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Abstract Room reverberation leads to reduced intelligibility of audio signals and spectral
coloration of audio signals. Enhancement of acoustic signals is thus crucial for high-quality
audio and scene analysis applications. Multiple sensors can be used to exploit statistical
evidence from multiple observations of the same event to improve enhancement. Whilst
traditional beamforming techniques suffer from interfering reverberant reflections with the
beam path, other approaches to dereverberation often require at least partial knowledge of
the room impulse response which is not available in practice, or rely on inverse filtering
of a channel estimate to obtain a clean speech estimate, resulting in difficulties with non-
minimum phase acoustic impulse responses. This paper proposes a multi-sensor approach to
blind dereverberation in which both the source signal and acoustic channel are directly esti-
mated from the distorted observations using their optimal estimators. The remaining model
parameters are sampled from hypothesis distributions using a particle filter, thus facilitat-
ing real-time dereverberation. This approach was previously successfully applied to single-
sensor blind dereverberation. In this paper, the single-channel approach is extended to multi-
ple sensors. Performance improvements due to the use of multiple sensors are demonstrated
on synthetic and real speech examples.

Keywords Blind dereverberation · Multi-sensor processing · Speech enhancement ·
Kalman filter · Particle filter · Rao-Blackwellization · Bayesian estimation

1 Introduction

Audio signals in confined spaces exhibit reverberation due to reflections off surrounding ob-
stacles. In addition to the direct path signal, time-shifted reflections are received, leading to
reduced intelligibility. Due to the length of the different paths of propagation and different
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amounts of energy being absorbed by reflecting obstacles, each wavefront arrives with a dif-
ferent phase and amplitude at the receiver. Reverberation causes echoey effects, spectral col-
oration, and leads to articulation loss of consonants [1] and masking effects of phonemes [2]
due to distortion of sound onsets and decays [3]. The distorting effects of reverberation are
especially pertinent for high quality audio applications, e.g., automatic speech recognition,
hearing aids, or scene analysis applications (source localization, tracking, or identification).

Thus, an important engineering problem is the blind enhancement of the reverberant sig-
nal from the observed signal in order to obtain a clean speech estimate. Signal enhancement
in reverberant environments can be considered as a blind deconvolution problem and can be
performed using a single microphone [4–8]. Estimates can be improved using multiple sen-
sors in order to exploit spatial diversity and statistical evidence from multiple observations
of the same event. Blind dereverberation could be further improved with accurate channel
modeling which depends on knowledge of the target position. However, many passive target
tracking methods suffer from the presence of reverberation leading to substantial tracking
errors. Therefore, enhancement could be improved through a joint enhancement and track-
ing algorithm. As single microphones cannot exploit spatial diversity of the received signal
required for tracking, multiple microphones would be necessary in such a framework. This
paper thus proposes a parametric multi-sensor blind dereverberation approach for stationary
speakers that will be extended in future research to incorporate joint tracking for moving
speakers.

The proposed blind dereverberation algorithm utilizes the optimal estimators for the
source signal and room impulse response (RIR) by exploiting sub-structures of the underly-
ing state-space. The source signal and acoustic channel can thus be estimated directly from
the observations using modified versions of the Kalman filter (KF). Thus, issues due to chan-
nel inversion often used to reconstruct the source signal are avoided, and real-time speech
enhancement is facilitated due to the recursive nature of the KF. The Kalman recursions rely
on knowledge of any underlying model parameters. However, as the source signal and chan-
nel need to be estimated blindly from the distorted measurements, the model parameters are
unknown in practice. Instead, an ensemble of KFs is evaluated for stochastically selected
parameters sampled from hypothesis distributions using a particle filter (PF) framework.

As analytically tractable substructures of the system are obtained using their optimal es-
timator, the variance of the estimates is decreased [9]. Rao-Blackwellized PFs marginalizing
the source signal by means of KF estimation from the remaining unknowns are well known
in the literature (see, e.g., [10, 11]). The novelty of the approach proposed in this paper thus
lies in the marginalization of the channel. As a consequence, particle impoverishment is
avoided that arises when sampling static parameters using PFs due to their implicit enforce-
ment of a dynamic upon the estimated variables. The proposed algorithm will be referred to
as the Marginalized Rao-Blackwellized (MARBLE) PF. [8] shows how this approach can
be extended to a multitude of other signal processing applications.

Sect. §2 gives a brief overview of multi-sensor dereverberation approaches in the litera-
ture and how the MARBLE PF differs and improves upon these methods. Sect. §3 presents
the models used for the speech source and acoustical channel. Sects. §4 and §5 discuss the
methodology and derive the necessary marginalizations. Results for synthetic and speech
data are demonstrated in sect. §6, a multirate extension for reduced model orders is dis-
cussed in sect. §7, and conclusions are drawn in sect. §8.
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2 Multi-sensor blind dereverberation

Incoming plane waves from spatially distinct sources arrive at a sensor array with slight
time delays. By introducing suitable delays to each channel, beamformers [12] enforce that
the source signal arrives coherently at each sensor. By adding all sensor outputs, the source
signal is thus amplified whilst incoherent interference is attenuated. However, reverberant
reflections arrive from multiple different positions in the room and are likely to interfere
with the beam path. Hence, traditional beamforming approaches only remove reverberation
to some degree. Affes and Grenier [13] use a matched filter beamformer that adaptively
estimates the channel response and convolve the received signals with the inverse of the
resulting RIR. Flanagan et al. [14], use three dimensional microphone arrays to steer beams
in the direction of strong initial reflections. However, both [13] and [14] require at least
partial knowledge of the RIR.

Instead of utilizing beamformers, Allen [15] estimates the parameters of an infinite im-
pulse response (IIR) filter approximating the vocal tract using linear prediction analysis to
synthesize a signal that approximates the clean speech signal. This approach can be ex-
tended to explicitly use specific speech models and discriminate between reverberation and
speech based on impulse clustering of the reverberant signal [16–18]. However, although
impulses due to reverberation are reduced, natural speech components are neglected due to
signal synthesis. Nakatani et al. [19–21] synthesize an enhanced speech signal in order to
iteratively estimate a filter approximating the reverberant channel based on the reverberant
and synthetic signal. The clean speech signal is estimated by inverse filtering the reverberant
signal with the channel estimate. However, RIRs are often non-minimum phase [22], lead-
ing to difficulties with channel inversion. Furthermore, a high number of channel parameters
is necessary in order to accurately reflect the RIR. Habets [23, 24] reconstructs the speech
signal by spectral subtraction of the estimated power spectral density (PSD) of the RIR from
the received signal. However, again, prior information about the RIR is required.

The MARBLE PF circumvents the issues encountered in channel inversion, spectral
subtraction, and linear predictive coding (LPC) analysis approaches [25] by i) direct source
signal estimation, i.e., neither speech synthesis nor channel inversion are necessary to re-
construct the clean speech signal, thus circumventing non-minimum phase problems or scal-
ing of errors; ii) Sequential processing facilitating real-time speech enhancement; iii) Blind
channel estimation, i.e., no prior knowledge of the RIR is necessary, and iv) marginaliza-
tion of the static channel considering uncertainty introduced through channel estimation.
Furthermore, as described in sect. §7, multi-rate filtering can be straightforwardly applied
such that fewer channel parameters are necessary in each sub-band to approximate the RIR.

