Skip to main content
Log in

Energy-efficient Hardware Architecture and VLSI Implementation of a Polyphase Channelizer with Applications to Subband Adaptive Filtering

Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Polyphase channelizer is an important component of subband adaptive filtering systems. This paper presents an energy-efficient hardware architecture and VLSI implementation of polyphase channelizer, integrating algorithmic, architectural and circuit level design techniques. At algorithm level, low complexity polyphase channelizer architecture is derived using multirate signal processing approach. To reduce the computational complexity in polyphase filters, computation sharing differential coefficient (CSDC) method is effectively used as an architectural level technique. The main idea of CSDC is to combine the strength of augmented differential coefficient method and subexpression sharing. Efficient circuit-level techniques: low power commutator implementation, dual-VDD scheme and novel level-converting flip-flop (LCFF), are also used to further reduce the power dissipation. The proposed polyphase channelizer consumes 352 mW power with throughput of 480 million samples per second (MSPS). A test chip has been fabricated in 0.18 μm CMOS technology and its functionality is verified. Chip measurement results show that the dual-VDD implementation achieves a total power saving of 2.7 X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Gilloire, A., & Vetterli, M. (1992). Adaptive filtering in subbands with critical sampling: Analysis, experiments and applications to acoustic echo cancellation. IEEE Trans Signal Process, 40, 1862–1875. doi:10.1109/78.149989.

    Article  MATH  Google Scholar 

  2. Shynk, J. J. (1992). Frequency-domain and multirate adaptive filtering. IEEE Signal Process Mag, 9, 14–37. doi:10.1109/79.109205.

    Article  Google Scholar 

  3. Weiss, S., et al. (1998). Adaptive equalization in oversampled subbands. Electron Lett, 34(15), 1452–1453. doi:10.1049/el:19981085.

    Article  Google Scholar 

  4. Tanrikulu, O., et al. (1997). Residual echo signal in critically sampled subband acoustic echo cancellers based on IIR and FIR filter banks. IEEE Trans Signal Process, 45(4), 901–912. doi:10.1109/78.564178.

    Article  Google Scholar 

  5. Song, W. S., et al. (2000). High-performance low-power polyphase channelizer chip-set. Asilomar Conference on Signals, Systems and Computers, 2, 1691–1694.

    Google Scholar 

  6. Weiss, S., et al. (2001). Steady-state performance limitations of subband adaptive filters. IEEE Trans Signal Process, 49(9), 1982–1991. doi:10.1109/78.942627.

    Article  Google Scholar 

  7. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms and applications, Third edition, Prentice Hall Inc.

  8. Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks. Prentice Hall Inc.

  9. Harteneck., M., Weiss, S., & Stewart, R. W. (1999). Design of the near perfect reconstruction oversampled filterbanks for subband adaptive filters. IEEE Trans. On Circuits and Systems–II: Analog and Digital Signal Processing, 46(8). August.

  10. Eneman, K., & Moonen, M. (1997). Filter bank constraints for subband and frequency-domain adaptive filters. IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, 19–22, Oct.

  11. Wang, Y., & Roy, K. (2005). “CSDC: a new complexity reduction technique for multiplierless implementation of digital FIR filters”. IEEE Trans Circuits and Systems I: Fundamental Theory and Applications, 52(9). September.

  12. Sankaraya, N., Roy, K., & Bhattacharya, D. (1997). Algorithms for low power and high speed FIR filter realization using differential coefficients. IEEE Trans Circuits Syst. II Analog Digit Signal Process, 44(6), 488–497. doi:10.1109/82.592582.

    Article  Google Scholar 

  13. Hartley, R. I. (1996). Subexpression sharing in filtering using canonic signed digit multipliers. IEEE Trans Circuits Syst II Analog Digit Signal Process, 43(10), 677–688. doi:10.1109/82.539000.

    Article  Google Scholar 

  14. Pasko, R., et al. (1999). A new algorithm for elimination of common subexpressions. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 18(1), 58–68 Jan.

    Article  Google Scholar 

  15. Cvetkovic, Z., & Vetterli, M. (1998). Tight Weyle-Heisenberg frames in \(\ell ^2 \left( Z \right)\). IEEE Trans Signal Process, 46(5). May.

  16. The Mathworks, Inc.: Matlab and simulink. [Online]. Available: http://www.mathworks.com

  17. Mahmoodi-Meimand, H., Roy, K. (2002). Self precharging flip-flop (SPFF): a new level-converting flip-flop. European Solid-State Circuits Conference, 407–410. Sep.

  18. Partovi, H. (2001). Clocked storage elements. In A. Chandrakasan, W. J. Bowhill, & F. Fox (Eds.),Piscataway design of high-performance microprocessor circuits (pp. 207–234). NJ, USA: IEEE ch. 11.

    Google Scholar 

  19. Synopsys, Inc.: [Online]. Available: http://www.synopsys.com.

  20. Cadence design systems, Inc. [Online]. Available: http://www.cadence.com.

  21. Artisan components, Inc. [Online]. Available: http://www.artisan.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsun Park.

Additional information

This work was supported in part by the DARPA MSP program and Semiconductor Research Corporation (1122.001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Mahmoodi, H., Chiou, LY. et al. Energy-efficient Hardware Architecture and VLSI Implementation of a Polyphase Channelizer with Applications to Subband Adaptive Filtering. J Sign Process Syst Sign Image Video Technol 58, 125–137 (2010). https://doi.org/10.1007/s11265-008-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0323-2

Keywords

Navigation