
J Sign Process Syst (2009) 57:173–194
DOI 10.1007/s11265-008-0256-9

Parallel Scalability of Video Decoders

Cor Meenderinck · Arnaldo Azevedo · Ben Juurlink ·
Mauricio Alvarez Mesa · Alex Ramirez

Received: 14 September 2007 / Revised: 4 July 2008 / Accepted: 23 July 2008 / Published online: 12 August 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract An important question is whether emerging
and future applications exhibit sufficient parallelism, in
particular thread-level parallelism, to exploit the large
numbers of cores future chip multiprocessors (CMPs)
are expected to contain. As a case study we investigate
the parallelism available in video decoders, an impor-
tant application domain now and in the future. Specif-
ically, we analyze the parallel scalability of the H.264
decoding process. First we discuss the data structures
and dependencies of H.264 and show what types of
parallelism it allows to be exploited. We also show
that previously proposed parallelization strategies such
as slice-level, frame-level, and intra-frame macroblock
(MB) level parallelism, are not sufficiently scalable.
Based on the observation that inter-frame dependen-
cies have a limited spatial range we propose a new
parallelization strategy, called Dynamic 3D-Wave. It
allows certain MBs of consecutive frames to be decoded
in parallel. Using this new strategy we analyze the
limits to the available MB-level parallelism in H.264.

C. Meenderinck (B) · A. Azevedo · B. Juurlink
Delft University of Technology, Delft, The Netherlands
e-mail: Cor@ce.et.tudelft.nl

A. Azevedo
e-mail: Azevedo@ce.et.tudelft.nl

B. Juurlink
e-mail: Benj@ce.et.tudelft.nl

M. Alvarez Mesa
Technical University of Catalonia (UPC), Barcelona, Spain
e-mail: alvarez@ac.upc.edu

A. Ramirez
Barcelona Supercomputing Center (BSC), Barcelona, Spain
e-mail: alex.ramirez@bsc.es

Using real movie sequences we find a maximum MB
parallelism ranging from 4000 to 7000. We also per-
form a case study to assess the practical value and
possibilities of a highly parallelized H.264 application.
The results show that H.264 exhibits sufficient paral-
lelism to efficiently exploit the capabilities of future
manycore CMPs.

Keywords H.264 · Chip multiprocessors · Scalability ·
Parallel processing · Video codecs

1 Introduction

We are witnessing a paradigm shift in computer ar-
chitecture towards chip multiprocessors (CMPs). In
the past performance has improved mainly due to
higher clock frequencies and architectural approaches
to exploit instruction-level parallelism (ILP), such as
pipelining, multiple issue, out-of-order execution, and
branch prediction. It seems, however, that these sources
of performance gains are exhausted. New techniques to
exploit more ILP are showing diminishing results while
being costly in terms of area, power, and design time.
Also clock frequency increase is flattening out, mainly
because pipelining has reached its limit. As a result,
industry, including IBM, Sun, Intel, and AMD, turned
to CMPs.

At the same time we see that we have hit the
power wall and thus performance increase can only
be achieved without increasing overall power. In other
words, power efficiency (performance per watt or
performance per transistor) has become an impor-
tant metric for evaluation. CMPs allow power efficient
computation. Even if real-time performance can be

174 J Sign Process Syst (2009) 57:173–194

achieved with few cores, using manycores improves
power efficiency as, for example, voltage/frequency
scaling can be applied. That is also the reason why
low power architectures are the first to apply the CMP
paradigm on large scale [1, 2].

It is expected that the number of cores on a CMP
will double every three year [3], resulting in an es-
timate of 150 high performance cores on a die in
2017. For power efficiency reasons CMPs might as
well consist of many simple and small cores which
might count up to thousand and more [4]. A central
question is whether applications scale to such large
number of cores. If applications are not extensively par-
allelizable, cores will be left unused and performance
might suffer. Also, achieving power efficiency on many-
cores relies on thread-level parallelism (TLP) offered
by applications.

In this paper we investigate this issue for video de-
coding workloads by analyzing their parallel scalability.
Multimedia applications remain important workloads
in the future and video codecs are expected to be
important benchmarks for all kind of systems, ranging
from low power mobile devices to high performance
systems. Specifically, we analyze the parallel scalability
of an H.264 decoder by exploring the limits to the
amount of TLP. This research is similar to the video
applications limit study of ILP presented in [5] in 1996.
Investigating the limits to TLP, however requires to
set a bound to the granularity of threads. Without this
bound a single instruction can be a thread, which is
clearly not desirable. Thus, using emerging techniques
such as light weight micro-threading [6], possibly even
more TLP can be exploited. However, we show that
considering down to macroblock (MB) level granular-
ity, H.264 contains sufficient parallelism to sustain a
manycore CMP.

This paper is organized as follows. In Section 2
a brief overview of the H.264 standard is provided.
Next, in Section 3 we describe the benchmark we use
throughout this paper. In Section 4 possible paralleliza-
tion strategies are discussed. In Section 5 we analyze
the parallel scalability of the best previously proposed
parallelization technique. In Section 6 we propose the

Dynamic 3D-Wave parallelization strategy. Using this
new parallelization strategy in Section 7 we investigate
the parallel scalability of H.264 and show it exhibits
huge amounts of parallelism. Section 8 describes a case
study to assess the practical value of a highly paral-
lelized decoder. In Section 9 we provide an overview
of related work. Section 10 concludes the paper and
discusses future work.

2 Overview of the H.264 Standard

Currently, the best video coding standard, in terms
of compression and quality is H.264 [7]. It is used
in HD-DVD and blu-ray Disc, and many countries
are using/will use it for terrestrial television broadcast,
satellite broadcast, and mobile television services. It
has a compression improvement of over two times
compared to previous standards such as MPEG-4 ASP,
H.262/MPEG-2, etc. The H.264 standard [8] was de-
signed to serve a broad range of application domains
ranging from low to high bitrates, from low to high
resolutions, and a variety of networks and systems,
e.g., Internet streams, mobile streams, disc storage,
and broadcast. The H.264 standard was jointly de-
veloped by ITU-T Video Coding Experts Group and
ISO/IEC Moving Picture Experts Group (MPEG). It
is also called MPEG-4 part 10 or AVC (advanced
video coding).

Figures 1 and 2 depict block diagrams of the de-
coding and the encoding process of H.264. The main
kernels are Prediction (intra prediction or motion es-
timation), Discrete Cosine Transform (DCT), Quanti-
zation, Deblocking filter, and Entropy Coding. These
kernels operate on MBs, which are blocks of 16 ×
16 pixels, although the standard allows some kernels
to operate on smaller blocks, down to 4 × 4. H.264
uses the YCbCr color space with mainly a 4:2:0 sub-
sampling scheme.

A movie picture is called a frame and can consist of
several slices or slice groups. A slice is a partition of a
frame such that all comprised MBs are in scan order
(from left to right, from top to bottom). The Flexible

Figure 1 Block diagram of
the decoding process.

Uncompressed
video

Compressed
video Entropy

IDCT
Deblocking

filter
Inverse

quantization

buffer
Frame

MC
prediction

prediction
Intra

decoding

J Sign Process Syst (2009) 57:173–194 175

Figure 2 Block diagram
of the encoding process.

Uncompressed
video

Compressed
video

DCT
 coding

Entropy

buffer
Frame

Deblocking
filter

Intra
prediction

MC
prediction

IDCT
Inverse

quantization

Quantization

ME
prediction

Decoder

Macroblock Ordering feature allows slice groups to be
defined, which consist of an arbitrary set of MBs. Each
slice group can be partitioned into slices in the same
way a frame can. Slices are self contained and can be
decoded independently.

H.264 defines three main types of slices/frames: I,
P, and B-slices. An I-slice uses intra prediction and is
independent of other slices. In intra prediction a MB
is predicted based on adjacent blocks. A P-slice uses
motion estimation and intra prediction and depends
on one or more previous slices, either I, P or B. Mo-
tion estimation is used to exploit temporal correlation
between slices. Finally, B-slices use bidirectional mo-
tion estimation and depend on slices from past and
future [9]. Figure 3 shows a typical slice order and the
dependencies, assuming each frame consist of one slice
only. The standard also defines SI and SP slices that are
slightly different from the ones mentioned before and
which are targeted at mobile and Internet streaming
applications.

The H.264 standard has many options. We briefly
mention the key features and compare them to pre-
vious standards. Table 1 provides an overview of
the discussed features for MPEG-2, MPEG-4 ASP,

I B B P B B P

Figure 3 A typical slice/frame sequence and its dependencies.

and H.264. The different columns for H.264 represent
profiles which are explained later. For more details the
interested reader is referred to [10, 11].

Motion estimation Advances in motion estimation is
one of the major contributors to the compression
improvement of H.264. The standard allows variable
block sizes ranging from 16 × 16 down to 4 × 4, and
each block has its own motion vector(s). The motion
vector is quarter sample accurate. Multiple reference
frames can be used in a weighted fashion. This sig-
nificantly improves coding occlusion areas where an
accurate prediction can only be made from a frame
further in the past.

Intra prediction Three types of intra coding are sup-
ported, which are denoted as Intra_4×4, Intra_8×8 and
Intra_16×16. The first type uses spatial prediction on
each 4 × 4 luminance block. Eight modes of directional
prediction are available, among them horizontal, verti-
cal, and diagonal. This mode is well suited for MBs with
small details. For smooth image areas the Intra_16×16
type is more suitable, for which four prediction modes
are available. The high profile of H.264 also supports
intra coding on 8 × 8 luma blocks. Chroma components
are estimated for whole MBs using one specialized
prediction mode.

Discrete cosine transform MPEG-2 and MPEG-4 part
2 employed an 8 × 8 floating point transform. However,
due to the decreased granularity of the motion esti-
mation, there is less spatial correlation in the residual
signal. Thus, standard a 4 × 4 (that means 2 × 2 for
chrominance) transform is used, which is as efficient as
a larger transform [12]. Moreover, a smaller block size
reduces artifacts known as ringing and blocking. An
optional feature of H.264 is Adaptive Block size Trans-
form, which adapts the block size used for DCT to the
size used in the motion estimation [13]. Furthermore,

176 J Sign Process Syst (2009) 57:173–194

Table 1 Comparison of video coding standards and profiles.

