs in vivo is more
desirable when the data used to produce images can be safely, noninvasively, accurately,
and cost effectively collected. These and other advantages (portability, real-time or near
real-time imaging, etc.) make the ultrasound imaging modality an attractive choice for use in
cardiology.

An important task for medical researchers and physicians is to be able to distinguish
boundaries and segment regions contained within these boundaries. This allows functional
information such as the volume of the left ventricle to be calculated over time, which would
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yield ejection fraction, cardiac output, etc. This paper describes the algorithmic steps needed
to construct the left ventricle (LV) of a mouse heart from in vivo ultrasound scans. This task
requires that 3D data of the LV be acquired in vivo throughout the systolic cycle. There are
numerous ways to create 3D data from 2D slices [1], [2]. A typical method to create 3D data
and the one that is used in this paper is to stack 2D slice images along the elevation axis as
described by Fenster et al. in [2]. This method to create 3D data requires that slices at
different elevations be acquired simultaneously or at corresponding times when the cardiac
cycles. The simultaneous acquisition of 3D data would require the use of a 2D transducer.
Although this technology promises greater functionality, it is still lacking in spatial
resolution and is too expensive when compared to a single element or linear array
transducer. The scans reported in this paper are the elevational slices that are acquired over
different cardiac cycles. The acquisitions are gated to occur at corresponding times during
the cardiac cycle.

Previously proposed 3D segmentation methods can be categorized as model fitting methods,
model deformation methods, or some combination of both. A compilation of recently
proposed 3D cardiac models using a variety of medical imaging modalities have been
surveyed in the literature [3], [4]. A comprehensive survey of recently proposed deformable
model methods using a variety of medical imaging modalities is provided by McInerney and
Terzopoulos in [5]. The use of a globally optimized model that is fitted to the data then
locally deforming the model was proposed by Bardinet et al. in [6], [7] and also by
Montagnat et al. in [8] and Chen et al. in [9].

The construction of the left and right ventricle chambers using cine magnetic resonance
imaging (MRI) has been proposed by Goshtasby and Turner in [10] and Kaus et al. in [11].
A level set method that uses a priori shape information to track the motion of the LV using
MRI and ultrasound imaging is reported by Paragios in [12]. LV segmentation and/or
volume estimation methods specific to echocardiography have been reported by Corsi et al.
[13], Coppini et al. [14], Gustavsson et al. [15], McCann et al. [1], McPherson et al. [16],
Strickels and Wann [17], and Geiser et al. [18].

An automatic or semi-automatic method to distinguish surfaces of interest require edges and
borders of objects to be well defined. This can be problematic when working with
ultrasound, since ultrasound images can be ambiguously corrupted by speckle and image
dropout1 commonly occurs. These problems with ultrasound images are discussed by Chu et
al. in [19]. Speckle can cause ultrasound images to appear mottled, true edges to be
indistinguishable from other gradient causing factors, and false gradients to be detected in
homogeneous regions. This can result in unusable segmentation when using methods that
depends on well defined borders and edges such as with most, if not all, active contour/
surface methods [20]–[25]. There are a multitude of proposed methods to reduce speckle
[26]–[39]. Application of the gradient vector flow (GVF) active surface (AS) [23] to
segment 3D data composed of despeckled 2D slices can provide accurate surfaces except in
areas of weak edges and where image dropout occurs. Areas of weak edges and image
dropout are evident in Fig. 1, which is a typical image from a single element high frequency
transducer attached to the VisualSonics Inc. (Toronto, Canada) Vevo 770 ultrasound system.
Parts of the manually drawn endocardial (red) and epicardial (green) contours of Fig. 1 are
ambiguously defined. An autonomous 3D segmentation method could erroneously places
both surfaces in close proximity to each other or the endocardial surface of the LV extending
past the epicardial surface. These errors generally occur in areas where the endocardial
border is weak (relative to the epicardial borders) or where the data is ambiguous perhaps
due to image dropout. Our 4D (3D over time) segmentation method performs a 3D GVF AS

1Area in the image where features or structure exist but were not captured in the image.
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segmentation at each time instant where the initial approximation is achieved through
temporal propagation [5]. Temporal propagation uses the final surface from the previous
time instant as the initial approximation in the current time instant, which is required by the
AS segmentation algorithm. The advantage of temporal propagation is that user interaction
is only required for the initial approximation at the first time instant. Thus, this approach is
less labor intensive and more objective than requiring user input at every time instances. A
problem with temporal propagation is that part(s) of the endocardial and epicardial surfaces
where the true borders are ambiguous tend to converge towards each other. The propagation
of these errors will cause other parts of both surfaces to converge towards each other. Thus,
the possibility of large regions of both surfaces erroneously occupying the same location
exists, if left unchecked.

