Skip to main content
Log in

PMCNOC: A Pipelining Multi-channel Central Caching Network-on-chip Communication Architecture Design

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

With the de facto transformation of technology into nano-technology, more and more functional components can be embedded on a single silicon die, thus enabling high degree pipelining operations such as those required for multimedia applications. In recent years, system-on-chip designs have migrated from fairly simple single processor and memory designs to relatively complicated systems with multiple processors, on-chip memories, standard peripherals, and other functional blocks. The communication between these IP blocks is becoming the dominant critical system path and performance bottleneck of system-on-chip designs. Network-on-chip architectures, such as Virtual Channel (2004), Black-bus (2004), Pirate (2004), AEthereal (2005), and VICHAR (2006) architectures, emerged as promising solutions for future system-on-chip communication architecture designs. However, these existing architectures all suffer from certain problems, including high area cost and communication latency and/or low network throughput. This paper presents a novel network-on-chip architecture, Pipelining Multi-channel Central Caching, to address the shortcomings of the existing architectures. By embedding a central cache into every switch of the network, blocked head packets can be removed from the input buffers and stored in the caches temporally, thus alleviating the effect of head-of-line and deadlock problems and achieving higher network throughput and lower communication latency without paying the price of higher area cost. Experimental results showed that the proposed architecture exhibits both hardware simplicity and system performance improvement compared to the existing network-on-chip architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. http://www.itrs.net/, accessed May 2007.

  2. Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oberg, J., Millberg, M., et al. (2000). Network on chip: An architecture for billion transistor era. In Proc IEEE Conf NorChip, Turku, Finland, 166–173.

  3. Benini, L., & Micheli, G. D. (2002). Networks on chips: A new SOC paradigm. IEEE Transactions on Computers, 35(1), 70–78.

    Google Scholar 

  4. McKeown, N., & Anderson, T. E. (1998). A quantitative comparison of scheduling algorithms for input-queued switches. Computer Networks and ISDN Systems, 30(24), 23–26. doi:10.1016/S0169-7552(98) 00157-3.

    Article  Google Scholar 

  5. McKeown, N. (1999). iSLIP: A scheduling algorithm for input-queued switches. IEEE/ACM Transactions on Networking, 7(2), 188–201. doi:10.1109/90.769767.

    Article  Google Scholar 

  6. Gupta, P., & McKeown, N. (1999). Designing and implementing of a fast crossbar scheduler. IEEE Microwave Magazine, 19(1), 20–28. doi:10.1109/40.748793.

    Google Scholar 

  7. Karol, M., Hluchyj, M., & Morgan, S. (1987). Input versus output queueing on a space-division packet switch. IEEE Transactions on Community, 35(12), 1347–1356. doi:10.1109/TCOM.1987.1096719.

    Article  Google Scholar 

  8. Zeferino, C. A., & Susin, A. A. (2003). SoCIN: A parametric scalable network-on-chip. In Proc IEEE Conf SBCCI 03’, Sao Paulo, Brazil, 169–174.

  9. Clouard, A. (2003). Using transaction-level models in a SOC design flow. In W. Muller, W. Rosenstiel, & J. Ruf (Eds.), SystemC: Methodologies and applications (pp. 29–63). Kluwer Academic.

  10. Wang, N., Sanusi, A., & Bayoumi, M. A. (2006). CTCNOC: A central caching network-on-chip communication architecture design. In Proc Conf IP/SOC-2006, Grenoble, France, 49–52.

  11. Wang, N., Sanusi, A., Zhao, P., Mohamed, S., & Bayoumi, M. A. (2007). PMCNOC: A pipelining multi-channel central caching network-on-chip communication architecture design. In Proc IEEE Conf SIPs 07’, Shanghai, China, 487–492.

  12. Guerrier, P., Greiner, A. (2000). A generic architecture for on-chip packet switched interconnections. In Proc IEEE Conf DATE 2000, Paris, France, 250-256

  13. Kumar, S., Jantsch, A., Soininen, J., Forsell, M., Millberg, M., Oberg, J., et al. (2002). A network-on-chip architecture and design methodology. In Proc IEEE Conf ISVLSI 02’, Pittsburgh, 117–124.

