Skip to main content
Log in

Dynamic Frequency-Band Reallocation and Allocation: from Satellite-Based Communication Systems to Cognitive Radios

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper discusses two approaches for the baseband processing part of cognitive radios. These approaches can be used depending on the availability of (i) a composite signal comprising several user signals or, (ii) the individual user signals. The aim is to introduce solutions which can support different bandwidths and center frequencies for a large set of users and at the cost of simple modifications on the same hardware platform. Such structures have previously been used for satellite-based communication systems and the paper aims to outline their possible applications in the context of cognitive radios. For this purpose, dynamic frequencyband allocation (DFBA) and reallocation (DFBR) structures based on multirate building blocks are introduced and their reconfigurability issues with respect to the required reconfigurability measures in cognitive radios are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Notes

  1. The underlay spectrum sharing, also referred to as ultra wideband [2], exploits spread spectrum techniques and users transmit at certain portions of spectrum which are regarded as noise by the licensed users [3]. This scenario is not the focus of this paper.

  2. Here, a centralized entity, i.e., the DFBR network in this case, controls the spectrum allocation and access. However, the distributed (ad hoc) cognitive networks do not have an infrastructure.

  3. Non-cooperative networks do not share the interference measurements of each node (user) with the others resulting in less spectrum utilization and less communication requirements between nodes.

  4. The frequency slot depends on spatial and temporal parameters such as the number of slots available, user movement, and activity of primary users, etc. [5] but the operation of the DFBR network is independent of these parameters.

  5. The system in [18] uses the same architecture as [13] except that it has infinite-length impulse response (IIR) filters.

  6. Here, the analytic representation [35] of the real input signal must be processed by the complex DFBR network and the frequency multiplexed result should then be converted to a real signal for retransmission.

  7. The DFBR network in Fig. 7 has complex multipliers α k , β k , γ k and, hence, it is a complex system by nature. However, real (complex) DFBR refers to two variants of Fig. 7 having real (complex) input/output signals. In other words, the complex multipliers are present in both the real and complex DFBRs.

  8. As discussed before, a multiplexing bandwidth can contain a user bandwidth and some extra guardband.

  9. The Farrow structure is composed of a set of fixed linear-phase filters and variable multipliers and it performs arbitrary rational SRC [5052].

  10. An integer SRC variant of the TMUX in [28] is proposed in [27]. However, it can be considered as a subclass of the TMUX discussed in this paper.

  11. If the multiplexing bandwidth is limited to be a power-of-two of a GB, the same idea can be utilized but the amount of extra guardband would be larger.

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  3. Huang, J., Berry, R. A., & Honig, M. L. (2005). Spectrum sharing with distributed interference compensation. In Proc. IEEE DySPAN, November 2005, pp. 88–93.

  4. Cabric, D., ÓDonnell, I. D., Chen, M. S. W., & Brodersen, R. W. (2006). Spectrum sharing radios. IEEE Circuits and Systems Magazine, 6(2), 30–45.

    Article  Google Scholar 

  5. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal (Elsevier), 50, 2127–2159.

    Article  MATH  Google Scholar 

  6. Leaves, P., Moessner, K., Tafazolli, R., Grandblaise, D., Bourse, D., Tonjes, R., et al. (2004). Dynamic spectrum allocation in composite reconfigurable wireless networks. IEEE Communications Magazine, 42(5), 72–81.

    Article  Google Scholar 

  7. Jondral, F. K. (2005). Software-defined radio—basics and evolution to cognitive radio. EURASIP Journal on Wireless Communication and Networking, 5, 275–283.

    Article  Google Scholar 

  8. Farserotu, J., & Prasad, R. (2000). A survey of future broadband multimedia satellite systems, issues and trends. IEEE Communications Magazine, 38(6), 128–133.

    Article  Google Scholar 

  9. Wittig, M. (2000). Satellite on-board processing for multimedia applications. IEEE Communications Magazine, 38(6), 134–140.

    Article  Google Scholar 

  10. Re, E. D., & Pierucci, L. (2002). Next-generation mobile satellite networks. IEEE Communications Magazine, 40(9), 150–159.

    Article  Google Scholar 

  11. Arbesser-Rastburg, B., Bellini, R., Coromina, F., Gaudenzi, R. D., del Rio, O., Hollreiser, M., et al. (2002). R&D directions for next generation broadband multimedia systems: An ESA perspective. In Proc. 20th AIAA int. commun. satellite syst. conf. exhibit, Montreal, Canada.