MPEG-2 MPEG-4 ASP H.264 BP H.264 MP H.264 XP H.264 HiP

Picture types I, P, B I, P, B I, P I, P, B I, P, B, SI, SP I, P, B
Flexible macroblock No No Yes No Yes No

ordering
Motion block size 16×16 16×16, 16×8, 16×16, 16×8, 16×16, 16×8, 16×16, 16×8, 16×16, 16×8,

8×8 8×16, 8×8, 8×4, 8×16, 8×8, 8×4, 8×16, 8×8, 8×4, 8×16, 8×8, 8×4,
4×8, 4×4 4×8, 4×4 4×8, 4×4 4×8, 4×4

Multiple reference No No Yes Yes Yes Yes
frames

Motion pel accuracy 1, 1/2 1, 1/2, 1/4 1, 1/2, 1/4 1, 1/2, 1/4 1, 1/2, 1/4 1, 1/2, 1/4
Weighted prediction No No No Yes Yes Yes
Transform 16×16 8×8 DCT 4×4 integer DCT 4×4 integer DCT 4×4 integer DCT 4×4, 8×8 integer

DCT
In-loop deblocking No No Yes Yes Yes Yes

filter

Entropy coding VLC VLC CAVLC, UVLC CAVLC, UVLC, CAVLC, UVLC CAVLC, UVLC,
CABAC CABAC

to prevent rounding errors that occur in floating point
implementations, an integer transform was chosen.

Deblocking filter Processing a frame in MBs can pro-
duce blocking artifacts, generally considered the most
visible artifact in prior standards. This effect can be
resolved by applying a deblocking filter around the
edges of a block. The strength of the filter is adaptable
through several syntax elements [14]. While in H.263+
this feature was optional, in H.264 it is standard and it is
placed within the motion compensated prediction loop
(see Fig. 1) to improve the motion estimation.

Entropy coding There are two classes of entropy
coding available in H.264: Variable Length Coding
(VLC) and Context Adaptive Binary Arithmetic Cod-
ing (CABAC). The latter achieves up to 10% better
compression but at the cost of large computational
complexity [15]. The VLC class consists of Context
Adaptive VLC (CAVLC) for the transform coeffi-
cients, and Universal VLC (UVLC) for the small re-
maining part. CAVLC achieves large improvements
over simple VLC, used in prior standards, without the
full computational cost of CABAC.

The standard was designed to suite a broad range
of video application domains. However, each domain
is expected to use only a subset of the available op-
tions. For this reason profiles and levels were specified
to mark conformance points. Encoders and decoders
that conform to the same profile are guaranteed to
interoperate correctly. Profiles define sets of coding
tools and algorithms that can be used while levels place
constraints on the parameters of the bitstream.

The standard initially defined two profiles, but has
since then been extended to a total of 11 profiles,
including three main profiles, four high profiles, and
four all-intra profiles. The three main profiles and the
most important high profile are:

• Baseline Profile (BP): the simplest profile mainly
used for video conferencing and mobile video.

• Main Profile (MP): intended to be used for con-
sumer broadcast and storage applications, but over-
taken by the high profile.

• Extended Profile (XP): intended for streaming
video and includes special capabilities to improve
robustness.

• High Profile (HiP) intended for high definition
broadcast and disc storage, and is used in HD DVD
and Blu-ray.

Besides HiP there are three other high profiles that sup-
port up to 14 bits per sample, 4:2:2 and 4:4:4 sampling,
and other features [16]. The all-intra profiles are similar
to the high profiles and are mainly used in professional
camera and editing systems.

In addition 16 levels are currently defined which are
used for all profiles. A level specifies, for example, the
upper limit for the picture size, the decoder processing
rate, the size of the multi-picture buffers, and the video
bitrate. Levels have profile independent parameters as
well as profile specific ones.

3 Benchmark

Throughout this paper we use the HD-VideoBench
[17], which provides movie test sequences, an encoder

J Sign Process Syst (2009) 57:173–194 177

(X264 [18]), and a decoder (FFmpeg [19]). The bench-
mark contains the following test sequences:

• rush_hour: rush-hour in Munich city; static back-
ground, slowly moving objects.

• riverbed: riverbed seen through waving water;
abrupt and stochastic changes.

• pedestrian: shot of a pedestrian area in city center;
static background, fast moving objects.

• blue_sky: top of two trees against blue sky; static
objects, sliding camera.

All movies are available in three formats: 720×576
(SD), 1280×720 (HD), 1920×1088 (FHD). Each movie
has a frame rate of 25 frames per second and has a
length of 100 frames. For some experiments longer se-
quences were required, which we created by replicating
the sequences. Unless specified otherwise, for SD and
HD we used sequences of 300 frames while for FHD
we used sequences of 400 frames.

The benchmark provides the test sequences in raw
format. Encoding is done with the X264 encoder us-
ing the following options: 2 B-frames between I and
P frames, 16 reference frames, weighted prediction,
hexagonal motion estimation algorithm (hex) with
maximum search range 24, one slice per frame, and
adaptive block size transform. Movies encoded with
this set of options represent the typical case. To test
the worst case scenario we also created movies with
large motion vectors by encoding the movies with the
exhaustive search motion estimation algorithm (esa)
and a maximum search range of 512 pixels. The first
movies are marked with the suffix ’hex’ while for the
latter we use ‘esa’.

4 Parallelizing H.264

The coding efficiency gains of advanced video codecs
like H.264, come at the price of increased compu-
tational requirements. The demands for computing
power increases also with the shift towards high defini-
tion resolutions. As a result, current high performance
uniprocessor architectures are not capable of provid-
ing the required performance for real-time processing
[20–23]. Figure 4 depicts the performance of the FFm-
peg H.264 decoder optimized with SIMD instructions
on a superscalar processor (Intel IA32 Xeon processor
at 2.4 GHz with 512KB of L2 cache) and compare it
with other video codecs. For FHD resolution this high
performance processor is not able to achieve real-time
operation. And, the trend in future video applications is
toward higher resolutions and higher quality video sys-
tems that in turn require more performance. As, with

 0

 50

 100

 150

 200

 250

FHDHDSDFHDHDSDFHDHDSDFHDHDSD

F
ra

m
es

 p
er

 s
ec

on
d

(f
ps

)

blue_sky pedestrian riverbed rush_hour

MPEG-2_SIMD
MPEG-4_SIMD

H.264_SIMD
Real time

Figure 4 H.264 decoding performance.

the shift towards the CMP paradigm, most hardware
performance increase will come from the capability
of running many threads in parallel, it is necessary to
parallelize H.264 decoding.

Moreover, the power wall forces us to compute
power efficient. This requires the utilization of all the
cores CMPs offer, and thus applications have to be par-
allelizable to a great extend. In this section we analyze
the possibilities for parallelization of H.264 and com-
pare them in terms of communication, synchronization,
load balancing, scalability and software optimization.

The H.264 codec can be parallelized either by a task-
level or data-level decomposition. In Fig. 5 the two
approaches are sketched. In task-level decomposition
individual tasks of the H.264 Codec are assigned to
processors while in data-level decomposition different
portions of data are assigned to processors running the
same program.

4.1 Task-level Decomposition

In a task-level decomposition the functional partitions
of the algorithm are assigned to different processors.
As shown in Fig. 1 the process of decoding H.264
consists of performing a series of operations on the
coded input bitstream. Some of these tasks can be done
in parallel. For example, Inverse Quantization (IQ) and
the Inverse Transform (IDCT) can be done in parallel
with the Motion Compensation (MC) stage. In Fig. 5a
the tasks are mapped to a 4-processor system. A control
processor is in charge of synchronization and parsing
the bitstream. One processor is in charge of Entropy
Decoding, IQ and IDCT, another one of the prediction
stage (MC or IntraP), and a third one is responsible for
the deblocking filter.

178 J Sign Process Syst (2009) 57:173–194

(a) (b)

Figure 5 H.264 parallelization techniques. a Task-level decomposition. b Data-level decomposition.

Task-level decomposition requires significant com-
munication between the different tasks in order to
move the data from one processing stage to the other,
and this may become the bottleneck. This overhead
can be reduced using double buffering and blocking
to maintain the piece of data that is currently be-
ing processed in cache or local memory. Additionally,
synchronization is required for activating the different
modules at the right time. This should be performed by
a control processor and adds significant overhead.

The main drawbacks, however, of task-level decom-
position are load balancing and scalability. Balancing
the load is difficult because the time to execute each
task is not known a priori and depends on the data
being processed. In a task-level pipeline the execution
time for each stage is not constant and some stage
can block the processing of the others. Scalability is
also difficult to achieve. If the application requires
higher performance, for example by going from stan-
dard to high definition resolution, it is necessary to re-
implement the task partitioning which is a complex task
and at some point it could not provide the required per-
formance for high throughput demands. Finally from
the software optimization perspective the task-level
decomposition requires that each task/processor im-
plements a specific software optimization strategy, i.e.,
the code for each processor is different and requires
different optimizations.

4.2 Data-level Decomposition

In a data-level decomposition the work (data) is di-
vided into smaller parts and each assigned to a differ-
ent processor, as depicted in Fig. 5b. Each processor

runs the same program but on different (multiple)
data elements (SPMD). In H.264 data decomposition
can be applied at different levels of the data struc-
ture (see Fig. 6), which goes down from Group of
Pictures (GOP), to frames, slices, MBs, and finally to
variable sized pixel blocks. Data-level parallelism can
be exploited at each level of the data structure, each
one having different constraints and requiring different
parallelization methodologies.

4.2.1 GOP-level Parallelism

The coarsest grained parallelism is at the GOP level.
H.264 can be parallelized at the GOP-level by defining
a GOP size of N frames and assigning each GOP to

Figure 6 H.264 data structure.

J Sign Process Syst (2009) 57:173–194 179

a processor. GOP-level parallelism requires a lot of
memory for storing all the frames, and therefore this
technique maps well to multicomputers in which each
processing node has a lot of computational and memory
resources. However, parallelization at the GOP-level
results in a very high latency that cannot be tolerated
in some applications. This scheme is therefore not
well suited for multicore architectures, in which the
memory is shared by all the processors, because of
cache pollution.

4.2.2 Frame-level Parallelism for Independent Frames

After GOP-level there is frame-level parallelism. As
shown in Fig. 3 in a sequence of I-B-B-P frames inside
a GOP, some frames are used as reference for other
frames (like I and P frames) but some frames (the B
frames in this case) might not. Thus in this case the B
frames can be processed in parallel. To do so, a con-
trol processor can assign independent frames to differ-
ent processors. Frame-level parallelism has scalability
problems due to the fact that usually there are no more
than two or three B frames between P frames. This
limits the amount of TLP to a few threads. However,
the main disadvantage of frame-level parallelism is that,
unlike previous video standards, in H.264 B frames
can be used as reference [24]. In such a case, if the
decoder wants to exploit frame-level parallelism, the
encoder cannot use B frames as reference. This might
increase the bitrate, but more importantly, encoding
and decoding are usually completely separated and
there is no way for a decoder to enforce its preferences
to the encoder.