Our solution to the problems of erroneously placed surfaces in areas of weak boundaries,
image dropout, and part(s) of the epicardial and endocardial surfaces converging towards
each other is to assume the epicardial surface accurately depicts the true epicardial border
and locally fit a superellipsoid model [6] to the outer surface. The locally fitted
superellipsoid yields a closed form equation, which we use to determine areas where the
outer and inner surfaces are in close proximity or where the inner surface extends past the
outer surface. The locally fitted superellipsoid is determined by minimizing an objective
function. This minimization is determined by a mesh search algorithm, which is capable of
finding a global minimum and can avoid being stuck at a local minimum2. The locally fitted
superellipsoids are used to adjust the time propagated initial approximation of the inner
surface. Once the inner surface is sufficiently contained within the outer surface, the
application of the GVF active surface segmentation produces a smooth representation of the
endocardial border.

II. A METHOD TO DETERMINE 3D SURFACES OVER TIME
Although more novel methods for segmentation such as the level set methods [40] could be
used and incorporation of such methods is an interesting subject for future research, the
segmentation method implemented in the proposed algorithm described in this section relies
on the GVF AS. A robust implementation of the GVF AS requires edges and borders to be
well defined.

Unfortunately, ultrasound images are significantly hampered by a phenomena called
speckle. This type of noise make autonomously delineating edges and borders difficult and
false edges to be present. As a pre-segmentation step the ultrasound images must be
despeckled. A novel despeckling technique that is shown in [39] to provide excellent
contrast while smoothing homogeneous regions is used to reduce the effects of ultrasound
speckle. The despeckling filter describe in [39] is aptly name the squeeze box filter (SBF)
because of the compressing nature of the filtering method. The results of SBF applied to the
original six slices of Fig. 2(a) are shown in Fig. 2(b). The filtered images in Fig. 2(b) show
that the speckle is smoothed in homogeneous regions and important edge features
corresponding with the myocardium and papillary muscles are preserved in each short axis
slice.

The proposed algorithm to reconstruct the mouse LV consists of the following six sequential
processes.

1. User initialization consisting of defining the endocardial and epicardial borders for
all the acquired slices (six in this paper) at time t = 0.

2Although the speed and robustness of the algorithm could be improved by establishing a optimal search method, the optimality of the
search method is beyond the scope of this paper.
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2. The GVF AS is used to determine approximations of the endocardial and epicardial
surfaces.

3. The time variable t is incremented. The epicardial surface from the previous time
instance t − 1 is used as the initial approximation to the GVF AS, which determines
the current epicardial surface.

4. The epicardial surface is modeled by locally fitted superellipsoids.

5. The locally fitted superellipsoids are used to define the initial approximation of the
endocardial surface, which is the modified propagated endocardial surface from the
previous time instant t − 1.

6. The GVF AS uses the initial approximation to determine the current endocardial
border, then the algorithm is repeated from step three.

The flow diagram of our 3D segmentation over time is given in Fig. 3 and each process is
explained in the following sections.

A. User Initialization
A manual slice by slice segmentation is used to initialize the endocardial and epicardial
surfaces of the 3D data set at t = 0. A dense set of points in 3D space representing the initial
surface could be defined by interpolating the points of the slice contours in the elevational
direction, as suggested in [41]. The downside of this method is that the number of contour
points at different slices must be the same. Since the lengths of the cross-sectional contours
at various slices can vary significantly, this method could cause large distances between
contour points. Instead, a 3D object is created from a connected component analysis. The
connected component in each slice is determined by the manually defined contour of each
slice.