3 System model

Data recorded in realistic environments is often hard to analyze and interpret, especially if
the functional relationship of factors influencing the environment is non-linear and/or non-
Gaussian. Mathematical models can be used to represent essential aspects of a system in
usable form. Although models are, by definition, never entirely accurate, statistical proper-
ties of the underlying model are exploited to provide a better understanding of the data.

Parametric models associate each entity of the system with a model characterized by a
finite set of parameters that control its properties. The model is fitted to the data by esti-
mating the parameters according to some criterion [26]. A signal estimate can be obtained
by applying the parameters and model to a random excitation. Given the parameters of the
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models, the characteristics of the system can be described and differences between the mea-
surements and the model can often be detected.

3.1 Source model

Models of speech production systems describe how unstructured airflow pressed out of the
lungs is structured by a system producing speech sounds by means of the vocal tract. Para-
metric speech models are thus based on modeling the human vocal tract and production of
human sound.

Kelly and Lochbaum [27] proposed that the human vocal tract can be modeled as slowly
time-varying circular one-dimensional acoustic tube. An extended model [28] assumes that
the vocal tract can be represented by a concatenation of lossless acoustic tubes, where the
constant cross-sectional areas of the individual tubes approximate the vocal tract.

Autoregressive (AR) processes can be interpreted as simplified models of lossless acous-
tics tubes [28, 29]. The acoustic tube is excited by either periodic glottal pulse waveforms
to produce voiced speech, or by turbulent noise to produce unvoiced speech (Fig. 1). This
paper uses a model for unvoiced speech, thus focusing on the excitation by turbulent noise.
Local correlations in the signal are exploited by linearly combining past samples, i.e.,

xt = ∑
q∈Q

aq xt−q +σv vt , vt ∼N (0, 1) (1)

where Q is the model order, xt =
[
x0 · · · xt

]T are the signal samples up to time t, the
AR coefficients are given by a = {aq}q∈Q , and σ2

v is the covariance of the excitation, vt .
AR processes in contrast to autoregressive moving average processes cannot capture anti-
resonances – or time-delays – represented by zeros. Hence, certain sounds such as French
nasals [30] cannot be modeled accurately. Nonetheless, the inclusion of zeros in the model
requires the solution of a non-linear set of equations, whereas AR processes allow for lin-
ear analysis. The popularity of AR processes thus mainly stems from their simplicity and
analytical tractability [31].

Many estimation methods impose time-invariance on the signal model primarily to con-
structively exploit ergodicity. However, the vocal tract is continually changing with time
and thus the limitation of stationarity results in poor modeling for speech signals. Hence,
the variation of speech parameter should be modeled as a non-stationary process.

The local time-variation of speech signals can be captured using time-varying AR (TVAR)
processes. The signal can be represented by a Qth order TVAR process as

xt = ∑
q∈Q

aq,t xt−q +σvt vt , vt ∼N (0, 1) (2)

where at =
{

aq,t
}

q∈Q are the TVAR coefficients. The time-varying characteristics of xt

are thus described by the parameters. The time-varying source parameters and excitation
sequence can be modeled as a stochastic process specified by the first-order Markov chain
[10],

aq,t = aq,t−1 +σaq,t rat

φvt = φvt−1 +σφvt
rφvt

}{
rat ,rφvt

}
∼N (0, 1) (3)
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Time, t [s]

Time, t [s]

Periodic glottal pulse train
Pitch frequency:

Voiced
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voiced
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Vocal tract model
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Time-varying 
pole-zero filter

Fig. 1: Speech production model

where φvt , lnσ2
vt ,

1 and σ2
aq,t and σ2

φvt
are the variance terms on the random walks on the

source parameters and logarithm of the source excitation. Since the source parameters are of
stochastic nature, sequential estimation frameworks are particularly apt at tracking the un-
known random variables, xt , aq,t , and φvt . Stability constraints can be enforced by applying
the indicator function, IAQ(at), over the region of support, AQ, of the source parameters.
The indicator function accepts at if the roots, pt , of at lie within the unit circle. Otherwise,
the roots are reflected back into the unit circle by setting pt → 1/pt [32]. The probability
density functions (pdfs) of eqn. (3) are thus given by

p(at | at−1) ∝ N
(
at
∣∣at−1, ΣΣΣ at

)
IAQ(at) (4a)

p
(

φvt | φvt−1

)
= N

(
φvt

∣∣φvt−1 , σ
2
φvt

)
(4b)

where the covariances ΣΣΣ at , σ2
φvt

are assumed known.

3.2 Channel model

Many different techniques for modeling an room impulse response (RIR) exist. In gen-
eral, each model applies to a different frequency range of the audible spectrum. A complete
characterization of the acoustic impulse response (AIR) can be obtained by a parametric
model through the solution of the acoustic wave equation in terms of a linear combination
of damped harmonics,

ht =

{
0 for t < 0

∑n Ane−δn t cos(ωnt +θn) for t ≥ 0
(5)

1 By definition, variance terms are bound between 0≤ σ2 ≤ ∞. Sampling from lnσ2
vt reinforces this con-

straint.
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where the coefficients An implicitly contain the location of the source and observer, δn, ωn,
and θn are the damping constant, undamped natural frequency, and phase terms respectively.
However, this model is intractable for many estimation problems and does not lead to an
analytical expression in the Bayesian framework for blind dereverberation.

The solution of the acoustic wave equation does however indicate that a room transfer
function can be expressed by a rational expression, and therefore can be modelled by a con-
ventional pole-zero model [33]. From a physical point of view, poles represent resonances,
and zeros represent time delays and anti-resonances. Another commonly used model is the
all-zero model. There are several main limitations of finite impulse response (FIR) filters im-
posed by the nature of room acoustics [33, 34]. First, AIRs are, in general, very long and an
all-zero filter typically requires ns = T60 fs coefficients where fs is the sampling frequency.
For example, if T60 = 0.5 seconds and fs = 10 kHz, the all-zero filter requires ns = 5000 co-
efficients. Secondly, the resulting FIR filter may be effective only for a very limited spatial
combination of source and receiver positions, as all-zero models lead to large variations in
the room transfer function (RTF) for small changes in source–observer positions [33, 34].

As an alternative, all-pole models for approximating rational transfer functions are widely
used. Typical all-pole model orders required for approximating RTFs are in the range 50 <
P < 500 [33] depending on the frequency range of the acoustic spectrum considered. A sig-
nificant advantage of the all-pole model over the all-zero model is its lower sensitivity to
changes in source and observer positions. In many signal processing applications dealing
with room acoustics, it is thus sufficient and more efficient to manipulate all-pole models
rather than high-order all-zero models.

A source signal distorted by white Gaussian noise with variance σ2
wt and filtered through

an all-pole channel of order P is observed at the mth sensor, m ∈M , as

ym,t = ∑
p∈P

bm,pyt−p,m + xt +σwm,t wm,t , (6)

where wm,t ∼N (0, 1) and the channel coefficients are bm =
{

bm,p
}

p∈P . Similar to eqn. (3),

the logarithm of the measurement noise variance, φwm,t , lnσ2
wm,t , is assumed to vary accord-

ing to a first-order Markov chain, i.e.,

φwm,t = φwm,t−1 +σφwm,t
rφwm,t

(7a)

p
(

φwm,t

∣∣ φwm,t−1

)
= N

(
φwm,t

∣∣φwm,t−1 , σ
2
φwm,t

)
, (7b)

where σ2
φwm,t

is assumed known and constant.