4.2.3 Slice-level Parallelism

In H.264 and in most current hybrid video coding stan-
dards each picture is partitioned into one or more slices.
Slices have been included in order to add robustness
to the encoded bitstream in the presence of network
transmission errors and losses. In order to accomplish
this, slices in a frame should be completely independent
from each other. That means that no content of a slice
is used to predict elements of other slices in the same
frame, and that the search area of a dependent frame
can not cross the slice boundary [10, 16]. Although sup-
port for slices have been designed for error resilience,
it can be used for exploiting TLP because slices in a
frame can be encoded or decoded in parallel. The main
advantage of slices is that they can be processed in
parallel without dependency or ordering constraints.
This allows exploitation of slice-level parallelism with-
out making significant changes to the code.

However, there are some disadvantages associated
with exploiting TLP at the slice level. The first one is
that the number of slices per frame is determined by
the encoder. That poses a scalability problem for par-
allelization at the decoder level. If there is no control
of what the encoder does then it is possible to receive
sequences with few (or one) slices per frame and in such
cases there would be reduced parallelization opportuni-
ties. The second disadvantage comes from the fact that
in H.264 the encoder can decide that the deblocking
filter has to be applied across slice boundaries. This
greatly reduces the speedup achieved by slice level par-
allelism. Another problem is load balancing. Usually
slices are created with the same number of MBs, and
thus can result in an imbalance at the decoder because
some slices are decoded faster than others depending
on the content of the slice.

Finally, the main disadvantage of slices is that an
increase in the number of slices per frame increases
the bitrate for the same quality level (or, equivalently,
it reduces quality for the same bitrate level). Figure 7
shows the increase in bitrate due to the increase of the
number of slices for four different input videos at three
different resolutions. The quality is maintained con-
stant (40 PSNR). When the number of slices increases
from one to eight, the increase in bitrate is less than
10%. When going to 32 slices the increase ranges from
3% to 24%, and when going to 64 slices the increase
ranges from 4% up to 34%. For some applications
this increase in the bitrate is unacceptable and thus
a large number of slices is not possible. As shown in
the figure the increase in bitrate depends heavily on
the input content. The riverbed sequence is encoded
with very little motion estimation, and thus has a large
absolute bitrate compared to the other three sequences.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 10 100

In
cr

ea
se

 in
 b

itr
at

e

slices

blue_sky_576
pedestrian_576

riverbed_576
rush_hour_576
blue_sky_720

pedestrian_720
riverbed_720

rush_hour_720
blue_sky_1088

pedestrian_1088
riverbed_1088

rush_hour_1088

Figure 7 Bitrate increase due to slices.

180 J Sign Process Syst (2009) 57:173–194

Figure 8 Dependencies between neighboring MBs in H.264.

Thus, the relative increase in bitrate is much lower than
the others.

4.2.4 Macroblock-level Parallelism

There are two ways of exploiting MB-level parallelism:
in the spatial domain and/or in the temporal domain.
In the spatial domain MB-level parallelism can be ex-
ploited if all the intra-frame dependencies are satisfied.
In the temporal domain MB-level parallelism can be ex-
ploited if, in addition to the intra-dependencies, inter-
frame dependencies are satisfied.

4.2.5 Macroblock-level Parallelism in the Spatial
Domain (2D-Wave)

Usually MBs in a slice are processed in scan order,
which means starting from the top left corner of the
frame and moving to the right, row after row. To exploit

MBs processed

MBs in flight

MBs to be processed

T3 T4 T5

T3

T5

T7

T4 T5 T6 T7

T6 T7 T8 T9

T8 T9 T10 T11

T9 T10 T11 T12 T13

MB (2,0) MB (3,0) MB (4,0)

MB (0,1) MB (1,1) MB (2,1) MB (3,1) MB (4,1)

MB (0,2) MB (1,2) MB (2,2) MB (3,2) MB (4,2)

MB (0,3) MB (1,3) MB (2,3) MB (3,3) MB (4,3)

MB (0,4) MB (1,4) MB (2,4) MB (3,4) MB (4,4)

MB (0,0)
T1

MB (1,0)
T2

Figure 9 2D-Wave approach for exploiting MB parallelism in
the spatial domain. The arrows indicate dependencies.

Table 2 Maximum parallel MBs for several resolutions using the
2D-Wave approach.

Resolution MBs Slots

QCIF 176×144 6 4
CIF 352×288 11 8
SD 720×576 23 14
HD 1280×720 40 6
FHD 1920×1088 60 9

Also the number of times slots this maximum is available is
stated.

parallelism between MBs inside a frame it is necessary
to take into account the dependencies between them. In
H.264, motion vector prediction, intra prediction, and
the deblocking filter use data from neighboring MBs
defining a structured set of dependencies. These depen-
dencies are shown in Fig. 8. MBs can be processed out
of scan order provided these dependencies are satisfied.
Processing MBs in a diagonal wavefront manner satis-
fies all the dependencies and at the same time allows
to exploit parallelism between MBs. We refer to this
parallelization technique as 2D-Wave.

Figure 9 depicts an example for a 5×5 MBs image
(80×80 pixels). At time slot T7 three independent MBs
can be processed: MB (4,1), MB (2,2) and MB (0,3).
The figure also shows the dependencies that need to
be satisfied in order to process each of these MBs. The
number of independent MBs in each frame depends on
the resolution. In Table 2 the number of independent
MBs for different resolutions is stated. For a low res-
olution like QCIF there are only 6 independent MBs
during 4 time slots. For High Definition (1920×1088)
there are 60 independent MBs during 9 slots of time.
Figure 10 depicts the available MB parallelism over

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

Figure 10 MB parallelism for a single FHD frame using the 2D-
Wave approach.

J Sign Process Syst (2009) 57:173–194 181

time for a FHD resolution frame, assuming that the
time to decode a MB is constant.

MB-level parallelism in the spatial domain has many
advantages over other schemes for parallelization of
H.264. First, this scheme can have a good scalability.
As shown before the number of independent MBs
increases with the resolution of the image. Second, it is
possible to achieve a good load balancing if a dynamic
scheduling system is used. That is due to the fact that
the time to decode a MB is not constant and depends
on the data being processed. Load balancing could
take place if a dynamic scheduler assigns a MB to a
processor once all its dependencies have been satisfied.
Additionally, because in MB-level parallelization all
the processors/threads run the same program the same
set of software optimizations (for exploiting ILP and
SIMD) can be applied to all processing elements.

However, this kind of MB-level parallelism has some
disadvantages. The first one is the fluctuating number
of independent MBs (see Fig. 10) causing underutiliza-
tion of cores and decreased total processing rate. The
second disadvantage is that entropy decoding cannot
be parallelized at the MB level. MBs of the same slice
have to be entropy decoded sequentially. If entropy
decoding is accelerated with specialized hardware MB
level parallelism could still provide benefits.

4.2.6 Macroblock-level Parallelism in the Temporal
Domain

In the decoding process the dependency between
frames is in the MC module only. MC can be regarded
as copying an area, called the reference area, from the
reference frame, and then to add this predicted area to
the residual MB to reconstruct the MB in the current
frame. The reference area is pointed to by a Motion
Vector (MV). Although the limit to the MV length is
defined by the standard as 512 pixels vertical and 2048
pixels horizontal, in practice MVs are within the range
of dozens of pixels.

When the reference area has been decoded it can be
used by the referencing frame. Thus it is not necessary
to wait until a frame is completely decoded before
decoding the next frame. The decoding process of the
next frame can start after the reference areas of the
reference frames are decoded. Figure 11 shows an ex-
ample of two frames where the second depends on the
first. MBs are decoded in scan order and one at a time.
The figure shows that MB (2, 0) of frame i + 1 depends
on MB (2, 1) of frame i which has been decoded. Thus
this MB can be decoded even though frame i is not
completely decoded.

Figure 11 MB-level parallelism in the temporal domain in H.264.

The main disadvantage of this scheme is the limited
scalability. The number of MBs that can be decoded in
parallel is inversely proportional to the length of the
vertical motion vector component. Thus for this scheme
to be beneficial the encoder should be enforced to
heavily restrict the motion search area which in far most
cases is not possible. Assuming it would be possible, the
minimum search area is around 3 MB rows: 16 pixels
for the co-located MB, 3 pixels at the top and at the
bottom of the MB for sub-sample interpolations and
some pixels for motion vectors (at least 10). As a result
the maximum parallelism is 14, 17 and 27 MBs for STD,
HD and FHD frame resolutions respectively.

The second limitation of this type of MB-level par-
allelism is poor load-balancing because the decoding
time for each frame is different. It can happen that a
fast frame is predicted from a slow frame and can not
decode faster than the slow frame and remains idle for
some time. Finally, this approach works well for the
encoder who has the freedom to restrict the range of
the motion search area. In the case of the decoder the
motion vectors can have large values (even if the user
ask the encoder to restrict them as we will show later)
and the number of frames that can be processed in
parallel is reduced.

This approach has been implemented in the X264
open source encoder and in the Intel Integrated Per-
formance Primitives See Section 9.

4.2.7 Combining Macroblock-level Parallelism
in the Spatial and Temporal Domains
(3D-Wave)

None of the single approaches described in the pre-
vious sections scales to future manycore architectures
containing 100 cores or more. There is a considerable
amount of MB-level parallelism, but in the spatial do-
main there are phases with a few independent MBs,

182 J Sign Process Syst (2009) 57:173–194

Figure 12 3D-Wave strategy: frames can be decoded in parallel
because inter frame dependencies have limited spatial range.

and in the temporal domain scalability is limited by the
height of the frame.

In order to overcome these limitations it is possible
to exploit both temporal and spatial MB-level paral-
lelism. Inside a frame, spatial MB-level parallelism can
be exploited using the 2D wave scheme mentioned pre-
viously. And between frames temporal MB-level par-
allelism can be exploited simultaneously. Adding the
inter-frame parallelism (time) to the 2D-Wave intra-
frame parallelism (space) results in a combined 3D-
Wave parallelization. Figure 12 illustrates this way of
parallel decoding of MBs.