The interior of each manually placed closed contour is segmented by a 8-connective
component analysis. The 8-connective component analysis takes the binary contour image,
which is one if the pixel is on the contour and zero otherwise, and creates a binary image
that is one if the pixel is within the interior of the contour and zero otherwise. The closed
contour is densely sampled such that adjacent points on the contour are one pixel apart. The
8-connective component analysis creates a binary image by scanning in some fixed direction
for example each row from left to right. When the first nonzero pixel is encountered, then
the subsequent pixels in that direction in this example each row moving left to right become
one. The same is applied when scanning from right to left, top to bottom, bottom to top, top
left to lower right, top right to lower left, lower left to top right, and lower right to top left.
The binary images of each direction produced by this technique is shown in Fig. 4. A
pointwise multiplication, equivalently a logical “and” operation, of the eight binary images
in Fig. 4 results in a connected component of the interior defined by the closed contour. Fig.
5 shows the blob created from a pixelwise multiplication (logical “and”) of all eight connect
component binary images in Fig. 4.

An application of the 8-connective component analysis to each of the six user defined
contours at frames indexed by t = 0 produces a 3D object, which approximates the interior
volume of the LV. An example of the 3D connected component of all six slices is shown in
Fig. 6(a). Each connected component slice is downsampled and elevationally interpolated in
exactly same manner as the interpolated despeckled 3D data to produce the 3D object used
as the initial approximation at time t = 0 (shown in Fig. 6(b)). An isosurface of this object is
shown in Fig. 7(a).
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B. First Application of the Gradient Vector Flow Active Surface
The user specified initial approximation shown by the isosurface in Fig. 7(a) suffers from
striations or banding effect [2], [5]. The application of AS was used by Taubin in [42] as a
method to smooth a surface while being constrained by three dimensional borders. In the
same spirit the GVF AS is applied to the vertices of the striated approximation to attain a
surface that varies smoothly. The effects of the GVF AS applied to the vertices of the
striated surface of Fig. 7(a) are shown in Fig. 7(b).

Up to this point in the algorithm, the endocardial and epicardial surfaces are defined in the
same manner. Fig. 8 show the side, the top, and the bird’s eye view of the endocardial (red)
and epicardial (green) surfaces super imposed on the same image. These 3D surface
renderings give an approximate reconstruction of the myocardial borders of the LV. It
should be noted that at this early stage both surfaces are well separated and distinct.
Segmentation results of this nature are desired, since it characterizes the true anatomy of the
myocardial walls. Repetition of the user involved segmentation process to this point for the
remaining 4D sequences is labor intensive and strongly discouraged.

C. Determining the Epicardial Surface
The 3D segmentation of the epicardial border at each time increment t is independent of the
3D endocardial segmentation. The segmentation of the epicardial surface is needed so that
corrections to the time propagated initial approximation of the endocardial surface can be
made. The epicardial border in our 3D data is assumed to be more reliable and easier to
detect than the endocardial border. This assumption is due in part to the shape of the
epicardial border. The epicardial border can be observed to be more regular in shape and
more smoothly varying (the concepts of regular and smooth are both defined in the Gestalt
[43] sense) than the endocardial border, which includes the protruding papillary muscles.
From experimental observation it was discovered that due to its regularity and smoothness
the epicardial border is more reliably segmented by the GVF AS. Thus, based on
observation the epicardial surfaces produced by the GVF AS are more accurately defined.

The resulting epicardial surface from the previous time increment t − 1 is propagated as the
initial approximation. The GVF AS is applied to determine the epicardial surface at the
current time increment t ≠ 0. At t = 0 the initial approximation of the epicardial surface is
determined from user inputs. The final epicardial surface at t = 0 is the result of the GVF AS
applied to the user dependent initial approximation of this surface.

D. Model the Epicardial Surface
Finding the best fitting superellipsoid to a given set of point is an minimization problem that
is determined with a search algorithm. An exhaustive search would guarantee an optimal
solution, but is prohibited by high computational cost. Greedy methods like a gradient
descent algorithm may converge only to a locally optimal solution with no chance of
attaining a globally optimal solution. Methods such as simulated annealing, genetic
algorithms, or pattern searches compromising computation time with the possibility of
finding a globally optimal solution. The need for computational efficiency and accuracy
motivates our use of a pattern search method to determine a set of local superellipsoids that
is fitted to the epicardial surface.3 This set of local superellipsoids will yield a close form
equation in which to evaluate discrete samples of the approximated endocardial surface.