3.3 CGSS model

The source model in eqn. (2) and the measurement model in eqn. (6) can be easily rewritten
in state space form. Conditionally on the model parameters the signal model is linear, leading
to the conditionally Gaussian state-space (CGSS) representation [10],

xt = Atxt−1 +ΣΣΣ vt vt , vt ∼N (0Q×1, IQ) , (8a)

yt = Yt−1b+CT xt +ΣΣΣ wt wt wt ∼N (0M×1, IM) (8b)
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where yt ,
[
yt,1 . . . yt,M

]T and b ,
[
bT

1 . . . bT
M
]T . Furthermore, CT , 1M×1

[
1 01×Q−1

]
,

and ΣΣΣ
T
vt ,

[
σvt 01×Q−1

]
, and

At ,

[
aT

t
IQ−1 0Q−1×1

]
Yt−1 ,

ŷT
t−1,1 . . . 0

...
. . .

...
0 . . . ŷT

t−1,M


where ŷt−1,i ,

[
yt−1,i . . . yt−P,i

]T and at , {am,t}m∈M .

4 Marginalizing channel parameters from source signal

Given the stochastic model in eqn. (8), an optimal estimator is sought of the clean speech
signal, x0:t . If all system variables are considered as stochastic entities, an estimate of the
source signal can be obtained by maximizing its posterior pdf, p(x0:t | ψψψ0:t), where θθθ 0:t ,{

a0:t ,φφφ v0:t
,φφφ w0:t

}
are defined as the time-varying model parameters and assumed known

in this section. However, according to eqn. (8), the posterior pdf of the source signal is
dependent upon the parameters of the RIR, b, which are unknown in practice. In order to
estimate x0:t , an estimate of b is thus required, i.e.,

p(z0:t | ψψψ0:t) = p(x0:t | ψψψ0:t ,b) p(b | ψψψ0:t) (9)

where z0:t , {x0:t ,b} and ψψψ0:t , {y1:t ,θθθ 0:t}. The mean squared error (MSE) between z0:t
and its estimate, ẑ0:t , can thus be expressed as

MSEẑ0:t
=
∫
‖ẑ0:t − z0:t‖2 p(z0:t | ψψψ0:t)dz0:t . (10)

Differentiating eqn. (10) with respect to ẑ0:t and setting to zero, the minimum mean-square
error (MMSE) estimate is

ẑ0:t =
∫

z0:t p(z0:t | ψψψ0:t)dz0:t (11a)

which, by inserting eqn. (9), is equivalent to

=
∫∫ [x0:t

b

]
p(x0:t | ψψψ0:t ,b) p(b | ψψψ0:t)dbdx0:t

=


∫

x0:t

∫
p(x0:t | ψψψ0:t ,b) p(b | ψψψ0:t)dbdx0:t∫

b p(b | ψψψ0:t)
∫

p(x0:t | ψψψ0:t ,b)dx0:t db


=


∫

x0:t p(x0:t | ψψψ0:t)dx0:t∫
b p(b | ψψψ0:t)db

=

[
x̂0:t

b̂

]
(11b)

Thus, the optimal estimator of the source signal maximizes the marginalized posterior pdf,
p(x0:t | ψψψ0:t ,). The posterior pdf, p(x0:t | ψψψ0:t ,b), can be expressed in terms of the KF equa-
tions due to the linear, Gaussian substructure in eqn. (8) as discussed in sect. §4.1. Likewise,
as derived in sect. §4.2, p(b | ψψψ0:t) can be updated using the KF. Finally, sect. §4.3 shows
that x0:t is linearly dependent in b such that p(x0:t | ψψψ0:t) can be derived straightforwardly
from the results in sects. §4.1 and §4.2.
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4.1 Estimation of source signal

The KF is the optimal estimator of the source signal for known model parameters in CGSS
systems (see eqn. (8)).

4.1.1 Marginalization from posterior pdf

KFs sequentially predict x0:t based on the model parameters and correct the prediction using
the most recent measurement. Thus, the posterior,

p(x0:t | y1:t ,θθθ 0:t ,b) ∝

t

∏
k=1

p(xk | y1:k,x0:k−1,θθθ 0:k,b) (12)

is to be estimated. Assuming that the posterior pdf at t − 1, p(xt−1 | y1:t−1,θθθ 0:t−1,b) is
available, the source signal sample at t can be predicted using y1:t−1 by marginalizing the
previous states, xt−1, i.e.,

p(xt | y1:t−1,θθθ 0:t ,b) =
∫

p(xt ,xt−1 | y1:t−1,θθθ 0:t ,b)dxt−1

=
∫

p(xt | y1:t−1,θθθ 0:t ,xt−1,b) p(xt−1 | y1:t−1,θθθ 0:t ,b)dxt−1

Recalling eqn. (8a), given xt−1, xt only depends on xt−1 and θθθ 0:t , then

=
∫

p(xt | xt−1,θθθ 0:t) p(xt−1 | y1:t−1,θθθ 0:t−1,b)dxt−1. (13)

When the measurement at t becomes available, the prediction p(xt | y1:t−1,θθθ 0:t ,b) can be
updated using the current observations via Bayes’s theorem to obtain the corrected pdf,
p(xt | y1:t ,θθθ 0:t ,b), i.e.,

p(xt | y1:t ,θθθ 0:t ,b)

=
p(yt | y1:t−1,xt ,θθθ 0:t ,b) p(xt | y1:t−1,θθθ 0:t ,b)

p(yt | y1:t−1,θθθ 0:t ,b)
.

(14)

where p(yt | y1:t−1,xt ,θθθ 0:t ,b), is given by probability transformation of eqn. (8), i.e.,

p(yt | y1:t−1,xt ,θθθ 0:t ,b) = N
(
yt
∣∣Yt−1b+CT xt , ΣΣΣ wt

)
(15)

The evidence term, p(yt | y1:t−1,θθθ 0:t ,b), is independent of xt , thus acting as a scaling con-
stant only.

For the linear Gaussian state space in eqn. (8), the recursive propagation in time of the
posterior pdf, as described by eqns. (13) and (14), can be completely characterized by a
Kalman filter, such that [10, 35],

p(xt | y1:t−1,θθθ 0:t ,b) = N
(

xt
∣∣µµµ t|t−1, ΣΣΣ t|t−1

)
, (16a)

p(xt | y1:t ,θθθ 0:t ,b) = N
(

xt
∣∣µµµ t|t , ΣΣΣ t|t

)
. (16b)

The mean and covariance are obtained using the KF equations (see, e.g, [35]),

µµµ t|t−1 = At µµµ t−1|t−1, (17a)
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ΣΣΣ t|t−1 = ΣΣΣ vt ΣΣΣ
T
vt +AtΣΣΣ t−1|t−1AT

t (17b)

µµµ t|t =
(
IQ−KtCT )

µµµ t|t−1−Kt (Yt−1b−yt) (17c)

ΣΣΣ t|t =
(
IQ−KtCT )

ΣΣΣ t|t−1. (17d)

with residual covariance, ΣΣΣ zt , and the Kalman gain, Kt ,

Kt = ΣΣΣ t|t−1CΣΣΣ
−1
zt (18)

ΣΣΣ zt = ΣΣΣ wt +CT
ΣΣΣ t|t−1C. (19)

As p(xt | y1:t ,θθθ 0:t ,b), is Gaussian, µµµ t|t corresponds to both the expected value and max-
imum of the posterior pdf of the source signal and is thus both the maximum a posteri-
ori (MAP) and MMSE estimate of xt . Therefore, using eqns. (13) and (14), x0:t can be
recursively estimated by i) predicting the states by marginalization of the trajectory of past
states, x0:t−1, and ii) updating the estimate using yt by applying Bayes’s theorem .