3D-Wave MB decoding requires a scheduler for
assigning MBs to processors. This scheduling can be
performed in a static or a dynamic way. Static 3D-Wave
exploits temporal parallelism by assuming that the mo-
tion vectors have a restricted length, based on that it
uses a fixed spatial offset between decoding consecutive
frames. This static approach has been implemented in
previous work (See Section 9) for the H.264 encoder.
Although this approach is suitable for the encoder, it is
not so much for the decoder. As it is the encoder that
determines the MV length, the decoder has to assume
the worst case scenario and a lot of parallelism would
be unexploited.

Our proposal is the Dynamic 3D-Wave approach,
which to the best of our knowledge has not been

Figure 13 3D-Wave strategy: intra- and inter-frame dependen-
cies between MBs.

reported before. It uses a dynamic scheduling system
in which MBs are scheduled for decoding when all the
dependencies (intra-frame and inter-frame) have been
satisfied (see Fig. 13). The Dynamic 3D-Wave system
results in a better thread scalability and a better load-
balancing. A more detailed analysis of the Dynamic
3D-Wave is presented in Section 6.

4.2.8 Block-level Parallelism

Finally, the finest grained data-level parallelism is at
the block-level. Most of the computations of the H.264
kernels are performed at the block level. This applies,
for example, to the interpolations that are done in
the MC stage, to the IDCT, and to the deblocking
filter. This level of data parallelism maps well to SIMD
instructions [20, 25–27]. SIMD parallelism is orthogonal
to the other levels of parallelism described above and
because of that it can be mixed, for example, with
MB-level parallelization to increase the performance of
each thread.

5 Parallel Scalability of the Static 3D-Wave

In the previous section we suggested that using the 3D-
Wave strategy for decoding H.264 would reveal a large
amount of parallelism. We also mentioned that two
strategies are possible: a static and a dynamic approach.
Zhao [28] used a method similar to the Static 3D-Wave
for encoding H.264 which so far has been the most
scalable approach to H.264 coding. However, a limit
study to the scalability of his approach is lacking. In
order to compare our dynamic approach to his, in this
section we analyze the parallel scalability of the Static
3D-Wave.

The Static 3D-Wave strategy assumes a static max-
imum MV length and thus a static reference range.
Figure 14 illustrates the reference range concept,

Figure 14 Reference range example: hashed area on frame 0 is
the reference range of the hashed MB of frame 1.

J Sign Process Syst (2009) 57:173–194 183

assuming a MV range of 32 pixels. The hashed MB in
Frame 1 is the MB currently considered. As the MV
can point to any area in the range of [−32,+32] pixels,
its reference range is the hashed area in Frame 0. In
the same way, every MB in the wave front of Frame 1
has a reference range similar to the presented one,
with its respective displacement. Thus, if a minimum
offset, corresponding to the MV range, between the two
wavefronts is maintained, the frames can be decoded
in parallel.

As in Section 4.2, to calculate the number of parallel
MBs, it is assumed that processing a MB requires one
time slot. In reality, different MBs require different
processing times, but this can be solved using a dynamic
scheduling system. Furthermore, the following conserv-
ative assumptions are made to calculate the amount of
MB parallelism. First, B frames are used as reference
frames. Second, the reference frame is always the pre-
vious one. Third, only the first frame of the sequence is
an I frame. These assumptions represent the worst case
scenario for the Static 3D-Wave.

The number of parallel MBs is calculated as follows.
First, we calculate the MB parallelism function for
one frame using the 2D-Wave approach, as in Fig. 10.
Next, given a MV range, we determine the required
offset between the decoding of two frames. Finally, we
added the MB parallelism function of all frames using
the offset. Formally, let h0(t) be the MB parallelism
function of the 2D-Wave inside frame 0. This graph of
this function is depicted in Fig. 10 for a FHD frame.
Then the MB parallelism function of frame i is com-
puted as hi(t) = hi−1(t − offset) for i > 1. The MB par-
allelism function of the total Static 3D-Wave is given by
H(t) = ∑

i hi(t).
The offset is calculated as follows. For motion vec-

tors with a maximum length of 16 pixels, it is possible to
start the decoding of the second frame when the MBs
(1,2) and (2,1) of the first frame have been decoded.
Of these, MB (1,2) is the last one decoded, namely at
time slot T6 (see Fig. 9). Thus, the next frame can be
started decoding at time slot T7, resulting in an offset
of 4 time slots. Similarly, for maximum MV ranges of
32, 64, 128, 256, and 512 pixels, we find an offset of 9,
15, 27, 51, and 99 time slots, respectively. In general,
for a MV range of n pixels, the offset is 3 + 3 × �n/16�
time slots.

First, we investigate the maximum amount of avail-
able MB parallelism using the Static 3D-Wave strategy.
For each resolution we applied the Static 3D-Wave
to MV ranges of 16, 32, 64, 128, 256, and 512 pixels.
The range of 512 pixels is the maximum vertical MV
length allowed in level 4.0 (HD and FHD) of the
H.264 standard.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

MV 16
MV 32
MV 64

MV 128
MV 256
MV 512

Figure 15 Static 3D-Wave: number of parallel MBs for FHD
resolution using several MV ranges.

Figure 15 depicts the amount of MB-level parallelism
as a function of time, i.e., the number of MBs that could
be processed in parallel in each time slot for a FHD
sequence using several MV ranges. The graph depicts
the start of the video sequence only. At the end of the
movie the MB parallelism drops similar as it increased
at startup. For large MV ranges, the curves have a small
fluctuation which is less for small MV ranges. Figure 16
shows the corresponding number of frames in flight for
each time slot. The shape of the curves for SD and
HD resolutions are similar and, therefore, are omitted.
Instead, Table 3 presents the maximum MB parallelism
and frames in flight for all resolutions.

The results show that the Static 3D-Wave offers
significant parallelism if the MV length is restricted
to 16 pixels. However, in most cases this restriction

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700

F
ra

m
es

 in
 fl

ig
ht

Time

MV 16
MV 32
MV 64

MV 128
MV 256
MV 512

Figure 16 Static 3D-Wave: number of frames in flight for FHD
resolution using several MV ranges.

184 J Sign Process Syst (2009) 57:173–194

Table 3 Static 3D-Wave: maximum MB parallelism and frames
in flight for several MV ranges and all three resolutions.

MV range Max # parallel MBs Max # frames in flight

SD HD FHD SD HD FHD

512 – 36 89 – 2 3
256 33 74 163 3 4 5
128 60 134 303 5 7 10
64 108 240 544 8 12 17
32 180 400 907 13 19 29
16 276 600 1360 20 28 43

cannot be guaranteed and the maximum MV length
has to be considered. In such a case the parallelism
drops significant towards the level of the 2D-Wave. The
difference is that the Static 3D-Wave has a sustained
parallelism while the 2D approach has little parallelism
at the beginning and at the end of processing a frame.

6 Scalable MB-level Parallelism: The Dynamic
3D-Wave

In the previous section we showed that the best par-
allelization strategy proposed so far has limited value
for decoding H.264 because of poor scalability. In
Section 4.2.7 we proposed the dynamic 3D-Wave as a
scalable solution and explained its fundamentals. In this
section we further develop the idea and discuss some of
the important implementation issues.

6.1 Static vs Dynamic Scheduling

The main idea of the 3D-wave algorithm is to com-
bine spatial and temporal MB-level parallelism in order
to increase the scalability and improve the processor
efficiency. But in turn it poses a new problem: the
assigning of MBs to processors. In static 3D-wave MBs
are assigned to processors based on a fixed description
of the data flow of the application. For spatial MB-level
parallelism it assigns rows of MBs to processors and
start new rows only when a fixed MB offset has been
completed. For temporal MB-level parallelism it only
starts a new frame when a known offset in the reference
frame has been processed. If the processing of the
dependent MB (in the same or in a different frame)
is taking more time than the predicted by the static
schedule the processor has to wait for the dependent
MB to finish. This kind of static scheduling algorithms
work well for applications with fixed execution times
and fixed precedence constraints. In the case of H.264
decoding these conditions are not met. First, the decod-
ing time of a MB depends on the input data of the MB
and its properties (type, size, etc). Second, the temporal

dependencies of a MB are input dependent and can not
be predicted or restricted by the decoder application.
As a result, a static scheduler can not discover all
the available parallelism and can not sustain a high
efficiency and scalability.

The dynamic 3D-wave tries to solve the above men-
tioned issues by using a dynamic scheduler for assigning
independent MBs to threads. The main idea is to assign
a MB to a processor as soon as its spatial and temporal
dependencies have been resolved. The differences in
processing time and the input dependent precedence
constraring are considered by trying to process the next
ready MB not the next MB in scan, row or frame order.
This implies keeping-track both spatial and temporal
MB dependencies at run time and generating a dynamic
input-dependent data-flow. The global result is a reduc-
tion in the time that a thread spend waiting for ready-
to-process MBs.

6.2 Implementation Issues of Dynamic Scheduling

This dynamic scheduling can be implemented in various
ways. Several issues play a role in this matter such
as thread management overhead, data communication
overhead, memory latency, centralized vs distributed
control, etc. Many of these issues are new to the CMP
paradigm and are research projects in itself.

A possible implementation that we are investigating
is based on a dynamic task model (also known as a
work-queuing model) and is depicted in Fig. 17. In
this model a set of threads is created/activated when
a parallel region is encountered. In the case of the
Dynamic 3D-Wave a parallel region is the decoding
of all MBs in a frame/slice. Each parallel region is

Figure 17 Workqueue model for dynamic 3D-Wave scheduling.

J Sign Process Syst (2009) 57:173–194 185

controlled by a frame manager, which consist of a
thread pool, a task queue, a dependence table and a
control thread as showed in Fig. 17. The thread pool
consists of a group of worker threads that wait for work
on the task queue. The generation of work on the task
queue is dynamic and asynchronous. The dependencies
of each MB are expressed in a dependence table. When
all the dependencies (inter- and intra-frame) for a MB
are resolved a new task is inserted on the task queue.
Any thread from the task queue can take this task
and process it. When a thread finishes the processing
of a task it updates the table of dependencies and if
it founds that at least one MB has resolved its de-
pendencies the current thread can decode it directly.
If that thread wakes-up more than one MB it process
one directly and submit the others into the task queue.
If at the end of the update of the dependence table
there are not a new ready MBs the thread goes to the
task pool to ask for a new MB to be decoded. This
technique has the advantage of distributed control, low
thread management overhead, and also exploits spatial
locality, reducing the data communication overhead. In
this scheme the control thread is responsible only for
handling all the initialization and finalization tasks of
each that are not parallelizable, avoiding centralized
schedulers that impose a big overhead.