  12. Nguyen, T., Hant, J., Taggart, D., Tsang, C.-S., Johnson, D. M., & Chuang, J.-C. (2002). Design concept and methodology for the future advanced wideband satellite system. In Proc. IEEE military commun. conf., MILCOM 2002 (Vol. 1, pp. 189–194). USA.

  13. Johansson, H., & Löwenborg, P. (2007). Flexible frequency-band reallocation networks using variable oversampled complex-modulated filter banks. EURASIP Journal on Advanced Signal Processing, 2007 (Article ID 63714), 15.

  14. Abdulazim, M. N., & Göckler, H. G. (2006). Flexible bandwidth reallocation MDFT SBC-FDFMUX filter bank for future bent-pipe FDM satellite systems. In 9th int. workshop on signal process. for space commun.s (SPSC 2006), Noordwijk, Netherlands.

  15. Boucheret, M. L., Mortensen, I., & Favaro, H. (1999). Fast convolution filter banks for satellite payloads with on-board processing. IEEE Journal on Selected Areas in Communications, 17(2), 238–248.

    Article  Google Scholar 

  16. Göckler, H. G., & Felbecker, B. (1999). Digital on-board FDM-demultiplexing without restrictions on channel allocation and bandwidth. In 7th int. workshop digital sign. process. techn. for space appl. Noordwijk.

  17. Chiassarini, G., & Gallinaro, G. (1995). Frequency domain switching: Algorithms, performances, implementation aspects. In 7th Tyrrhenian int. workshop digital comm. Viareggio, Italy.

  18. Rosenbaum, L., Johansson, H., & Löwenborg, P. (2006). Oversampled complex-modulated causal IIR filter banks for flexible frequency-band reallocation networks. In Proc. XIV Eur. signal process. conf. Florence, Italy.

  19. Abdulazim, M. N., & Göckler, H. G. (2005). Efficient digital on-board de- and remultiplexing of FDM signals allowing for flexible bandwidth allocation. In Proc. 23rd int. comm. satellite systems conf. Rome, Italy.

  20. Abdulazim, M. N., Kurbiel, T., & Göckler, H. G. (2007). Modified DFT SBC-FDFMUX filter bank systems for flexible frequency reallocation. In Proc. EURASIP 15th Eur. signal process. conference (EUSIPCO 2007) (pp. 60–64). Poznan, Poland.

  21. Göckler, H. G., & Eyssele, H. (1992). Study of on-board digital FDM-demultiplexing for mobile SCPC satellite communications (part I and II). European Transactions on Telecommunications (ETT), 3, 7–30.

    Article  Google Scholar 

  22. Göckler, H. G., & Abdulazim, M. N. (2005). Joint oversampling FDM demultiplexing and perfectly reconstructing SBC filter bank for two channels. In Proc. Eur. signal process. conf. Antalya, Turkey.

  23. Abdulazim, M. N., & Göckler, H. G. (2005). Design options of the versatile two-channel SBC-FDFMUX filter bank. In Proc. Eur. conf. circuit theory design. Cork, Ireland.

  24. Göckler, H. G., & Abdulazim, M. N. (2007). Tree-structured MIMO FIR filter banks for flexible frequency reallocation. In Proc. int. symp. image signal process. analysis. Istanbul, Turkey.

  25. Eghbali, A., Johansson, H., & Löwenborg, P. (2007). An arbitrary bandwidth transmultiplexer and its application to flexible frequency-band reallocation networks. In Proc. Eur. conf. circuit theory design. Seville, Spain.

  26. Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A multimode transmultiplexer structure. IEEE Transactions on Circuits and Systems II, 55(3), 279–283.

    Article  Google Scholar 

  27. Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A Farrow-structure-based multi-mode transmultiplexer. In Proc. IEEE int. symp. circuits syst. Seattle, Washington, USA.

  28. Eghbali, A., Johansson, H., & Löwenborg, P. (2008). A class of multimode transmultiplexers based on the Farrow structure. IEEE Transactions on Circuits and Systems I, (in press).

  29. Eghbali, A., Johansson, H., & Löwenborg, P. (2009). On the filter design for a class of multimode transmultiplexers. In Proc. IEEE int. symp. circuits syst. Taipei, Taiwan.

  30. Cabric, D., & Brodersen, R. W. (2005). Physical layer design issues unique to cognitive radio systems. In Proc. IEEE personal indoor and mobile radio communications (PIMRC).

  31. Ganesan, G., & Li, Y. G. (2005). Cooperative spectrum sensing in cognitive radio networks. In Proc. IEEE DySPAN (pp. 137–143).