Furthermore, the source signal is marginalized from the likelihood in eqn. (15) via

p(yt | y1:t−1,θθθ 0:t ,b)

=
∫

p(yt | y1:t−1,x0:t ,b) p(xt | y1:t−1,θθθ 0:t ,b)dxt

= N
(

yt
∣∣Yt−1b+CT

µµµ t|t−1, ΣΣΣ zt

)
.

(20)

4.1.2 Linearity of KF in channel parameters

The posterior pdf of the source signal in eqn. (16b) is dependent on the unknown channel
parameters, b, via µµµ t|t in eqn. (17a). In fact, it can be shown by induction that µµµ t|t is linearly
dependent in b, such that eqn. (17a) at t−1 is

µµµ t−1|t−1 = ααα t−1|t−1 +ΓΓΓ t−1|t−1b. (21)

Inserting eqn. (21) into the prediction, µµµ t|t−1, in eqn. (17a) at t, the predicted states become

µµµ t|t−1 = ααα t|t−1 +ΓΓΓ t|t−1b (22)

where

ααα t|t−1 = Atααα t−1|t−1 (23a)

ΓΓΓ t|t−1 = AtΓΓΓ t−1|t−1 (23b)

Inserting into eqn. (17c), the corrected states thus are implicitly dependent on the channel
parameters via

µµµ t|t = ααα t|t +ΓΓΓ t|tb (24)

where

ααα t|t =
(
IQ−KtCT )

ααα t|t−1 +Ktyt (25a)

ΓΓΓ t|t =
(
IQ−KtCT )

ΓΓΓ t|t−1−KtYt−1 (25b)

This linear dependency of µµµ t|t in b facilitates the marginalization of b from the posterior pdf
p(xt | y1:t ,θθθ 0:t ,b) as derived in sect. §4.3 in eqn. (11b).
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4.2 Estimation of channel parameters

The static channel, b, does not exhibit a dynamic over time. Predicting future values would
thus be futile. Nonetheless, belief in the static parameters can be updated as new data be-
comes available. Using Bayes’s theorem, this belief can be expressed as (see Appen. A)

p(b | y1:t ,θθθ 0:t)

=
p(yt | y1:t−1,θθθ 0:t ,b) p(b | y1:t−1,θθθ 0:t−1)

p(yt | y1:t−1,θθθ 0:t−1)
.

(26)

Assuming that p(b | y1:t−1,θθθ 0:t−1) is Gaussian with mean µµµb,t−1 and covariance ΣΣΣ b,t , such
that

p(b | y1:t−1,θθθ 0:t−1) = N
(
b
∣∣µµµb,t−1, ΣΣΣ b,t−1

)
, (27)

then inserting p(b | y1:t−1,θθθ 0:t−1) and p(yt | y1:t−1,θθθ 0:t ,b) (eqn. (20)) into eqn. (26), the
posterior pdf of the channel is Gaussian itself as shown in Appen. A, i.e.,

p(b | y1:t ,θθθ 0:t) = N
(
b
∣∣µµµb,t , ΣΣΣ b,t

)
(28)

where the mean, µµµb,t , and covariance, ΣΣΣ b,t , are

µµµb,t =
(
IP−Kb,tỸT

t−1
)

µµµb,t−1 +Kb,t ỹt (29a)

ΣΣΣ b,t =
(
IP−Kb,tỸT

t−1
)

ΣΣΣ b,t−1, (29b)

where the Kalman gain, Kb,t , and the residual covariance, ΣΣΣ zt,b , are defined as

Kb,t = ΣΣΣ b,t−1ỸT
t−1ΣΣΣ

−1
zt,b

(30)

ΣΣΣ zt,b = ΣΣΣ zt + ỸT
t−1ΣΣΣ b,t−1Ỹt−1. (31)

and where ỹt , yt −CT ααα t|t−1 and ỸT
t−1 , Yt−1 +CT ΓΓΓ t|t−1. The channel estimation is thus

of the form of the update Kalman equations. As more knowledge about the observations
becomes available, the belief in the static channel is updated (as opposed to predicting a
dynamic into the future and correcting using measurements as in eqn. (17)).

4.3 Marginalization of channel parameters

Recall the marginalization of b in eqn. (11b),

p(xt | y1:t ,θθθ 0:t) =
∫

p(xt | y1:t ,θθθ 0:t ,b) p(b | y1:t ,θθθ 0:t)db

The posterior pdf of the source signal, p(xt | y1:t ,θθθ 0:t ,b), is given in sect. §4.1 by eqn. (16b)
and the corresponding KF equations in eqs. (22), (24), (17b), and (17d). The posterior pdf
of the channel, p(b | y1:t ,θθθ 0:t), is given in sect. §4.2 by eqn. (28) and the KF equations in
eqn. (29).

Inserting eqns. (16b) and (28) into eqn. (11b) and solving the integral using the standard
Gaussian identity (see Appen. B), the marginal posterior pdf of xt becomes

p(xt | y1:t ,θθθ 0:t) = N
(

xt
∣∣ µ̂µµ t|t , Σ̂ΣΣ t|t

)
(32)
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KF prediction of µµµ
(i)
t|t−1, ΣΣΣ

(i)
t|t−1 (eqs.(17b), (17a)).;

Evaluate ααα
(i)
t|t−1, ΓΓΓ

(i)
t|t−1, ααα

(i)
t|t , ΓΓΓ

(i)
t|t (eqs. (23), (25)).;

KF estimation of µµµ
(i)
b,t and ΣΣΣ

(i)
b,t (eqn. (29));

KF correction of µµµ
(i)
t|t , ΣΣΣ

(i)
t|t (eqn. (33)).

Algorithm 1: MARBLE KF for source signal estimation at time t given estimates at
t−1
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Predict Update

KF estimation of source signal and likelihoodImportance sampling of particles Resampling

.

Fig. 2: Rao-Blackwellized particle filter

with marginal covariance, Σ̂ΣΣ t|t , and marginal mean, µ̂µµ t|t ,

µ̂µµ t|t = ααα t|t +ΓΓΓ t|t µµµb,t (33a)

Σ̂ΣΣ t|t =
(
IQ−ktcT )

ΣΣΣ t|t−1 +ΓΓΓ t|tΣΣΣ b,tΓΓΓ
T
t|t . (33b)

Thus, the MMSE estimator of xt is given by µ̂µµ t|t with error covariance Σ̂ΣΣ t|t . Comparing
eqn. (33a) to the decomposed posterior pdf of the source signal in eqn. (24), the MMSE
estimate of x0:t is equivalent to inserting a MAP estimate of b in the KF update equation.
The error covariance of the estimate takes into account uncertainty introduced by channel
estimation through introduction of a weighted version ΣΣΣ b,t by ΓΓΓ t|t in eqn. (33b).

Furthermore, the channel is marginalized from the likelihood eqn. (20) via

p(yt | y1:t−1, θθθ 0:t)

=
∫

p(yt | y1:t−1,θθθ 0:t ,b) p(b | y1:t−1,θθθ 0:t)db

= N
(
yt
∣∣µµµyt

, ΣΣΣ zt,b

)
(34)

where µµµyt
,Yt−1 µµµb,t−1+CT

(
ααα t|t−1 +ΓΓΓ t|t−1µµµb,t−1

)
is defined as the mean (see Appen. C.2).