Thread synchronization and communication over-
head can also be minimized by taking advantage of
clustering patterns in the dependencies and by using
efficient hardware primitives for accessing shared struc-
tures and managing thread queues [6, 29]. Furthermore,
to reduce data communication groups of MBs can be
assigned to cores, possibly speculating on the MVs. If
cores and memory are placed in a hierarchy, memory
latency can be reduced by decoding spatially neighbor-
ing MBs in the same leaf of the hierarchy.

6.3 Support in the Programming Model

Currently most of the implementation of this dynamic
system should be done with low-level threading APIs
like POSIX threads. That is due to the fact that in
current programming models for multicore architec-
tures there is not a complete support for a dynamic
work-queue model for irregular applications like H.264
decoding. For handling irregular loops with dynamic
generation of threads there has been some proposals of
extensions to current parallel programming models like
OpenMP [30, 31]. A feature that is missing is the possi-
bility of specifying the structured dependencies among
the different units of work. Currently this has to be
implemented manually by the application programmer.

6.4 Managing Entropy Decoding

The different set of dependencies in the kernels imply
that it is necessary to exploit both task- and data-
level parallelism efficiently. Task-level decomposition
is required because entropy decoding has parallelism
at the slice and frame level only. We envision the
following mapping to a heterogeneous CMP. Entropy
decoding is performed on a high frequency core opti-
mized for bit-serial operations. This can be an 8 or 16
bit RISC like core and therefore can be very power
efficient. Several of these cores can operate in parallel
each decoding a slice or a frame. The tasks for these
cores can be spawned by another core that scans the
bitstream, detects the presence or absence of slices,
and provides each entropy decoder the start address
of its bitstream. Once entropy decoding is performed,
the decoding of MBs can be parallelized over as many
cores there are available and as long as there are MBs
available for decoding. The more cores are used, the
lower the frequency and/or voltage can be assuming
real-time performance. Thus the power efficiency scales
with the number of cores.

One issue that has to be mentioned here is Amdahl’s
law for multicores, which states that the total speedup
is limited by the amount of serial code. Considering
a MB-level parallelization there is serial code at the
start of each frame and slice. However, using the 3D-
Wave strategy, this serial code can be hidden in the
background as it can be processed during the time that
other frames or slices provide the necessary parallelism.

6.5 Open Issues

Despite the fact that there are many issues to be re-
solved in this area, it is of major importance to highly
parallelize applications. It seems to be clear that in
the future there will be manycores. However, what is
currently being investigated by computer architecture
researchers, just like the authors are doing, is what
types of cores should be used, how the cores should be
connected, what memory structure should be used, how
the huge amount of threads should be managed, what
programming model should be used, etc. To analyze
design choices like these, it is necessary to analyze the
characteristics of highly parallel applications. A scala-
bility analysis like this is of great value in this sense.

7 Parallel Scalability of the Dynamic 3D-Wave

Now we have established a parallelization strategy that
we expect to be scalable, we move on to our main goal:

186 J Sign Process Syst (2009) 57:173–194

Table 4 Maximum available MB parallelism, and frames in flight for normal encoded movies.

SD HD FHD

MBs Frames Max mv Avg mv MBs Frames Max mv Avg mv MBs Frames Max mv Avg mv

Rush_hour 1199 92 380.5 1.3 2911 142 435 1.8 5741 211 441 2.2
Riverbed 1511 119 228.6 2 3738 185 496 2.2 7297 245 568.9 2.6
Pedestrian 1076 95 509.7 9.2 2208 131 553.5 11 4196 205 554.2 9.9
Blue_sky 1365 99 116 4.4 2687 135 298 5.1 6041 214 498 5.6

Also the maximum and the average motion vectors (in square pixels) are stated.

analyzing the parallel scalability of H.264 decoding.
Remember we perform this analysis in the context of
emerging manycore CMPs, that offer huge amounts of
threads. In the previous section we explained how we
envision to decouple entropy decoding by using task-
level parallelism. Thus it scales with the number of
slices and frames used in the 3D-Wave MB decoding.
However, the parallelism is relatively small compared
to the parallelism provided by the MB decoding. There-
fore omitting the parallelism in entropy decoding does
not significantly influence the results. Of course this as-
sumes the entropy decoders are fast enough to support
real-time decoding.

To investigate the amount of parallelism we modified
the FFmpeg H.264 decoder to analyze real movies,
which we took from the HD-VideoBench. We ana-
lyzed the dependencies of each MB and assigned it a
timestamp as follows. The timestamp of a MB is simply
the maximum of the timestamps of all MBs upon which
it depends (in the same frame as well as in the reference
frames) plus one. Because the frames are processed
in decoding order,1 and within a frame the MBs are
processed from left to right and from top to bottom, the
MB dependencies are observed and it is assured that
the MBs on which a MB B depends have been assigned
their correct timestamps by the time the timestamp of
MB B is calculated. As before, we assume that it takes
one time slot to decode a MB.

To start, the maximum available MB parallelism is
analyzed. This experiment does not consider any prac-
tical or implementation issues, but simply explores the
limits to the parallelism available in the application. We
use the modified FFmpeg as described before and for
each time slot we analyze, first, the number of MBs
that can be processed in parallel during that time slot.
Second, we keep track of the number of frames in flight.
Finally, we keep track of the motion vector lengths. All
experiments are performed for both normal encoded
and esa encoded movies. The first uses a hexagonal
(hex) motion estimation algorithm with a search range

1The decoding order of frames is not equal to display order. The
sequence I-B-B-P as in Fig. 3 is decoded as I-P-B-B sequence.

of 24 pixels, while the later uses an exhaustive search
algorithm and results in worst case motion vectors.

Table 4 summarizes the results for normal encoded
movies and shows that a huge amount of MB paral-
lelism is available. Figure 18 depicts the MB parallelism
time curve for FHD, while Fig. 19 depicts the number
of frames in flight. For the other resolutions the time
curves have a similar shape. The MB parallelism time
curve shows a ramp up, a plateau, and a ramp down. For
example, for blue_sky the plateau starts at time slot 200
and last until time slot 570. Riverbed exhibits so much
MB parallelism that is has a small plateau. Due to the
stochastic nature of the movie, the encoder mostly uses
intra-coding, resulting in very few dependencies be-
tween frames. Pedestrian exhibits the least parallelism.
The fast moving objects in the movie result in many
large motion vectors. Especially objects moving from
right to left on the screen causes large offsets between
MBs in consecutive frames.

Rather surprising is the maximum MV length found
in the movies (see Table 4). The search range of the
motion estimation algorithm was limited to 24 pixels,
but still lengths of more than 500 square pixels are
reported. According to the developers of the X264
encoder this is caused by drifting [32]. For each MB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

rush_hour
riverbed

pedestrian
blue_sky

Figure 18 Number of parallel MBs for FHD resolution using a
400 frames sequence.

J Sign Process Syst (2009) 57:173–194 187

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

F
ra

m
es

 in
 fl

ig
ht

Time

rush_hour
riverbed

pedestrian
blue_sky

Figure 19 Number of frames in flight for FHD resolution using a
400 frames sequence.

the starting MV of the algorithm is predicted using the
result of surrounding MBs. If a number of MBs in a row
use the motion vector of the previous MB and add to
it, the values accumulate and reach large lengths. This
drifting happens only occasionally, and does not signif-
icantly affect the parallelism using dynamic scheduling,
but would force a static approach to use a large offset
resulting in little parallelism.

To evaluate the worst case condition the same ex-
periment was performed for movies encoded using
the exhaustive search algorithm (esa). Table 5 shows
that the average MV length is substantially larger than
for normal encoded movies. The exhaustive search
decreases the amount of parallelism significantly. The
time curve of the MB parallelism in Fig. 20 has a very
jagged shape with large peaks and thus the average on
the plateau is much lower than the peak. In Table 6 the
maximum and the average parallelism for normal (hex)
and esa encoded movies is compared. The average is
taken over all 400 frames, including ramp up and ramp
down. Although the drop in parallelism is significant,
the amount of parallelism is still surprisingly large for
this worst case scenario.

The analysis above reveals that H.264 exhibits signif-
icant amounts of MB parallelism. To exploit this type
of parallelism on a CMP the decoding of MBs needs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000 8000

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

rush_hour
riverbed

pedestrian
blue_sky

Figure 20 Number of parallel MBs for FHD using esa encoding.

to be assigned to the available cores, i.e., MBs map to
cores directly. However, even in future manycores the
hardware resources (cores, memory, and NoC band-
width) will be limited. We now investigate the impact
of resource limitations.

We model limited resources as follows. A limited
number of cores is modeled by limiting the number of
MBs in flight. Memory requirements are mainly related
to the number of frames in flight. Thus limited memory
is modeled by restricting the number of frames that
can be in flight concurrently. Limited NoC bandwidth
is captured by both modeled restrictions. Both restric-
tions decrease the throughput, which is directly related
to the inter-core communication.

The experiment was performed for all four movies of
the benchmark, for all three resolutions, and both types
of motion estimation. The results are similar, thus only
the results for the normal encoded blue_sky movie at
FHD resolution is presented.

First, the impact of limiting the number of MBs in
flight is analyzed. Figure 21 depicts the available MB
parallelism for several limits on the number of MBs
in flight. As expected, for smaller limits, the height of
the plateau is lower and the ramp up and ramp down
are shorter. More important is that for smaller limits,
the plateau becomes very flat. This translates to a high

Table 5 Maximum MB parallelism, and frames in flight for esa encoded movies.

SD HD FHD

MBs Frames Max mv Avg mv MBs Frames Max mv Avg mv MBs Frames Max mv Avg mv

Rush_hour 505 63 712.0 6.9 708 84 699.3 9 1277 89 706.4 9.4
Riverbed 150 27 704.9 62.3 251 25 716.2 63.1 563 37 716.2 83.9
Pedestrian 363 50 691.5 23.5 702 70 709.9 27.7 1298 88 708.5 23.6
Blue_sky 138 19 682.0 10.5 257 23 711.3 13 500 24 705.7 15.7

Also the maximum and the average motion vectors (in square pixels) are stated.

188 J Sign Process Syst (2009) 57:173–194

Table 6 Comparison of the
maximum and average MB
parallelism for hex and esa
encoded movies (FHD only).