3Determination of which search algorithm provides the best tradeoff between computational speed and accuracy is beyond the scope
of this paper.
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Let  be a finite set of vertices that is a discrete sampling of points on the estimated
epicardial surface at time t. A set of samples of the epicardial surface at elevation z is
denoted as

(1)

Clearly, the union of all such sets defined in equation (1) provides a discrete sampling of the

approximated epicardial surface, that is . A pattern search method is used to
find the parameters of the locally optimal superellipsoid, which is denoted as the vector

, so that the energy function used in [6], [7] defined in equation
(2)

(2)

where

(3)

is minimized.

The method to determine a close form approximation for the epicardial surface represented
by a set of discrete 3D points when the time index t is equal to zero is slightly different than
for other time instances. When t = 0 and given a significant region of the epicardial surface
is between zmin and zmax, the steps to determine a model of optimal locally fitted
superellipsoid to the epicardial surface denoted as  are as follow:

1. If z = zmin, then a user defined v0 where the superellipsoid Sv0 is required as an

initial model approximation of  . Otherwise, .

2. A set of twelve mesh points at distance λ > 0 about v0 are defined as

(4)

3. If there is a v̂ ∈ Mk such that Sv̂ < Sv for all v ∈ M0∪{vk} and all ,
then vk+1 = v̂ and λ is doubled that is λ ← 2λ. The process is iterated from step two

and k is incremented by one. Otherwise vk+1 = vk and λ is halved that is .

4. If λ > T for some predefined threshold T, then the search is iterated from step two
and k is incremented by one. Otherwise, the search is terminated and .

When t is not equal to zero, a model composed of optimal locally fitted superellipsoids 
is determined similarly by an iterative pattern search method that scan within a varying
mesh in the following manner:
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1. The search is initialized by setting .

2. For a vector vk ∈ ℝ8, the set of twelve mesh points at distance λ > 0 about vk is
denoted as Mk and defined in equation (4).

3. If there is a v̂ ∈ Mk such that Sv̂ < Sv for all v ∈ M0 ∪{v0} and all ,
then vk+1 = v̂ and λ is doubled that is λ ← 2λ. The process is iterated from step two

and k is incremented by one. Otherwise vk+1 = vk and λ is halved that is .

4. If λ > t for some predefined threshold t, then the search is iterated from step one
and k is incremented by one. Otherwise, the search is terminated and .

The flow diagram of the superellipsoidal model fitting search is illustrated in Fig. 9.

The result of this search is a superellipsoid  that is well fitted to the set of local 3D

points . After application of this search for all z ∈ ℤ, a global closed form model St(x, y,
z) of the epicardial surface at time t is defined by the optimal locally fitted superellipsoid

(5)

for all . The optimal locally fitted superellipsoids at time t = 0 and at time t =
25 for elevations z = 25, 35, 45 are shown super imposed on the epicardial surface in Figs.
10(a)–10(c) and Figs. 10(d)–10(f), resp.

E. Initial Approximation of the Endocardial Surface

The previous set 3D discrete points of endocardial surface denoted as  is temporally
propagated and is used as the initial approximation of the GVF AS algorithm, which is used
to determine the final endocardial surface of the current time sample. This set of endocardial
points is denoted as . A downfall of temporal propagation is that portions of the
endocardial and epicardial surfaces converge towards each other in regions where the data is
ambiguous (possibly due to image dropout, shadowing, or other artifacts). This is evident
when the epicardial and endocardial surfaces are superimposed on each other as in Fig.
11(a). The red surface shown in Fig. 11(a) reflects the approximated endocardial border at
time t = 4. The green surface shown in Fig. 11(a) is the approximate epicardial border at t =
5. Both surfaces were determined by the GVF AS algorithm where the initial approximation
was determined by temporally propagating the final GVF AS from the previous time sample
t = 4. The estimates of the two surfaces are reasonable in that the endocardial surface (red) is
mostly contained well within the epicardial surface (green). It is shown in Fig. 11(a) a region
where the endocardial surface (red) resides erroneously close to the epicardial surface
(green). Except at the top of the LV, the endocardial and epicardial borders should be clearly
separated. The top slice corresponds to the cross-section of the LV closest to the base of the
heart. The endocardial and epicardial connected components contained in this slice is taken
to be the top surface of the 3D endocardial and epicardial surfaces, resp. This results in the
red connected component seen in the surface renderings (red) shown in Fig. 11. Likewise,
the connected components in the lowest elevation closest to the apex of the heart are take to
be the bottom surface of the LV. The inaccuracies caused by the overlap of endocardial and
epicardial surfaces at the highest and lowest elevational slices are not alleviated by the
proposed segmentation algorithm. Rather, our segmentation algorithm proposes to contain
the endocardial surfaces within the epicardial surfaces between the lowest and highest
elevations during the entire systolic cycle.