The algorithm for source signal and channel estimation is summarized in Algorithm 1.

5 MARBLE PF for blind speech dereverberation

In sect. §4 the time-varying model parameters, θθθ 0:t were assumed known. However, in prac-
tice, the source signal has to be estimated blindly, i.e., only the measurements are available.
Thus, the KF cannot be applied directly. Instead, an optimal estimate of the source signal
can be obtained by estimating an ensemble of KFs for all possible parameter choices. As
this requires the search of an infinite parameter space, an ensemble of KFs can be evalu-
ated for stochastically selected parameters for reduced dimensionality. The parameters are
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sampled in a particle filter framework. PFs have been widely discussed in the literature, see,
e.g., [36, 37]. For completeness, a brief explanation of PFs is given in sects. §5.1 and §5.2.
Sect. §5.3 derives the necessary pdfs required specifically for the MARBLE PF.

5.1 Rao-Blackwellized estimation of z0:t and θθθ 0:t

Similarly to sect. §4, denoting f0:t , {z0:t , θθθ 0:t}, the posterior pdf of the all unknown param-
eters is given as

p( f0:t | y1:t) = p(z0:t | y1:t ,θθθ 0:t) p(θθθ 0:t | y1:t) (35)

If f̂0:t is an estimate of f0:t , the MSE between f0:t and f̂0:t is

MSEf̂0:t
=
∫
‖̂f0:t − f0:t‖2 p( f0:t | y1:t)df0:t

The MMSE estimate of f0:t is found by differentiating with respect to f̂0:t and setting to zero.
The optimal estimator can be derived similarly to eqn. (11), such that

f̂0:t =


∫

z0:t p(z0:t | y1:t)dz0:t∫
θθθ 0:t p(θθθ 0:t | y1:t)dθθθ 0:t

=

[
ẑ0:t

θ̂θθ 0:t

]
(36a)

Thus, the unknown model parameters can be obtained by marginalizing z0:t from the joint
posterior pdf, such that θθθ 0:t and z0:t can be estimated separately. As both the source sig-
nal and the channel are obtained using their optimal estimator as described in sect. §4, the
estimators of z0:t and θθθ 0:t is Rao-Blackwellized [9] by marginalization of the analytically
tractable sub-structure from the joint posterior pdf, p(z0:t ,θθθ 0:t | y1:t). As subsets of smaller
dimension are evaluated, the variance of the estimates is decreased compared to direct eval-
uation of the joint pdf.

By applying Bayes’s theorem to p(θθθ 0:t | y1:t) and reordering slightly, eqn. (36a) can be
written as

θ̂θθ 0:t =

∫
θθθ 0:t p(y1:t | θθθ 0:t) p(θθθ 0:t)dθθθ 0:t∫

p(y1:t | θθθ 0:t) p(θθθ 0:t)dθθθ 0:t

Assuming a proposal distribution, π (θθθ 0:t |y1:t), is available that is easy to sample from and
approximates p(θθθ 0:t | y1:t) with the same support, the MMSE estimate becomes

=

∫
θθθ 0:t

p( y1:t |θθθ 0:t )p(θθθ 0:t )
π (θθθ 0:t |y1:t )

π (θθθ 0:t |y1:t)dθθθ 0:t∫ p( y1:t |θθθ 0:t )p(θθθ 0:t )
π (θθθ 0:t |y1:t )

π (θθθ 0:t |y1:t)dθθθ 0:t
. (37)

Defining so-called importance weights, wt ,

wt ,
p(y1:t | θθθ 0:t) p(θθθ 0:t)

π (θθθ 0:t |y1:t)

= wt−1×
p(yt | y1:t−1,θθθ 0:t) p(θθθ t | θθθ 0:t−1)

π (θθθ t |y1:t ,θθθ 0:t−1)

(38)

and recalling Ep( θθθ 0:t | ·) [h0:t ],
∫

h0:t p(θθθ 0:t | ·)dθθθ 0:t for any function h0:t of θθθ 0:t , the MMSE
estimate in eqn. (37) is

θ̂θθ 0:t =
Eπ (θθθ 0:t |y1:t ) [θθθ 0:t wt ]

Eπ (θθθ 0:t |y1:t ) [wt ]
(39)
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5.2 Sequential Monte Carlo sampling

In order to solve eqn. (39), the solution of several high-dimensional, non-linear integrals is
required. As an exercise in stochastic integration, numerical Monte Carlo methods can be
used to approximate these integrals by drawing N independent and identically distributed
(i. i. d.) samples, θθθ

(i)
0:t , i ∈ N from the proposal pdf, leading to the approximation of the

MMSE estimate, θ̂θθ 0:t , as

θ̂θθ 0:t =
1
N ∑

i∈N
θθθ 0:t

(
θθθ
(i)
0:t

)
w̃(i)

t

where the weight of the ith particle, w(i)
t , is normalized via

w̃(i)
t , w(i)

t

/
∑

j∈N
w( j)

t . (40)

The desired posterior pdf, p(θθθ 0:t | y1:t), can thus be approximated by a point-mass distribu-
tion [10], i.e.,

p̂N (θθθ 0:t |y1:t) = ∑
i∈N

w̃(i)
0:t δ

(
θθθ 0:t −θθθ

(i)
0:t

)
. (41)

As the proposal distribution, π (θθθ 0:t |y1:t), only approximates the parameter posterior,
p(θθθ 0:t | y1:t), the discrepancy between the proposal and the posterior pdf increases stochas-
tically with time. After few iterations all but one importance weight are close to zero and
computational effort is dissipated to tracking particle trajectories not contributing to the final
estimate. Resampling ensures that only statistically relevant samples are retained by elimi-
nating degenerate trajectories with small importance weights [38]. A measure of degeneracy
is given by the effective sample size,

N̂e f f = 1
/

∑
i∈N

(
w̃(i)

t

)2
(42)

If N̂e f f is below a defined threshold, the particles are resampled. An overview of resam-
pling schemes can be found in [39]. In this paper, systematic resampling is utilized. The
principle of the proposed algorithm is illustrated in Fig. 2: N samples of the time-varying
model parameters are chosen from a hypothesis distribution, reflecting belief in the param-
eter production system. An ensemble of the KFs for source signal and channel parameters
is evaluated for all N choices of model parameters. Using the resulting likelihood, weights
are assigned to each resulting set of estimates and parameters. Only statistically relevant
samples are retained by resampling all sets corresponding to their weights.