FHD

Max MB Avg MB

hex esa � hex esa �

Rush_hour 5741 1277 −77.8% 4121.2 892.3 −78.3%
Riverbed 7297 563 −92.3% 5181.0 447.7 −91.4%
Pedestrian 4196 1298 −69.1% 3108.6 720.8 −76.8%
Blue_sky 6041 500 −91.7% 4571.4 442.6 −90.3%

utilization rate of the available cores. Furthermore, the
figure shows that the decoding time is approximately
linear in the limit on MBs in flight. This is especially
true for smaller limits, where the core utilization is
almost 100%. For larger limits, the core utilization
decreases and the linear relation ceases to be true. In
real systems, however, also communication overhead
has to be taken into account. For smaller limits, this
overhead can be reduced using a smart scheduler that
assigns groups of adjacent MBs to cores. Thus, in real
systems the communication overhead will be less for
smaller limits than for larger limits.

Next, we analyze the impact of restricting the num-
ber of frames concurrently in flight. The MB paral-
lelism curves are depicted in Fig. 22 and show large
fluctuations, possibly resulting in under utilization of
the available cores. These fluctuations are caused by the
coarse grain of the limitation. At the end of decoding a
frame, a small amount of parallelism is available. The
decoding of a new frame, however, has to wait until the
frame currently being processed is finished.

From this experiment we can conclude that for sys-
tems with limited number of cores dynamic scheduling
is able to achieve near optimal performance by (al-
most) fully utilizing the available computational power.
On the contrary, for systems where memory is the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

unlimited
5000
4000
3000
2000
1000

Figure 21 Available MB parallelism in FHD blue_sky, for sev-
eral limits of the number of MBs in flight.

bottleneck, additional performance losses might occur
because of temporal underutilization of the available
cores. In Section 8 we perform a case study, indicating
that memory will likely not be a bottleneck.

We have shown that using the Dynamic 3D-Wave
strategy huge amounts of parallelism are available in
H.264. Analysis of real movies revealed that the num-
ber of parallel MBs ranges from 4000 to 7000. This
amount of MB parallelism might be larger than the
number of cores available. Thus, we have evaluated the
parallelism for limited resources and found that limiting
the number of MBs in flight results in a equivalent
larger decoding time, but a near optimal utilization of
the cores.

8 Case Study: Mobile Video

So far we mainly focused on high resolution and
explored the potential available MB parallelism. The
3D-Wave strategy allows an enormous amount of par-
allelism, possibly more than what a high performance
CMP in the near future could provide. Therefore, in
this section we perform a case study to assess the
practical value and possibilities of a highly parallelized
H.264 decoding application.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000 3500

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

unlimited
150
100

50
25

Figure 22 Available MB parallelism in FHD blue_sky for several
limits of the number of frames in flight.

J Sign Process Syst (2009) 57:173–194 189

For this case study we assume a mobile device such
as the iPhone, but in the year 2015. We take a resolution
of 480×320 just as the screen of the current iPhone. It
is reasonable to expect that the size of mobile devices
will not significantly grow, and limitations on the ac-
curacy of the human eye prevent the resolution from
increasing.

CMPs are power efficient, and thus we expect mobile
devices to adopt them soon and project a 100-core
CMP in 2015. Two examples of state-of-the art embed-
ded CMPs are the Tilera Tile64 and the Clearspeed
CSX600. The Tile64 [2] processor has 64 identical cores
that can run fully autonomously and is well suited to
exploit TLP. The CSX600 [1] contains 96 processing
elements, which are simple and exploit DLP. Both are
good examples of what is already possible today and
the eagerness of the embedded market to adopt the
CMP paradigm. Some expect a doubling of cores every
three years [3]. Even if this growth would be less the
assumption of 100 cores in 2015 seems reasonable.

The iPhone is available with 8 GB of memory. Using
Moore’s law for memory (doubling every two years),
in 2015 this mobile device would contain 128 GB. It is
unclear how much of the flash drive memory is used
as main memory, but let us assume it is only 1%. In
2015 that would mean 1.28 GB and if only half of it
is available for video decoding, then still almost 1400
frames of video fit in main memory. It seems that
memory is not going to be a bottleneck.

We place a limit of 1 s on the latency of the decoding
process. That is a reasonable time to wait for the movie
to appear on the screen, but much longer would not
be acceptable. The iPhone uses a frame rate of 30
frames/second, thus limiting the frames in flight to 30,
causes a latency of 1 s. This can be explained as follows.
Let us assume that the clock frequency is scaled down
as much as possible to save power. When frame x is
started decoding, frame x − 30 has just finished and
is currently displayed. But, since the framerate is 30,
frame x will be displayed 1 second later. Of course this a
rough method and does not consider variations in frame
decoding time, but it is a good estimate.

Putting all assumptions together, the resulting Dy-
namic 3D-Wave strategy has a limit of 100 parallel MBs
and up to 30 frames can be in flight concurrently. For
this case study we use the four normal encoded movies
with a length of 200 frames and a resolution of 480×320.

Figure 23 presents the MB parallelism under these
assumptions as well as for unlimited resources. The
picture shows that even for this small resolution, all
100 cores are utilized nearly all time. The curves for
unrestricted resources show that there is much more
parallelism available than the hardware of this case

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

P
ar

al
le

l m
ac

ro
bl

oc
ks

Time

rush_hour unrestricted
riverbed unrestricted

pedestrian unrestricted
blue_sky unrestricted

rush_hour
riverbed

pedestrian
blue_sky

Figure 23 Number of parallel MBs for the mobile video case
study. Also depicted is the available MB parallelism for the same
resolution but with unrestricted resources.

study offers. This provides opportunities for scheduling
algorithms to reduce communication overhead. The
number of frames in flight is on average 12 with peaks
up to 19. From this we can conclude that the latency is
less then 0.5 s.

From this case study we can draw the following
conclusions:

• Even a low resolution movie exhibits sufficient par-
allelism to fully utilize 100 cores efficiently.

• For mobile devices, memory will likely not be a
bottleneck.

• For mobile devices with a 100-core CMP, start-up
latency will be short (0.5s).

9 Related Work

A lot of work has been done on the parallelization of
video Codecs but most of it has been focused on coarse
grain parallelization for large scale multiprocessor sys-
tems. Shen et al. [33] have presented a parallelization
of the MPEG-1 encoder for the Intel Paragon MIMD
multiprocessor at the GOP level. Bilas et al. [34] has
described an implementation of the MPEG-2 decoder
evaluating GOP and slice-level parallelism on a shared
memory multiprocessor. Akramullah et al. [35] have
reported a parallelization of the MPEG-2 encoder for
cluster of workstations and Taylor et al. [36] have
implemented a MPEG-1 encoder in a multiprocessor
made of 2048 custom DSPs.

There are some works on slice level parallelism
for previous video Codecs. Lehtoranta et al [37] have
described a parallelization of the H.263 encoder at
the slice level for a multiprocessor system made of 4
DSP cores with one master processor and 3 computing

190 J Sign Process Syst (2009) 57:173–194

processors. Lee et al. [38] have also reported an im-
plementation of the MPEG-2 decoder exploiting slice-
level parallelism for HDTV input videos.

Other works have analyzed function-level paral-
lelism. Lin et al. [39] and Cantineau et al. [40] have
reported functional parallelization of the H.263 and
MPEG-2 encoders respectively. They have used a mul-
tiprocessor with one control processor and four DSPs.
Using the same technique Oehring et al. [41] have
reported the parallelization of the MPEG-2 decoder on
a simulator for SMT processors with 4 threads. Yadav
et al. [42] have reported a study on the parallelization
of the MPEG-2 decoder for a multiprocessor SoC ar-
chitecture. They studied slice-level, function-level and
stream-level parallelism. Jacobs et al. [43] have ana-
lyzed MB-level parallelism for MPEG-2 and MPEG-4.

In the specific case of H.264 there has been previous
works in the parallelization at GOP, frame, slice, func-
tion and MB levels.

Gulati et al. [44] describe a system for encoding and
decoding H.264 on a multiprocessor architecture using
a task-level decomposition approach. The decoder is
implemented using one control processor and 3 DSPs.
Using this mapping, a pipeline for processing MBs is
implemented. This system achieves real-time opera-
tion for low resolution video inputs. In a similar way
Schoffmann et al. [45] propose a MB pipeline model
for H.264 decoding. Using an Intel Xeon 4-way SMP
2-SMT architecture their scheme achieves a 2X speed-
up. As as mentioned in Section 4.2 MB pipelining does
not scale for manycore architectures because it is very
complicated to further divide the mapping of tasks for
using more processors.

Some works describe GOP, frame and slice-
level parallelism and combinations between them.
Rodriguez at al. [46] propose an encoder that combines
GOP-level and slice-level parallelism for encoding real-
time H.264 video using clusters of workstations. Frame-
level parallelism is exploited by assigning GOPs to
nodes in a cluster, and after that, slices are assigned
to processors in each cluster node. This methodology
is only applicable to the encoder, which has the free-
dom of selecting the GOP size. Chen et al. [47] have
pproposed a combination of frame-level and slice-level
parallelism. First, they exploit frame level parallelism
(they do not allow the use of B-frames as references).
When the limit of frame-level parallelism has been
reached they explore slice-level parallelism. By using
this approach 4.5X speed-up is achieved in a machine
with 8 cores and 9 slices. Jacobs et al. [43] proposed
a pure slice-level parallelization of H.264 encoder.
Roitzsch [48] has proposed a scheme based on slice-
level parallelism for the H.264 decoder by modifying

the encoder. The main idea is to overcome the load
balancing disadvantage by making an encoder that pro-
duces slices that are not balanced in the number of
MBs, but in their decoding time. The main disadvan-
tages of this approach is that it requires modifications
to the encoder in order to exploit parallelism at the de-
coder. In general, all the proposals based on slice-level
parallelism have the problem of the inherent loss of
coding efficiency due to having a large number of slices.

MB-level parallelism in the spatial domain has been
proposed in several works. Van der Tol et al. [49]
describe it using a simulated shared memory WLIW
multiprocessor. Chen et al. [50] evaluated an imple-
mentation on Pentium machines with SMT and CMP
capabilities. In these works they also suggest the com-
bination of MB-level level parallelism in the spatial
and temporal domains. Temporal MB-level parallelism
is determined statically by the length of the motion
vectors and using only two consecutive frames.

MB-level parallelism in the temporal domain has
been implemented in the X264 open-source en-
coder [18] and in the H.264 Codec that is part of the
Intel Integrated Performance Primitives [51]. In these
cases the encoder limits the vertical motion search
range in order to allow a next frame to start the
encoding before the current one completes. In these
implementations MB-level in the spatial domain is not
exploited, and thus only one MB per frame at a time
is decoded, resulting in a limited scalability. As men-
tioned in Section 4.2 this approach can not be exploited
efficiently in the decoder because there is not a guaran-
tee that the motion vectors have limited values.