Tay et al. Page 7

J Signal Process Syst. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In Fig. 11(a) the surface approximation of the endocardial, epicardial, or both surfaces in a
region between the base and apex is clearly incorrect, in that the endocardial surface of the
LV is in close proximity to the epicardial surface. This is problematic not only in the visual
rendering of the two surfaces but estimates of the LV based on such a segmentation will
produce erroneous results, which may lead a cardiologist to incorrectly diagnose a thin area
of the myocardium or other abnormalities. If left uncorrected, then the regions where the
two surfaces coincide or where the endocardial surface is erroneously close to or possibly
extends past the epicardial surface will be temporally propagated and may increase over
time.

This problem is alleviated by using the epicardial model to correct the temporally
propagated initial approximation of the endocardial surfaces. Evaluation of each point of the
endocardial initial approximation with the close form model of the epicardial surface St(·)
defined in equation (5) allows us to determine which points are erroneously close to or
extend beyond the epicardial surface. Additionally, the epicardial model St(·) allows us to
move the erroneous points to a point that is well within the epicardial surface and closer to
the actual endocardial border.

Let 0 < ε ≤ 1 be pre-defined and  be a set of 3D discrete points taken from the final GVF
AS segmentation of the endocardial border of the previous time t − 1, and St(·) be the locally
fitted superellipsoid model of the epicardial surface defined by the set of points on the
estimated epicardial surface . A new set of endocardial surface points to be used as
discrete samples of the initial approximation required by the GVF AS algorithm is denoted

as  . The set  is determined by evaluating all the points in  with the model St(·). A

point  becomes an element of , if St(x, y, z) ≤ ε. If St(x, y, z) > ε for
, then this point resides too close to or beyond the approximated epicardial

surface. In this case the point  is incrementally moved one voxel towards the
center of the optimal locally fitted superellipsoid  where  is defined in
section II-D. Let (x̂, ŷ, z) denote the point where (x, y, z) is incrementally moved. The
incremental movement is stopped once St(x̂, ŷ, z) ≤ ε and the final (x̂, ŷ, z) is included into

.

Fig. 11(b) shows the corrected initial approximation (prior to applying the GVF AS) at t = 5,

of the temporally propagated surface . A comparison of the initial approximation of
endocardial (red), which was temporally propagated, and the current epicardial (green)
surfaces in Fig. 11(a) exhibits a region where the two surfaces are erroneously close to each
other. Fig. 11(b) show the corrected initial approximation of the endocardial surface with the
epicardial surface. It is clearly evident that the two surfaces shown in Fig. 11(b) are well
separated.

F. Determining the Endocardial Surface
The corrected temporally propagated initial approximation of the endocardial surface shown
in Fig. 11(b) cannot be expected to accurately follow the true endocardial border.
Additionally, moving points toward the centroid of the locally fitted superellipsoid cause the
surface to be unrealistically rough. Since AS have been demonstrated to accurately find
borders [22] and is an excellent method to smooth surfaces [42], the result of a few iterations
of the GVF AS algorithm to the points of the corrected initial approximation contained in set

 is used to determine the final endocardial surface at time t. Fig. 11(a) shows the
resulting endocardial surface (red) after applying the GVF AS to the non-corrected
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temporally propagated endocardial surface shown as the red surface in Fig. 11(a). It is
evident on the middle left side that the result produced by the GVF AS of endocardial (red)
and the epicardial (green) surfaces are erroneously close in proximity. This error is avoided
when we use the corrected initial approximation shown as the red surface in Fig. 11(b). The
result of applying the GVF AS using the corrected initial approximation is shown as the red
surface in Fig. 11(c) along with the epicardial surface (green). A comparison of the surface
renderings in Fig. 11(c) with the surface renderings in Fig. 11(a) shows the benefits of
correcting the initial approximation of the temporally propagated endocardial surface with
the optimal locally fitted superellipsoid model, in which region(s) where the two surfaces
coincide or are in close proximity are separated while other regions are not affected by this
correction. Additionally, application of the GVF AS to the corrected initial approximation
provides a smooth approximation of the endocardial border of the LV.

