Skip to main content
Log in

Power Dissipation of the Network-on-Chip in Multi-Processor System-on-Chip Dedicated for Video Coding Applications

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In the near future, small electronic hand-held devices will be equipped with digital cameras capable of acquiring high resolution images (HDTV) at real-time rates, resulting in video streams of dozens of megabytes per second. The real-time video decoding and especially encoding of such streams with AVC/ H.264 or SVC standards require a huge amount of computing power that, in the case of a hand-held device, has to be delivered under the constraint of low power dissipation. In this paper we present a Multi-Processor System-on-Chip dedicated for high performance, low-power video coding applications using Network-on-Chip (NoC) as communication infrastructure. Extensive experiments have established the power dissipation models of individual NoC components, i.e. network interfaces, routers and wires. Based on these models and the NoC topology, we build the power model of the complete NoC. For three different implementation scenarios of the AVC/H.264 simple profile encoder we derive the power dissipation of the NoC for image resolutions up to HDTV at rate of 30 frames per second. The results obtained show that for the same application mapping scenario (worst case), moving from CIF to HDTV resolution will result in a 35% increase of the total power dissipation. Finally, for HDTV resolution, the difference in power dissipation between the worst (21 mW) and the best case application mapping scenario is 26%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dally, W., & Towles, B. (2001). Route packets, not wires: On-chip interconnection networks. In Design Automation Conference, 2001. Proceedings (pp. 684–689).

  2. Benini, L., & Micheli, G. D. (2002). Networks on chips: A new SoC paradigm. Computer, 35(1), 70–78.

    Article  Google Scholar 

  3. Arteris (2005). A comparison of Network-on-Chip and buses. White paper.

  4. Wolkotte, P. T., Smit, G. J. M., Kavaldjiev, N. K., Becker, J. E., & Becker, J. (2005). Energy model of networks-on-chip and a bus. In J. Nurmi, J. Takala, & T. D. Hamalainen (Eds.), In: Proceedings of the international symposium on system-on-chip (SoC 2005), Tampere, Finland (pp. 82–85). Piscataway: IEEE, November.

    Chapter  Google Scholar 

  5. Dielissen, J., Rădulescu, A., Goossens, K., & Rijpkema, E. (2003). Concepts and implementation of the Philips Network-on-Chip. In IP-Based SOC design, November.

  6. Goossens, K., Dielissen, J., & Rădulescu, A. (2005) The Æthereal network on chip: Concepts, architectures, and implementations. IEEE Design and Test of Computers, 22, 21–31, September-October.

    Article  Google Scholar 

  7. Rijpkema, E., Goossens, K. G. W., Radulescu, A., Dielissen, J., van Meerbergen, J., Wielage, P., et al. (2003). Trade-offs in the design of a router with both guaranteed and best-effort services for networks-on-chip. In DATE ’03: Proceedings of the conference on design, automation and test in Europe (p. 10350). Washington, DC: IEEE Computer Society.

    Google Scholar 

  8. Bertozzi, D., & Benini, L. (2004). Xpipes: A network-on-chip architecture for gigascale systems-on-chip. IEEE Circuits and Systems Magazine, 4, 18–31.

    Article  Google Scholar 

  9. Sigenza-Tortosa, D., Ahonen, T., & Nurmi, J. (2004). Issues in the development of a practical NoC: The Proteo concept. Integr VLSI J, 38(1), 95–105.

    Article  Google Scholar 

  10. Marchal, P., Verkest, D., Shickova, A., Catthoor, F., Robert, F., & Leroy, A. (2005). Spatial division multiplexing: A novel approach for guaranteed throughput on NoCs. In Third IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis, 2005. CODES+ISSS ’05 (pp. 81–86), September.

  11. Arteris (2007). Arteris internet address. http://www.arteris.com.

  12. Silistix (2007). Silistix internet address. http://www.silistix.com.

  13. Bainbridge, J., & Furber, S. B. (2002). Chain: A delay-insensitive chip area interconnect. IEEE Micro, 22(5), 16–23.

    Article  Google Scholar 

  14. Wang, H., Peh, L.-S., & Malik, S. (2005). A technology-aware and energy-oriented topology exploration for on-chip networks. In Design, automation and test in Europe (pp. 1238–1243), March.

  15. Lee, K., Lee, S.-J., & Yoo, H.-J. (2006). Low-power network-on-chip for high-performance soc design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14, 148–160, February.