A combination of temporal and spatial MB-level
parallelism for H.264 encoding has been discussed by
Zhao et al. [28]. In this approach multiple frames are
processed in parallel similar to X264: a new frame is
started when the search area in the reference frame has
been fully encoded. But in this case MB-level paral-
lelism is also exploited by assigning threads to different
rows inside a frame. This scheme is a variation of what
we call in this paper “Static 3D-Wave”. It is static be-
cause it depends on a fixed value of the motion vectors
in order to exploit frame-level parallelism. This works
for the encoder who has the flexibility of selecting the
search area for motion estimation, but in the case of
the decoder the motion vectors can have big values
and the static approach should take that into account.
Another limitation of this approach is that all the MBs
in the same row are processed by the same proces-
sor/thread. This can result in poor load balancing be-
cause the decoding time of MBs is not constant. Ad-
ditionally, this work is focused on the performance
improvement on the encoder for slow resolutions with

J Sign Process Syst (2009) 57:173–194 191

a small number of processors, discarding an analysis
for a high number of cores as an impractical case and
not taking into account the peculiarities of the decoder.
Finally, they do not address the scalability issues of
their approach in the context of manycore architectures
and high definition applications.

Chong et al. [52] has proposed another technique for
exploiting MB level parallelism in the H.264 decoder
by adding a prepass stage. In this stage the time to
decode a MB is estimated heuristically using some
parts of the compressed information of that MB. Using
the information from the preparsing pass a dynamic
schedule of the MBs of the frame is calculated. MBs
are assigned to processors dynamically according to this
schedule. By using this scheme a speedup of 3.5X has
been reported on a 6 processors simulated system for
small resolution input videos. Although they present
a dynamic scheduling algorithm it seems to be not
able of discovering all the MB level parallelism that is
available in a frame. However, the preparsing scheme
can be beneficial for the Dynamic 3D-Wave algorithm
presented in this paper.

10 Conclusions

In this paper we have investigated if future applications
exhibit sufficient parallelism to exploit the large num-
ber of cores expected in future CMPs. This is important
for performance but maybe even more important for
power efficiency. As a case study, we have analyzed the
parallel scalability of the H.264 video decoding process,
currently the best coding standard.

First, we have discussed the parallelization possibil-
ities and showed that slice-level parallelism has two
main limitations. First, using many slices increases the
bitrate and, second, not all sequences contain many
slices since the encoder determines the number of
slices per frame. It was also shown that frame-level
parallelism, which exploits the fact that some frames
(B frames) are not used as reference frames and can
therefore be processed in parallel, is also not very
scalable because usually there are no more than three B
frames between consecutive P frames and, furthermore,
in H.264 B frames can be used as reference frames.

More promising is MB-level parallelism, which can
be exploited inside a frame in a diagonal wavefront
manner. It was observed that MBs in different frames
are only dependent through motion vectors which
have a limited range. We have therefore proposed
a novel parallelization strategy, called Dynamic 3D-
Wave, which combines MB parallelism with frame-
level parallelism.

Using this new parallelization strategy we performed
a limit study to the amount of MB-level parallelism
available in H.264. We modified FFmpeg and analyzed
real movies. The results revealed that motion vectors
are small on average. As a result a large amount of
parallelism is available. For FHD resolution the total
number of parallel MBs ranges from 4000 to 7000.

Combining MB and frame-level parallelism was
done before for H.264 encoding in a static way. To
compare this with our new dynamic scheme we ana-
lyzed the scalability of the Static 3D-Wave approach
for decoding. Our results show that this approach can
deliver a parallelism of 1360 MBs, but only if motion
vectors are strictly shorter than 16 pixels. In practice
this condition cannot be guaranteed and the worst case
motion vector length has to be assumed. This results in
a parallelism of 89 MBs for FHD. It is clear that the
Dynamic 3D-Wave outperforms the static approach.

We have also performed a case study to assess the
practical value and possibilities of the highly paral-
lelized H.264 decoding. In general, the results show that
our strategy provides sufficient parallelism to efficiently
exploit the capabilities of future manycore CMPs.

The large amount of parallelism available in H.264
indicates that future manycore CMPs can effectively
be used. Although we have focused on H.264, other
video codecs and multimedia applications in general
exhibit similar features and we expect that they can also
exploit the capabilities of manycore CMPs. However,
the findings of this paper also pose a number of new
questions, which we intend to investigate in the future.

First, we will extend the parallelism analysis to in-
clude variable MB decoding time. We will investigate
its impact on the dynamic scheduling algorithm, the
amount of available parallelism, and performance. Sec-
ond, we will investigate MB clustering and scheduling
techniques to reduce communication and synchroniza-
tion overhead. We are currently working on an imple-
mentation of the 3D-Wave strategy for an aggressive
multicore architecture and the MB scheduling and clus-
tering algorithm is an important part of that. Finally,
we will investigate ways to accelerate entropy coding.
More specifically, we plan to design a hardware accel-
erator tailored for contemporary and future entropy
coding schemes.

Acknowledgements This work was partially supported by the
European Commission in the context of the SARC integrated
project #27648 (FP6), the Ministry of Science of Spain and
European Union (FEDER funds) under contract TIC-2004-
07739-C02-01, and HiPEAC, European Network of Excellence
on High-Performance Embedded Architecture and Compilation.
The authors would like to thank Jan Hoogerbrugge from NXP
labs for the valuable discussions on parallelizing H.264.

192 J Sign Process Syst (2009) 57:173–194

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. ClearSpeed (2008) The CSX600 processor. [Online]. http://
www.clearspeed.com.

2. Tilera (2007) TILE64(TM) processor family. [Online]. http://
www.tilera.com.

3. Stenström, P. (2006). Chip-multiprocessing and beyond.
In Proc. twelfth int. symp. on high-performance computer ar-
chitecture (pp. 109–109).

4. Asanovic, K., et al. (2006). The landscape of parallel com-
puting research: A view from Berkeley. EECS Department
University of California, Berkeley, Tech. Rep. UCB/EECS-
2006-183, December.

5. Liao, H., & Wolfe, A. (1997) Available parallelism in video
applications. In Proc. 30th annual int. symp. on microarchitec-
ture (Micro ’97).

6. Kissell, K. (2008). MIPS MT: A multithreaded RISC archi-
tecture for embedded real-time processing. In Proc. high per-
formance embedded architectures and compilers (HiPEAC)
conference.

7. Oelbaum, T., Baroncini, V., Tan, T., & Fenimore, C. (2004).
Subjective quality assessment of the emerging AVC/H.264
video coding standard. In Int. broadcast conference (IBC).

8. International Standard of Joint Video Specification (ITU-T
Rec. H. 264| ISO/IEC 14496-10 AVC) (2005).

9. Flierl, M., & Girod, B. (2003). Generalized B pictures and the
draft H. 264/AVC video-compression standard. IEEE Trans-
actions on Circuits and Systems for Video Technology, 13(7),
587–597.

10. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & A.Luthra
(2003). Overview of the H.264/AVC video coding standard.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 13(7), 560–576, July.

11. Tamhankar, A., & Rao, K. (2003). An overview of H.
264/MPEG-4 Part 10. In Proc. 4th EURASIP conference fo-
cused on video/image processing and multimedia communica-
tions (p. 1).

12. Malvar, H., Hallapuro, A., Karczewicz, M., & Kerofsky, L.
(2003). Low-complexity transform and quantization in H.
264/AVC. IEEE Transactions on Circuits and Systems for
Video Technology, 13(7), 598–603.

13. Wien, M. (2003). Variable block-size transforms for H.
264/AVC. IEEE Transactions on Circuits and Systems for
Video Technology, 13(7), 604–613.

14. List, P., Joch, A., Lainema, J., Bjntegaard, G., &
Karczewicz, M. (2003). Adaptive deblocking filter. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7), 614–619.

15. Marpe, D., Schwarz, H., & Wiegand, T. (2003). Context-
based adaptive binary arithmetic coding in the H.264/AVC
video compression standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7), 620–636.

16. Sullivan, G., Topiwala, P., & Luthra, A. (2004). The
H.264/AVC advanced video coding standard: Overview and
introduction to the fidelity range extensions. In Proc. SPIE
conference on applications of digital image processing XXVII
(pp. 454–474).

17. Alvarez, M., Salami, E., Ramirez, A., & Valero, M. (2007).
HD-VideoBench: A benchmark for evaluating high defini-
tion digital video applications. In IEEE int. symp. on work-
load characterization, [Online]. http://personals.ac.upc.edu/
alvarez/hdvideobench/index.html.

18. X264 (2008). A free H.264/AVC encoder. [Online]. http://
developers.videolan.org/x264.html.

19. FFmpeg (2008). The FFmpeg Libavcoded [Online]. http://
ffmpeg.mplayerhq.hu/.

20. Alvarez, M., Salami, E., Ramirez, A., & Valero, M. (2005). A
performance characterization of high definition digital video
decoding using H.264/AVC. In Proc. IEEE int. workload
characterization symposium (pp. 24–33).

21. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke,
M., Pereira, F., et al. (2004). Video coding with H.264/AVC:
Tools, performance, and complexity. IEEE Circuits and Sys-
tems Magazine, 4(1), 7–28.

22. Lappalainen, V., Hallapuro, A., & Hamalainen, T. D. (2003).
Complexity of optimized H.26L video decoder implementa-
tion. IEEE Transactions on Circuits and Systems for Video
Technology, 13(7), 717–725.

23. Horowitz, M., Joch, A., & Kossentini, F. (2003). H.264/AVC
baseline profile decoder complexity analyis. IEEE Transac-
tions on Circuits and Systems for Video Technology, 13(7),
704–716.

24. Flierl, M., & Girod, B. (2003). Generalized B pictures and the
draft H.264/AVC video-compression standard. IEEE Trans-
actions on Circuits and Systems for Video Technology, 13(7),
587–597, July.

25. Zhou, X., Li, E. Q., & Chen, Y.-K. (2003). Implementation
of H.264 decoder on general-purpose processors with media
instructions. In Proc. SPIE conf. on image and video commu-
nications and processing.

26. Shojania, H., Sudharsanan, S., & Wai-Yip, C., (2006). Perfor-
mance improvement of the h.264/avc deblocking filter using
simd instructions. In Proc. IEEE int. symp. on circuits and
systems ISCAS, May.

27. Lee, J., Moon, S., & Sung, W. (2004). H.264 decoder opti-
mization exploiting SIMD instructions. In Asia-Pacific conf.
on circuits and systems, Dec.

28. Zhao, Z., & Liang, P. (2006). Data partition for wavefront
parallelization of H.264 video encoder. In IEEE international
symposium on circuits and systems, ISCAS 2006, 21–24 May.