5.3 Choice of importance sampling function

The performance of particle filters is highly dependent on the choice of the proposal distri-
bution that θθθ

(i)
0:t are drawn from. The optimal importance function minimizing the variance

upon θθθ
(i)
0:t and the y1:t is given by p

(
θθθ
(i)
t

∣∣∣ yt ,θθθ
(i)
t−1

)
with w(i)

t ∝ p
(

yt | θθθ (i)
t−1

)
[40]. How-

ever, as θθθ
(i)
t are non-linear in the likelihood due to the form of eqn. (8), the optimal weights,

w(i)
t are not analytically tractable.
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for t = 1, . . . , number of samples do
for i = 1, . . . , number of particles do

Importance sampling of θθθ
(i)
0:t (eqs. (3), (7b));

Evaluate MARBLE KF as described in Algorithm 1;
Evaluation of weights w(i)

t (eqs. (38), (34));
end
Normalization of importance weights (eqn. (40));
Resampling;
Computation of particle average:

x̂t = ∑
i∈N

µ̂µµ
(i)
t|t θ̂θθ t = ∑

i∈N
θθθ
(i)
0:t , b̂ = ∑

i∈N
µµµ
(i)
b,t .

end

Algorithm 2: MARBLE PF

Sampling from the prior, p
(

θθθ
(i)
t

∣∣∣ θθθ
(i)
t−1

)
, is often used instead of optimal importance

sampling. Inserting the prior pdf into eqn. (38), the weights reduce to

w(i)
t = w(i)

t−1 p
(

yt | y1:t−1,θθθ
(i)
0:t

)
∝ p

(
yt | y1:t−1,θθθ

(i)
0:t

)
(43)

where the proportionality is due to the uniform distribution of weights after resampling.
p
(

yt | y1:t−1,θθθ
(i)
0:t

)
can be obtained by marginalizing z0:t from the joint likelihood, i.e.,

p
(

yt | y1:t−1,θθθ
(i)
0:t

)
=
∫

p
(

yt ,z
(i)
0:t

∣∣∣ y1:t−1,θθθ
(i)
0:t

)
dz(i)0:t (44)

Thus, similar to the posterior pdf of the model parameters, the weights of the particles are
obtained by marginalization of source signal and channel from the likelihood. Firstly, the
predicted source signal pdf in eqn. (16a) is marginalized from the measurement likelihood
(eqn. (15)) in eqn. (20). The likelihood required in eqn. (44) is obtained by marginalizing
the channel posterior pdf in eqn. (28) from eqn. (20) as derived in eqn. (34). The MARBLE
PF is summarized in Algorithm 2.

6 Experimental results

Examples are presented in the following to demonstrate the proposed approach. To measure
the performance of the proposed approach, synthetic examples are used in order to compare
the results to an underlying ground truth which is not available for speech data. Speech data
is subsequently used to present efficiency for blind speech dereverberation.

In order to test the general performance of the algorithm against an underlying truth, a
TVAR signal of order Q = 4 is synthetically generated according to eqns. (2) and (3). The
source signal is distorted by an acoustic gramophone horn with optimal model order P = 72
(corresponding parameters are extracted in, e.g., [41]), white Gaussian noise (WGN) with
25dB signal-to-noise ratio (SNR), and using a single sensor. The MARBLE PF is executed
for N = 200 particles. The corresponding source signal and channel parameter estimates are
shown in Fig.s 3 and 4a. After approximately 1000 samples, the estimates converge towards
an accurate approximation of the source signal. However, as particle filters are sequential es-
timators, the same estimation performance should be evident for the whole cycle of samples
and so-called ‘burn-in’ periods, observed in Markov chain Monte Carlo approaches, should
not occur. However, this ‘burn-in’ period of the source signal estimate is in fact due to the
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Fig. 3: Accuracy of estimated signal ( ) with source signal ( ) and observed signal
( ) for 200 particles using an acoustic horn channel and TVAR data.

Bayesian update procedure on the static channel parameters: As can be seen from the trajec-
tory of channel parameter estimates in Fig. 4, the channel parameters require approximately
1000 samples to converge towards the actual channel parameters. Note that whilst most pa-
rameter estimates converge towards the actual parameters, some (such as b2) converge to a
false constant. Regardless, the channel pole estimate (i.e., the roots of the parameters) accu-
rately approximate the actual channel poles. This is due to the close spacing between poles
such that few pole estimates approximate neighboring pole positions.

To confirm that the ‘burn-in’ period of the source signal estimates is in fact an artefact
of the channel estimator, the experiment is repeated assuming the channel parameters are
known in the particle filter framework. The resulting source signal estimate in Fig. 5 ac-
curately estimates the source signal from t = 1, thus confirming that the ‘burn-in’ period
apparent in Fig. 3 is, in fact, due to the number of samples required to obtain convergence
on the channel parameter estimates.

Using the image-source method [42], the impulse response of a 4.68× 2.78× 3.2m
room is simulated at fs = 500 Hz. The source is placed 1.54m away from the West wall, the
sensors are 10cm apart and 1.415m away from the East wall. The RIR is modelled as an
AR process2 used to filter a 4.2s speech signal at fs = 500 Hz distorted by WGN at SNR
of 25dB. The MARBLE PF is applied assuming 10 source parameters using 50 particles
and 20 Monte Carlo iterations. Performance of the results is evaluated using the signal-to-

2 Note that any non-minimum phase components are excluded.
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(a) Convergence of estimated channel parameters (solid) towards the actual channel parameters (dashed) after
1000 samples for 200 particles.

  0.2

  0.4

  0.6

  0.8

  1

30

60

90

120

150

180 0

  

Real axis

Im
ag

in
ar

y 
ax

is

(b) Pole trajectory with time from early estimates at t = P (light grey) to estimate at t = 5000 (black) vs. actual
poles (red circles)

Fig. 4: Convergence of estimated channel parameters and poles of the acoustic horn channel
with time towards the actual static channel using 200 particles for a TVAR signal.
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Fig. 5: Clean source vs. estimated vs. observed signal for P = 72 acoustic horn and TVAR
data assuming known channel parameters.
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Fig. 6: SRR degradation with increasing reverberation time.
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reverberant component ratio (SRR) that can be found as

SRRlin , E
[

eT
0:te0:t

xT
0:tx0:t

]
=

t
∑

k=0
tr
[
Σ̄ΣΣ k|k

]
+‖µ̄µµk|k−xk‖2

t
∑

i=0
xT

i xi

,

where e0:t , x̂0:t − x0:t is the error between the estimate, x̂0:t , and the actual source signal,
x0:t ; tr [·] denotes the trace of a matrix; µ̄µµ t|t and Σ̄ΣΣ t|t are the particle average of the cor-
rected Kalman filter mean and covariance respectively in eqn. (33); and the SRR in dB is
SRRdB = 10log10{SRRlin}. Typical reverberation times, T60, for rooms where dereverber-
ation is of interest lie between 0.2 and 2s. The PF is hence applied for impulse responses
generated using these T60 times to measure the approach’s performance with increasing re-
verberation effects. The corresponding SRR of the observed signal approximately follows an
exponential decay, decreasing by 10dB with increasing T60 (Fig. 6). In contrast, the SRR of
the MARBLE PF remains almost constant and in total decreases by only 1dB, thus leading
to a robust performance improvement of 17dB as compared to the reverberant observations
at T60 = 1.8s. The MARBLE PF is thus comparatively robust against the reverberation time
of a room. Using T60 = 0.45s, the experiment is repeated for M = 1 to 10 sensors (Fig. 7).
Whilst the MARBLE PF achieves an SRR improvement of 12dB using a single sensor, the
SRR is increased by a further 4dB when using 10 sensors. Multi-sensor processing thus
leads to significant SRR improvement. Fig. 8 illustrates that further performance improve-
ment can be achieved by increasing the distance between sensors, thus exploiting spatial
diversity of sensors.

Fig. 9 compares the time-series of the speech, observed, and estimated signals at 250Hz
distorted by the simulated image-source method (ISM) data and WGN for a single and mul-
tiple sensors. Whilst the estimate accurately approximates the source signal within approx-
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(b) MARBLE speech estimate

(a) Reverberant, noisy observed signal

Fig. 7: SRR improvement with increasing number of sensors.
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Fig. 8: SRR improvement with increasing separation between microphones

imately 200 samples when using multiple sensors, a ‘burn-in’ period of about 600 samples
is required for the single sensor case to obtain accurate estimation.