III. EXPERIMENTS AND RESULTS
This section describes the experiments performed on three mouse heart scans and provides
the results of our experimentation. The mouse heart scans are acquired from a VisualSonics
Vevo 770 ultrasound scanner operating at 25 MHz using an single element mechanical
sweeping RMV-707B scan head. This system is electrocardiographically gated to capture
ultrasound data between two successive R-waves. This echocardiographic system captures a
sequence of images beginning at approximately the same time during the cardiac cycle, near
end diastole4. Our acquisition technique consists of attaching a transducer to a calibrated
mechanical arm, starting from the base of the heart, and acquiring a sequence of short axis
slices at a fixed elevation for one entire cardiac cycle. The transducer is moved one
millimeter towards the apex along the elevational axis. Another sequence of images over
one cardiac cycle is acquired that is parallel to the previous elevational slice plane. This
process is repeated for six elevations. This scanning method produces a sequence that
consists of approximately 100 frames of six elevation short axis movies. This acquisition
system simulates a frame rate of approximately 1000 frames (images) per second. The
description of the simulated frame rate of this proprietary system is given by Chérin et al. in
[45]. Since the mouse heart rates in our experiments are approximately 500 cycles per
minute, a high frame rate is needed to promote smooth motion. It should be noted that the
simulated frame rate is fully performed in the VisualSonics Vevo 770 scanner and beyond
the control of the authors. The frames from the all the sequences are despeckled using the
SBF method describe in [39]. The 3D data is composed of elevationally interpolating the six
short axis despeckled slices to 80 slices. This elevational interpolation factor was chosen to
approximately match the axial and lateral resolution.

The frames indexed by t = 0 from each of the six elevation are shown Fig. 2(a). The
corresponding despeckled frames are shown in Fig. 2(b). Fig. 12(a) shows the slices
elevationally stacked. Fig. 12(b) show an example of the 3D data composed of despeckled
and elevationally interpolated slices at time t = 0. The 4D data of despeckled and
elevationally interpolated slices for all 100 time instances is the input of our proposed 4D
segmentation algorithm.

In this comparison of the model corrected segmentation method with the non-corrected
method, all the GVF AS parameters are fixed and identical for both the non-corrected and
the corrected segmentation algorithms. The model correction parameter ε is set at 0.75. The
same user supplied initialization at t = 0 is used for both segmentation methods.

4The point during the cardiac cycle when the myocardium is most relaxed and the volume of the LV is at its maximum. See [44] for a
concise definition.
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The average distances of each segmentation to the manually segmented surface of each
mouse left ventricle are shown in Fig. 13 in units of voxels. The average distance of each
point on model corrected segmented surface to the manually determined surface at each time
instance is plotted with the black line in each graph of Fig. 13. The red line in each graph of
Fig. 13 is the average distance of each point of the non-corrected segmented surface. In all
three cases the model corrected surfaces are closer to the manually segmented surface except
for a few instances with mouse 1.

Cross-sectional slice contours at three elevational frames corresponding to two data captured
before and after end systole, t = 30 and 70, resp. are shown to provide a visually meaningful
validation to the robustness of incorporating the model correction method. Slices at different
three elevations are taken from the final segmentation results. These cross-sectional slices
are illustrated in Fig. 14 using the surface attained with mouse 1.