29. Schaumont, P., Lai, B.-C. C., Qin, W., & Verbauwhede,
I. (2005). Cooperative multithreading on embedded multi-
processor architectures enables energy-scalable design. In
DAC ’05: Proceedings of the 42nd annual conference on de-
sign automation (pp. 27–30).

30. Tian, X., Chen, Y.-K., Girkar, M., Ge, S., Lienhart, R.,
& Shah, S. (2003). Exploring the use of hyper-threading
technology for multimedia applications with intel openmp
compiler. In Proceedings of the international parallel and dis-
tributed processing symposium, 2003, 22–26 April.

31. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y.,
Massaioli, F., et al. (2007). A proposal for task parallelism in
OpenMP. In Proceedings of the 3rd international workshop
on OpenMP, June.

32. X264-devel – Mailing list for ×264 developers (2007). Sub-
ject: Out-of-range motion vectors. [Online]. http://mailman.
videolan.org/listinfo/×264-devel, July–August.

33. Shen, K., Rowe, L. A., & Delp, E. J. (1995). Parallel imple-
mentation of an MPEG-1 encoder: Faster than real time. In
Proc. SPIE, digital video compression: Algorithms and tech-
nologies 1995 (Vol. 2419, pp. 407–418).

34. Bilas, A., Fritts, J., & Singh, J. (1997). Real-time parallel
mpeg-2 decoding in software. In Parallel processing sympo-

http://www.clearspeed.com
http://www.clearspeed.com
http://www.tilera.com
http://www.tilera.com
http://personals.ac.upc.edu/alvarez/hdvideobench/index.html
http://personals.ac.upc.edu/alvarez/hdvideobench/index.html
http://developers.videolan.org/x264.html
http://developers.videolan.org/x264.html
http://ffmpeg.mplayerhq.hu/
http://ffmpeg.mplayerhq.hu/
http://mailman.videolan.org/listinfo/x264-devel
http://mailman.videolan.org/listinfo/x264-devel

J Sign Process Syst (2009) 57:173–194 193

sium, 1997. Proceedings., 11th international (pp. 197–203),
1–5 April.

35. Akramullah, S., Ahmad, I., & Liou, M. (1997). Performance
of software-based mpeg-2 video encoder on parallel and dis-
tributed systems. IEEE Transactions on Circuits and Systems
for Video Technology, 7(4), 687–695, August.

36. Taylor, H., Chin, D., & Jessup, A. (1993). A mpeg en-
coder implementation on the princeton engine video super-
computer. In Data compression conference, 1993. DCC ’93.
(pp. 420–429).

37. Lehtoranta, O., Hamalainen, T., & Saarinen, J. (2001).
Parallel implementation of h.263 encoder for cif-sized images
on quad dsp system. In The 2001 IEEE international sympo-
sium on circuits and systems, ISCAS 2001 (Vol. 2, pp. 209–
212), 6–9 May.

38. Lee, C., Ho, C. S., Tsai, S.-F., Wu, C.-F., Cheng, J.-Y.,
Wang, L.-W., et al. (1996). Implementation of digital hdtv
video decoder by multiple multimedia video processors.
In International conference on consumer electronics, 1996
(pp. 98–), 5–7 June.

39. Lin, W., Goh, K., Tye, B., Powell, G., Ohya, T., & Adachi, S.
(1997). Real time h.263 video codec using parallel dsp. In
International Conference on Image Processing, 1997 (Vol. 2,
pp. 586–589), 26–29 October.

40. Cantineau, O., & Legat, J.-D. (1998). Efficient parallelisation
of an mpeg-2 codec on a tms320c80 video processor. In 1998
international conference on image processing, 1998. ICIP 98
(Vol. 3, pp. 977–980), 4–7 October.

41. Oehring, H., Sigmund, U., & Ungerer, T. (1999). Mpeg-2
video decompression on simultaneous multithreaded multi-
media processors. In International conference on parallel ar-
chitectures and compilation techniques, 1999 (pp. 11–16).

42. Ganesh Yadav, R. S., & Chaudhary, V. (2004). On implemen-
tation of MPEG-2 like real-time parallel media applications
on MDSP SoC cradle architecture. In Lecture notes in com-
puter science. Embedded and ubiquitous computing, July.

43. Jacobs, T., Chouliaras, V., & Mulvaney, D. (2006). Thread-
parallel mpeg-2, mpeg-4 and h.264 video encoders for soc
multi-processor architectures. IEEE Transactions on Con-
sumer Electronics, 52(1), 269–275, February.

44. Gulati, A., & Campbell, G. (2005). Efficient mapping of
the H.264 encoding algorithm onto multiprocessor DSPs. In
Proc. embedded processors for multimedia and communica-
tions II, 5683(1), 94–103, March.

45. Klaus Schöffmann, O. L., Fauster, M., & Böszörmenyi, L.
(2007). An evaluation of parallelization concepts for
baseline-profile compliant H.264/AVC decoders. In Lecture
notes in computer science. Euro-Par 2007 parallel processing,
August.

46. Rodriguez, A., Gonzalez, A., & Malumbres, M. P. (2006).
Hierarchical parallelization of an h.264/avc video encoder. In
Proc. int. symp. on parallel computing in electrical engineering
(pp. 363–368).

47. Chen, Y., Tian, X., Ge, S., & Girkar, M. (2004). Towards
efficient multi-level threading of h.264 encoder on intel
hyper-threading architectures. In Proc. 18th int. parallel and
distributed processing symposium.

48. Roitzsch, M. (2006). Slice-balancing H.264 video encoding
for improved scalability of multicore decoding. In Work-in-
progress proc. 27th IEEE real-time systems symposium.

49. van der Tol, E., Jaspers, E., & Gelderblom, R. (2003).
Mapping of H.264 decoding on a multiprocessor architecture.
In Proc. SPIE conf. on image and video communications and
processing.

50. Chen, Y., Li, E., Zhou, X., & Ge, S. (2006). Implementation
of H. 264 encoder and decoder on personal computers. Jour-

nal of Visual Communications and Image Representation, 17,
509–532.

51. Intel Integrated Performance Primitives (2008). [Online].
http://www.intel.com/cd/software/products/asmo-na/eng/
perflib/ipp/302910.htm.

52. Chong, J., Satish, N. R., Catanzaro, B., Ravindran, K., &
Keutzer, K. (2007). Efficient parallelization of h.264 decoding
with macro block level scheduling. In 2007 IEEE interna-
tional conference on multimedia and expo (pp. 1874–1877),
July.

Cor Meenderinck received the MSc degree in electrical engi-
neering from Delft University of Technology, the Netherlands.
Currently, he is working toward the PhD degree in the Computer
Engineering Laboratory of the Faculty of Electrical Engineering,
Mathematics and Computer Science of Delft University of Tech-
nology, the Netherlands. His research interests include computer
architecture, chip multi-processors, media accelerators, design
for power efficiency, design for variability, computer arithmetic,
nano electronics, and single electron tunneling.

Arnaldo Azevedo received the BSc degree in computer science
from the UFRN University, Natal, RN, Brazil, in 2004 and the
MSc degree in computer science from UFRGS University, Porto
Alegre, RS, Brazil, in 2006. Since 2006, he is a doctoral candi-
date in the Computer Engineering Laboratory of the Faculty of
Electrical Engineering, Mathematics and Computer Science of
Delft University of Technology, the Netherlands. He is currently
investigating multimedia accelerators architecture for multi-core
processors.

http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/302910.htm
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/302910.htm

194 J Sign Process Syst (2009) 57:173–194

Ben Juurlink is an associate professor in the Computer En-
gineering Laboratory of the Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science at Delft University
of Technology, the Netherlands. He received the MSc degree
in computer science, from Utrecht University, Utrecht, the
Netherlands, in 1992, and the Ph.D. degree also in computer
science from Leiden University, Leiden, the Netherlands, in 1997.
His research interests include instruction-level parallel proces-
sors, application-specific ISA extensions, low power techniques,
and hierarchical memory systems. He has (co-) authored more
than 50 papers in international conferences and journals and is a
senior member of the IEEE and a member of the ACM.

Mauricio Alvarez Mesa received the BSc degree in electronic
engineering from University of Antioquia, Medellin, Colombia

in 2000. From 2000 to 2002 he was a teaching assistant at De-
partment of Electronic Engineering of the this University. In
2002 he joined the High Performance Computing Group at the
Computer Architecture Department of the Technical University
of Catalonia (UPC) where he is doing his PhD. From 2006 he
became teaching assistant at UPC. He was a summer student
intern at IBM Haifa Research labs, Israel in 2007. His research
interest includes high performance architectures for multimedia
applications, vector processors, SIMD extensions, multicore ar-
chitectures and streaming architectures.

Alex Ramirez is an associate professor in the Computer Archi-
tecture Department at the Universitat Politecnica de Catalunya,
and leader of the Computer Architecture group at BSC. He
has a BSc (’95), MSc (’97) and PhD (’02, awarded the UPC
extraordinary award to the best PhD in computer science) in
computer science from the Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain. He has been a summer student intern
with Compaq’s WRL in Palo Alto, California for two consecu-
tive years (’99–’00), and with Intel’s Microprocessor Research
Laboratory in Santa Clara (’01). His research interests include
compiler optimizations, high performance fetch architectures,
multithreaded architectures, and vector architectures. He has
coauthored over 50 papers in international conferences and jour-
nals and supervised 3 PhD students.

	Parallel Scalability of Video Decoders
	Abstract
	Introduction
	Overview of the H.264 Standard
	Benchmark
	Parallelizing H.264
	Task-level Decomposition
	Data-level Decomposition
	GOP-level ParallelismQ3Please check if the section titles were presented correctly.
	Frame-level Parallelism for Independent FramesQ3
	Slice-level ParallelismQ3
	Macroblock-level ParallelismQ3
	Macroblock-level Parallelism in the Spatial Domain (2D-Wave)Q3
	Macroblock-level Parallelism in the Temporal DomainQ3
	Combining Macroblock-level Parallelism in the Spatial and Temporal Domains (3D-Wave)Q3
	Block-level ParallelismQ3

	Parallel Scalability of the Static 3D-Wave
	Scalable MB-level Parallelism: The Dynamic 3D-Wave
	Static vs Dynamic Scheduling
	Implementation Issues of Dynamic Scheduling
	Support in the Programming Model
	Managing Entropy Decoding
	Open Issues

	Parallel Scalability of the Dynamic 3D-Wave
	Case Study: Mobile Video
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