7 Model extension: Multirate filtering

In sect. §6, results were demonstrated for subband speech signals sampled at 500 and 250Hz.
However, fundamental frequencies of speech phonemes start at approximately 125Hz for
male speakers (e.g., /u/ has a fundamental frequency of f0 = 141Hz), whilst formant fre-
quencies for male speech and even fundamental frequencies in female speech lie well above
230Hz (e.g., /u/ corresponds to f0 = 231Hz in female speech, whilst the first formant fre-
quency lie at 300Hz in male speech and and 370Hz in female speech; second and higher for-
mant frequencies start from 870Hz) [43]. Therefore, harmonic components generated by the
speech formants are disregarded when decimating speech signals to a sampling frequency
of 500Hz and below.

Nevertheless, the model order of RIRs increases with increasing sampling rate (see
sect. §3.2). Thus, several hundred channel parameters are necessary in order to accurately
capture the RIR when using fullband speech data (at least 8kHz sampling rate). Thus, eval-
uation of the KF equations in eqs. (29), (33) and (34) involves processing of extremely large
matrices for speech signals. Therefore, to avoid computational overhead, the sampling rate
in this paper was limited to 250-500Hz. However, the presented results can be extended to
fullband signals combining several subband signals in a multirate filtering approach.

Processing can be carried out more efficiently by splitting the fullband signal into several
sub-band signals. An analysis filter bank consisting of K filters, hk,t , k ∈K , channelizes the
observed signal, y1:t , into K sub-band signals, yk,t , and decimates the resulting signals by
a factor of K (denoted as ↓ K). Because of the reduced sampling frequency, fewer model
parameters and samples are required, leading to more efficient and faster processing. After
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(b) Estimated signal approximating source signal after an initial ‘burn-in’ period using a single sensor.

Fig. 9: Estimated signal, source, and observed signal for multi- and single-sensor MARBLE
PF for speech filtered by a RIR generated using the ISM method with T60 = 0.45s.
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Fig. 10: Sequential multirate filtering of fullband reverberant speech, y1:t , into K sub-band
signals, yk,t , k ∈ K using GDFT analysis and synthesis banks with filter length L of the
dereverberated speech estimated, x̂t

processing, the estimated subband signals, x̂k,t are recombined by interpolating by a factor of
K (denoted as ↑ K) and applying K synthesis filters, gk,t . The fullband signal is the sum over
the output of the synthesis filters. This multirate processing approach is shown in Fig. 10 and
is commonly referred to as a K-channel filterbank [44]. For near-perfect reconstruction at
critical sampling, the generalised discrete Fourier transform (GDFT) filterbank [45] can be
used. Multirate filtering using the GDFT was applied successfully in blind dereverberation
problems in, e.g., [46,47]. Even though the design results in complex subband signals, only
K/2 subbands need to be processed if K is even. The remaining K/2 subbands are given as the
complex conjugates of the processed subbands. The analysis filters, hk,i, can be computed
from a single prototype filter, hpr,i, of length Lpr and bandwidth 2π/K,

hk,i = hpr,i exp
{

j
2π

K
(k+ k0)(i+ i0)

}
i = 0,1, . . . ,Lpr−1

where i0 = 0 and k0 = 1/2 [45]. The synthesis filter satisfying near-perfect reconstruction
for the reconstruction of the fullband signal is given by the time-reversed conjugate of the
analysis filter, i.e., vk,i = h?k,Lpr−i−1.

8 Conclusion

This paper presents a Bayesian approach to multi-sensor blind dereverberation of speech
from a stationary speaker. The source signal and reverberant channel are directly estimated
from the distorted observations by means of their optimal estimators, the KF. As know-
ledge of model parameters is required but unavailable, an ensemble of KFs is evaluated for
stochastically selected parameters. The parameters are obtained by importance sampling in
a PF framework. Due to Rao-Blackwellization, the variance of the estimates is decreased.
Multi-sensor blind dereverberation is compared to utilization of a single sensor by means
of examples. Results show that whilst the single-sensor case offers accurate estimation of
the source signal after an initial burn-in period, multiple sensors allow for instant accuracy
using less particles and increased SRR performance.

Future research will expand the framework to fullband signals via multirate filtering,
extend the model to facilitate blind dereverberation of speech from moving speakers, and
incorporate joint enhancement and target tracking of the source.
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A Estimation of channel parameters

This section derives the results discussed in sect. §4.2. Using Bayes’s theorem, the channel
posterior pdf is expressed as

p(b | y1:t ,θθθ 0:t)

=
p(yt ,θθθ t | y1:t−1,θθθ 0:t−1,b) p(b | y1:t−1,θθθ 0:t−1)

p(yt ,θθθ t | y1:t−1,θθθ 0:t−1)
(45)

By applying the probability chain rule,

p(yt ,θθθ t | y1:t−1,θθθ 0:t−1,b)
p(yt ,θθθ t | y1:t−1,θθθ 0:t−1)

=
p(yt | y1:t−1, θθθ 0:t , b) p(θθθ t | y1:t−1, θθθ 0:t−1, b)

p(yt | y1:t−1, θθθ 0:t) p(θθθ t | y1:t−1, θθθ 0:t−1)
.

(46)

Since θθθ t depends only on θθθ t−1 and yt , the pdfs of θθθ t reduce to the prior pdf, p(θθθ t | θθθ t−1, y1:t−1, ·)=
p(θθθ t | θθθ t−1),

p(b | y1:t ,θθθ 0:t)

=
p(yt | y1:t−1,θθθ 0:t ,b) p(b | y1:t−1,θθθ 0:t−1)

p(yt | y1:t−1,θθθ 0:t−1)
. (26)

Inserting p(b | y1:t−1,θθθ 0:t−1) from eqn. (27) and the likelihood, p(yt | y1:t−1,θθθ 0:t ,b), in
eqn. (20) into eqn. (26) and defining ỹt = yt −CT ααα t|t−1 and ỸT

t−1 = Yt−1 +CT ΓΓΓ t|t−1, then
after a little rearrangement:

p(b | y1:t ,θθθ 0:t) =
(2π)−(P+1)

|ΣΣΣ b,t−1|
1
2 |ΣΣΣ zt |

1
2

1
p(yt | y1:t−1,θθθ 0:t−1)

× exp
{
−1

2

[
bT

ΣΣΣ
−1
b,t b−2bT

ΣΣΣ
−1
b,t µµµb,t +β

]}
= N

(
b
∣∣µµµb,t , ΣΣΣ b,t

)
(47)

where β , µµµT
b,t−1ΣΣΣ

−1
b,t−1µµµb,t−1 + ỹT

t ΣΣΣ
−1
zt ỹt and

ΣΣΣ b,t =
(

ΣΣΣ
−1
b,t−1 + Ỹt−1ΣΣΣ

−1
zt ỸT

t−1

)−1
(48a)

µµµb,t = ΣΣΣ b,t

(
ΣΣΣ
−1
b,t−1µµµb,t−1 + Ỹt−1ΣΣΣ

−1
zt ỹt

)
(48b)