  14. Pande, P. P., Grecu, C., Jones, M., Ivanov, A., & Saleh, R. (2005). Performance evaluation and design trade-offs for network-on-chip interconnect architecture. IEEE Transactions on Computers, 54(8), 1025–1040. doi:10.1109/TC.2005.134.

    Article  Google Scholar 

  15. Hahanov, V., Yegorov, O., & Mostova, K. (2007). Verification challenges of NOC architecture. In Proc IEEE Conf CAD System in Microelectronics, Polyana, Ukraine, 266–269.

  16. Lahiri, K. (2003). On-chip communication: system-level architectures and design methodologies. PhD thesis, University of California, San Diego, USA.

  17. Vermeulen, B., Dielissen, J., Goossens, K., & Ciordas, C. (2003). Bring communication networks on chip: Test and verification implications. IEEE Communications Magazine, 41(9), 74–81. doi:10.1109/MCOM.2003.1232240.

    Article  Google Scholar 

  18. Lee, A. S., & Bergmann, N. W. (2003). On-chip communication architectures for reconfigurable system-on-chip. In Proc IEEE Conf FPT 03’, Tokyo, Japan, 332–335.

  19. Zhao, D., & Wang, Y. (2006). MTNET: Design and optimization of a wireless SOC test framework. In Proc IEEE Int Conf SOCC’06, Austin, 239–242.

  20. Henkel, J., Wolf, W., & Chakradhar, S. (2004). On-chip networks: a scalable, communication-centric embedded system design paradigm. In Proc IEEE int Conf VLSI Design, Mumbai, India, 845–851.

  21. Beigne, E., Clermidy, F., Vivet, P., Renaudin, M., & Clouard, A. (2005). An asynchronous NOC architecture providing low latency service and its multi-level Design framework. In Proc IEEE Conf ASYNC 05’, New York City, 54–63.

  22. Dally, W. J., & Towles, B. (2001). Route packets, not wires: On-chip interconnection networks. In Proc IEEE Conf DAC 01’, Las Vegas, 684–689.

  23. Lee, S., Lee, C., & Lee, H. (2004). A new multi-channel on-chip-bus architecture for system-on-chips. In Proc IEEE Int Conf SOCC 04’, Santa Clara, 305–308.

  24. Goossens, K., Dielissen, J., & Radulescu, A. (2005). AEthereal network-on-chip: Concepts, architectures and implementations. Proc. IEEE Design & Test of Computers, 22(5), 414–421. doi:10.1109/MDT.2005.99.

    Article  Google Scholar 

  25. Anjo, K., Yamada, Y., Koibuchi, M., Jouraku, A., & Amano, H. (2004). BLACK-BUS: A new data-transfer technique using local address on networks-on-chip. In Proc IEEE 18th IPDPS’04, Santa Fe, 1063–1071.

  26. Kavaldjiev, N., Smit, G., & Jansen, P. G. (2004). A virtual channel router for on-chip networks. In Proc IEEE Int Conf SOCC 04’, Santa Clara, 289–293.

  27. Palermo, G., & Silvano, C. (2004). PIRATE: A framework for power/performance exploration of network-on-chip architectures. In Proc Int Conf PATMOS 04’, Santorini, Greece, 15–17.

  28. Nicopoulos, C. A., Park, D., & Kim, J. (2006). ViChaR: A dynamic virtual channel regulator for network-on-chip routers. In Proc IEEE Conf MICRO’06, Orlando, 333–346.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Sanusi, A., Zhao, P.Y. et al. PMCNOC: A Pipelining Multi-channel Central Caching Network-on-chip Communication Architecture Design. J Sign Process Syst 60, 315–331 (2010). https://doi.org/10.1007/s11265-009-0379-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0379-7

Keywords

Navigation