    Article  Google Scholar 

  16. Angiolini, F., Meloni, P., Carta, S., Benini, L., & Raffo, L. (2006). Contrasting a NoC and a traditional interconnect fabric with layout awareness. In Proceedings of design, automation and test in Europe, 2006. DATE ’06 (vol. 1, pp. 1–6), 6–10 March.

  17. Atienza, D., Angiolini, F., Murali, S., Pullini, A., Benini, L., & De Micheli, G. (2008). Network-on-chip design and synthesis outlook. Integration-The VLSI journal, 41(2), ISSN: 0167-9260, February.

    Google Scholar 

  18. Fujiyoshi, T., Shiratake, S., Nomura, S., Nishikawa, T., Kitasho, Y., Arakida, H., et al. (2006). A 63-mW H.264/MPEG-4 audio/visual codec LSI with module-wise dynamic voltage/frequency scaling. IEEE Journal of Solid-State Circuits, 41, 54–62, January.

    Article  Google Scholar 

  19. Lin, C.-C., Chen, J.-W., Chang, H.-C., Yang, Y.-C., Yang, Y.-H. O., Tsai, M.-C., et al. (2007). A 160K Gates/4.5 KB SRAM H.264 video decoder for HDTV applications. IEEE Journal of Solid-State Circuits, 42, 170–182, January.

    Article  Google Scholar 

  20. Huang, Y.-W., Chen, T.-C., Tsai, C.-H., Chen, C.-Y., Chen, T.-W., Chen, C.-S., et al. (2005). A 1.3TOPS H.264/AVC single-chip encoder for HDTV applications. In Solid-state circuits conference, 2005. Digest of technical papers. ISSCC. 2005 IEEE International, (vol. 1, pp. 128–588), 6–10 February.

  21. Milojevic, D., Verkest, D., & Montperrus, L. (2007). Power dissipation of the network-on-chip in a system-on-chip for MPEG-4 video encoding. In IEEE Asian solid-state circuits conference, ASSCC 2007 (pp. 392–396), November.

  22. Denolf, K., Chirila-Rus, A., Schumacher, P., et al. (2007). A systematic approach to design low-power video codec cores. EURASIP Journal on Embedded Systems, 2007, 14, Article ID 64569 (2007). doi:10.1155/2007/64569.

  23. Veredas, F.-J., Scheppler, M., Moffat, W., & Mei, B. (2005). Custom implementation of the coarse-grained reconfigurable ADRES architecture for multimedia purposes. In FPL (pp. 106–111).

  24. Wiegand, T., Sullivan, G. J., Bjntegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  25. Vleeschouwer, C. D., Nilsson, T., Denolf, K., & Bormans, J. (2002). Algorithmic and architectural co-design of a motion-estimation engine for low-power video devices. IEEE Transactions on Circuits and Systems for Video Technology, 12(12), 1093–1105.

    Article  Google Scholar 

  26. Kumagai, K., Yang, C., Izumino, H., Narita, N., Shinjo, K., Iwashita, S., et al. (2006). System-in-silicon architecture and its application to H.264/AVC motion estimation for 1080HDTV. In Solid-state circuits conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International (pp. 1706–1715), 6–9.

  27. Banerjee, K., & Mehrotra, A. (2002). A power-optimal repeater insertion methodology for global interconnects in nanometer designs. IEEE Transactions on Electron Devices, 49, 2001–2007, November.

    Article  Google Scholar 

  28. Mullins, R. (2006). Minimising dynamic power consumption in on-chip networks. International Symposium on System-on-Chip, 2006 (pp. 1–4), November.

  29. Xu, J., Wolf, W., Henkel, J., & Chakradhar, S. (2005). H. 264 HDTV decoder using application-specific networks-on-chip. In IEEE international conference on multimedia and expo, 2005. ICME 2005 (pp. 1508–1511).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragomir Milojevic.

Additional information

This research has been carried out in the context of IMEC’s multimode multimedia program which is partially sponsored by Samsung and Freescale. The authors would also like to thank Xavier Leloup, Gilles Baillieu and Jean-Yves Mignolet for their invaluable help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milojevic, D., Montperrus, L. & Verkest, D. Power Dissipation of the Network-on-Chip in Multi-Processor System-on-Chip Dedicated for Video Coding Applications. J Sign Process Syst Sign Image Video Technol 57, 139–153 (2009). https://doi.org/10.1007/s11265-008-0251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0251-1

Keywords

Navigation