Fig. 15 and Fig. 16 show the cross-sectional contours at elevations 60 (closest to the base),
30, and 1 (closest to the apex) of the manual (gold), the model corrected (red), and non-
corrected (blue) segmentation of the endocardial surfaces at frames t = 30 and t = 70, resp. It
can be seen that in all but two cases the model corrected endocardial contours more closely
resemble the manually segmented contours. The cross-sectional contours of the LV
segmentation using scans of mouse 1, elevation 1, frames indexed by t = 30, are shown in
Fig. 15(g). In this image, it can be seen that the contour from the model corrected
segmentation (red) produces a results that better resembles the manually segmented contour
(gold). Additionally, the model corrected contour is smoother than the cross sectional
contour produced by the segmentation without correction. The contours of the LV
segmentation using the scans of mouse 1, elevation 30, frames indexed by t = 70, are shown
in Fig. 16(d), the model corrected and non-corrected contours are equally different from the
manually segmented contour. Again, the contour from the model corrected surface is much
smoother than the contour from the non-corrected surface. Thus, in all but two cases the
model corrected segmentation produces cross sectional contours that more accurately
resemble manual segmentation. In the two cases where the two segmentation methods were
equally unlike the manually segmented contour, the model correction produced a much
smoother contour than the contour produced by omitting this correction.

IV. CONCLUSION
Segmentation of the LV to visualize anatomic information and to calculate functional
information is an important and difficult task. This paper provide a 4D segmentation method
using ultrasound short axis slices, which are despeckled and downsampled. The despeckled
and downsampled slices are elevationally interpolated to form 3D data at each time
increment or instance. The time varying 3D data is used to segment the LV. The proposed
method requires manual contour segmentation at the beginning of the 3D sequence to
initialize the six short axis slices. This initialization determines the initial endocardial and
epicardial surfaces. A starting superellipsoid for a slice at t = 0 is also required by the user,
which initializes the search for locally fitted superellipsoids that provide a model of the time
varying epicardial surfaces. These locally fitted superellipsoids allow us to correct initial
approximation errors due to temporally propagating the final surface from the previous time
to be used as the initial approximation of the endocardial surface in the current time. It was
observed that temporal propagation causes parts of the endocardial and epicardial surfaces to
converge to the same regions. An optimally locally fitted superellipsoidal model of the
epicardial surface allowed corrections to the time propagated initial approximation of the
endocardial surface to be made. The application of the GVF AS to the corrected initial
approximation of the endocardial surface results in a smooth surface that is well separated
from the epicardial surface.
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The average distance to the manually segmented surface is decreased when applying model
correction to the temporally propagated initial surface of each time instance. This supports
an increase in the robustness of our proposed model corrected 4D segmentation method.
Cross-section of the segmented surface at two different time instances at various elevations
for three different mouse scans show that model corrected segmentation provide contours
that better reflect manually segmented contours than contours produced by non-corrected
surfaces.
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Fig. 1.
A typical ultrasound cross section of LV with manually segmented endocardial (red) and
epicardial (green) contours.
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Fig. 2.
(a) The original short axis slices acquired in vivo.. (b) Speckle reduced slices of the LV of an
mouse heart.
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Fig. 3.
Flow diagram of the temporal propagated 4D segmentation.
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Fig. 4.
The components of the 8-connective component analysis.
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Fig. 5.
Final connected component produces from all eight connective component.
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Fig. 6.
Connected component slices and 3D interpolated connected component slices.
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Fig. 7.
User specified initial approximation and GVF AS smoothed endocardial surface.
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Fig. 8.
User specified GVF AS smoothed approximations of endocardial (red) and epicardial
(green) surfaces.
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Fig. 9.
Flow diagram of the model fitting algorithm.
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Fig. 10.
Superellipsoids at elevations (a) z = 25, (b) z = 35, (c) z = 45 when t = 0 and elevations (d) z
= 25, (e) z = 35, (f) z = 45 when t = 25 locally fitted to the epicardial (green) surfaces at time
t = 25
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Fig. 11.
Endocardial and epicardial surfaces at t = 5 (a) without and (b) with endocardial surface
correction.
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Fig. 12.
(a) 3D matrix composed of short axis slices. (b) The 3D matrix created from interpolating
the SBF slices.
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Fig. 13.
The average distances of the model corrected (red) and the non-corrected (blue) surfaces to
the manually segmented surface over one cardiac cycle using (a) mouse 1, (b) mouse 2, and
(c) mouse 3 scans.
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Fig. 14.
Final endocardial surface of mouse 1 using model correction to the initial approximation at
frame t = 30 and elevations 60, 30, and 1.
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Fig. 15.
The manually segmented (gold), the non-corrected (blue), and the model corrected (red)
contours at frame t = 30.
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Fig. 16.
The manually segmented (gold), the non-corrected (blue), and the model corrected (red)
contours at frame t = 70.
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