  32. Yuan, Y., Bahl, P., Chandra, R., Chou, P. A., Ferrell, J. I., Moscibroda, T., et al. (2007). KNOWS: Cognitive radio networks over white spaces. In Proc. IEEE DySPAN (pp. 416–427).

  33. Eghbali, A., Johansson, H., & Löwenborg, P. (2008). Flexible frequency-band reallocation: Complex versus real. Circuits, Systems, and Signal Processing, (in press).

  34. Eghbali, A., Johansson, H., & Löwenborg, P. (2007). Flexible frequency-band reallocation MIMO networks for real signals. In Proc. int. symp. image signal process. analysis. Istanbul, Turkey.

  35. Mitra, S. K. (2006). Digital signal processing: A computer based approach. New York: McGraw-Hill.

    Google Scholar 

  36. Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  37. Fliege, N. J. (1994). Modified DFT polyphase SBC filter banks with almost perfect reconstruction. In Proc. IEEE int. conf. acoust. speech, signal process. (pp. 149–152). Adelaide, Australia.

  38. Karp, T. (1997). Modifizierte DFT-filterbänke. Ph.D. dissertation, Dbüsseldorf, VDI-Verlag.

  39. Karp, T., & Fliege, N. J. (1999). Modified DFT filter banks with perfect reconstruction. IEEE Transactions on Circuits and Systems II, 46(11), 1404–1414.

    Article  MATH  Google Scholar 

  40. Heideman, M. T., & Burrus, C. S. (1986). On the number of multiplications necessary to compute a length-2n DFT. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-34, 91–95.

    Article  MathSciNet  Google Scholar 

  41. Mansour, M. F. (2006). On the odd-DFT and its applications to DCT/IDCT computation. IEEE Transactions on Signal Processing, 54, 2819–2822.

    Article  Google Scholar 

  42. Fliege, N. J. (1993). Computational efficiency of modified DFT-polyphase filter banks. In Proc. 27th Asilomar conf. signals, syst., and computers (pp. 1296–1300). Asilomar.

  43. Karp, T., & Fliege, N. J. (1996). Computationally efficient realization of MDFT filter banks. In Proc EURASIP eur. signal process. conf. Trieste, Italy.

  44. Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T., Narlanka, S., & Wu, Y. (2007). Allocating dynamic time-spectrum blocks in cognitive radio networks. In Proc. ACM MobiHoc.

  45. Ho, C. Y.-F., Ling, B. W.-K., Liu, Y.-Q., Teo, K.-L., & Tam, P. K.-S. (2005). Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming. IEEE Transactions on Signal Processing, 53(7), 2598–2603.

    Article  MathSciNet  Google Scholar 

  46. Xie, X. M., Chan, S. C., & Yuk, T. I. (2006). Design of linear-phase recombination nonuniform filter banks. IEEE Transactions on Signal Processing, 54(7), 2809–2814.

    Article  Google Scholar 

  47. Ding, Y. S. F., & Chen, T. (2006). 2-norm based recursive design of transmultiplexers with designable filter length. Circuits, Systems and Signal Processing, 25(4), 447–462.

    Article  MATH  Google Scholar 

  48. Chen, T., Qiu, L., & Bai, E.-W. (1998). General multirate building structures with application to nonuniform filter banks. IEEE Transactions on Circuits and Systems II, 45(8), 948–958.

    Article  Google Scholar 

  49. Liu, T., & Chen, T. (2001). Design of multichannel nonuniform transmultiplexers using general building blocks. IEEE Transactions on Signal Processing, 49(1), 91–99.

    Article  Google Scholar 

  50. Farrow, C. W. (1988). A continuously variable digital delay element. In Proc. IEEE int. symp. circuits syst. (Vol. 3, pp. 2641–2645). Espoo, Finland.

  51. Johansson, H., & Löwenborg, P. (2003). On the design of adjustable fractional delay FIR filters. IEEE Transactions on Circuits and Systems II, 50(4), 164–169.

    Article  Google Scholar 

  52. Johansson, H., & Gustafsson, O. (2005). Linear-phase FIR interpolation, decimation, and M-th band filters utilizing the Farrow structure. IEEE Transactions on Circuits and Systems I, 52(10), 2197–2207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Eghbali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eghbali, A., Johansson, H., Löwenborg, P. et al. Dynamic Frequency-Band Reallocation and Allocation: from Satellite-Based Communication Systems to Cognitive Radios. J Sign Process Syst 62, 187–203 (2011). https://doi.org/10.1007/s11265-009-0348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0348-1

Keywords

Navigation