Now, using the Woodbury matrix identity,

(A+UCV)−1= A−1−A−1U
(
C−1 +VA−1U

)−1 VA−1 (49)

eqn. (48a) can be rewritten as

ΣΣΣ b,t = ΣΣΣ b,t−1−ΣΣΣ b,t−1Ỹt−1
(
ΣΣΣ zt + ỸT

t−1ΣΣΣ b,t−1Ỹt−1
)−1
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× ỸT
t−1ΣΣΣ b,t−1

=
{

IP−ΣΣΣ b,t−1Ỹt−1
(
ΣΣΣ zt + ỸT

t−1ΣΣΣ b,t−1Ỹt−1
)−1 ỸT

t−1

}
ΣΣΣ b,t−1

which simplifies to eqn. (29) in sect. §4.2. Eqn. (48b) can thus be written as

µµµb,t =
{

IP−Kb,tỸT
t−1
}

ΣΣΣ b,t−1Ỹt−1ΣΣΣ
−1
zt ỹt

+
{

IP−Kb,tỸT
t−1
}

µµµb,t−1

= µµµb,t−1−Kb,t
(
ỸT

t−1µµµb,t−1 + ỸT
t−1ΣΣΣ b,t−1Ỹt−1ΣΣΣ

−1
zt ỹt

)
+ΣΣΣ b,t−1Ỹt−1ΣΣΣ

−1
zt ỹt

Recalling Kb,t = ΣΣΣ b,t−1ỸT
t−1ΣΣΣ

−1
zt,b

(eqn. (30)) and reordering

= µµµb,t−1−Kb,t

(
ỸT

t−1µµµb,t−1

+
{

ỸT
t−1ΣΣΣ b,t−1Ỹt−1 +ΣΣΣ zt,b

}
ΣΣΣ
−1
zt ỹt

)
By rearranging eqn. (31) to ΣΣΣ zt,b −ΣΣΣ zt = ỸT

t−1ΣΣΣ b,t−1Ỹt−1 and inserting, the mean can be
simplified to eqn. (29).

B Marginalization of channel

This section derives the results discussed in sect. §4.3. Inserting eqns. (16b) and (29) into
eqn. (11b) and regrouping according to terms gives

p(xt | y1:t ,θθθ 0:t)

=
(2π)−

P+Q
2

|ΣΣΣ t|t |
1
2 |ΣΣΣ b,t |

1
2

∫
exp
{
−1

2

[
bT
(

ΣΣΣ
−1
b,t +ΓΓΓ

T
t|tΣΣΣ

−1
t|t ΓΓΓ t|t

)
b

−2bT
(

ΣΣΣ
−1
b,t µµµb,t +ΓΓΓ

T
t|tΣΣΣ

−1
t|t xt −ΓΓΓ

T
t|tΣΣΣ

−1
t|t ααα t|t

)
+α

]}
db

where
α , xT

t ΣΣΣ
−1
t|t xt −2xT

t ΣΣΣ
−1
t|t ααα t|t +ααα

T
t|tΣΣΣ

−1
t|t ααα t|t +µµµ

T
b,tΣΣΣ

−1
b,t µµµb,t

contains all terms independent of b. Defining−ΓΓΓ ,ΣΣΣ
−1
b,t +ΓΓΓ

T
t|tΣΣΣ

−1
t|t ΓΓΓ t|t and e,ΓΓΓ

T
t|tΣΣΣ

−1
t|t ααα t|t−

ΣΣΣ
−1
b,t µµµb,t and applying the Gaussian identity,

p(xt | y1:t ,θθθ 0:t)

=
(2π)−

P+Q
2

|ΣΣΣ t|t |
1
2 |ΣΣΣ b,t |

1
2

(2π)
P
2

|ΣΣΣ−1
b,t +ΓΓΓ

T
t|tΣΣΣ

−1
t|t ΓΓΓ t|t |

1
2

exp
{
−1

2

[
α

−
(

ΓΓΓ
T
t|tΣΣΣ

−1
t|t xt + e

)T
ΓΓΓ
−1
(

ΓΓΓ
T
t|tΣΣΣ

−1
t|t xt + e

)]}
= N

(
xt
∣∣ µ̂µµ t|t , Σ̂ΣΣ t|t

)
(32)
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where the covariance, Σ̂ΣΣ t|t , and mean, µ̂µµ t|t , are given as

Σ̂ΣΣ t|t =
(

ΣΣΣ
−1
t|t −ΣΣΣ

−1
t|t ΓΓΓ t|tΓΓΓ

−1
ΓΓΓ

T
t|tΣΣΣ

−1
t|t

)−1

=
(

ΣΣΣ
−1
t|t − ĈΓΓΓ

−1ĈT
)−1

(50a)

µ̂µµ t|t = Σ̂ΣΣ t|t

(
ΣΣΣ
−1
t|t ααα t|t +ΣΣΣ

−1
t|t ΓΓΓ t|tΓΓΓ

−1e
)

= Σ̂ΣΣ t|t

(
ΣΣΣ
−1
t|t ααα t|t + ĈΓΓΓ

−1e
)

(50b)

where Ĉ , ΣΣΣ
−1
t|t ΓΓΓ t|t . Thus, eqn. (50) is identical in form with eqn. (48), and can hence be

rewritten as

Σ̂ΣΣ t|t =
(
IQ− K̂tĈT )

ΣΣΣ t|t

µ̂µµ t|t =
(
IQ− K̂tĈT )

ααα t|t + K̂te

where

K̂t , ΣΣΣ t|tĈ
(
ΓΓΓ + ĈT

ΣΣΣ t|tĈ
)

= ΣΣΣ t|tΣΣΣ
−1
t|t ΓΓΓ t|t

(
−ΣΣΣ

−1
b,t −ΓΓΓ

T
t|tΣΣΣ

−1
t|t ΓΓΓ t|t +ΓΓΓ

T
t|tΣΣΣ

−1
t|t ΓΓΓ t|t

)−1

=−ΓΓΓ t|tΣΣΣ b,t

such that but inserting back into Σ̂ΣΣ t|t ,

Σ̂ΣΣ t|t =
(

IQ +ΓΓΓ t|tΣΣΣ
−1
b,t ΓΓΓ

T
t|tΣΣΣ

−1
t|t

)
ΣΣΣ t|t

which can be rearranged to eqn. (33b). Furthermore, by inserting K̂, Ĉ, and e in µ̂µµ t|t ,

µ̂µµ t|t =
(

IQ +ΓΓΓ t|tΣΣΣ b,tΓΓΓ
T
t|tΣΣΣ

−1
t|t

)
ααα t|t

−ΓΓΓ t|tΣΣΣ b,t

(
ΓΓΓ

T
t|tΣΣΣ

−1
t|t ααα t|t −ΣΣΣ

−1
b,t µµµb,t

)
which, by eliminating terms, can be rearranged to eqn. (33a).

C Marginalization from likelihood

This section derives the results discussed in sect. §5.3.

C.1 Marginalization of source signal

Inserting eqns. (15) and (17b) into eqn. (14),

p(xt | y1:t , θθθ 0:t , b)

=
1

(2π)
Q+1

2 σ2
wt |ΣΣΣ t|t−1|

1
2

1
p(yt | y1:t−1, θθθ 0:t , b)

× exp
{
−1

2

[
xT

t ΣΣΣ
−1
t|t xt −2xT

t ΣΣΣ
−1
t|t µµµ t|t

+ ŷT
t,bΣΣΣ

−1
wt ŷt,b +µµµ

T
t|t−1ΣΣΣ

−1
t|t−1µµµ t|t−1

]}
(51)
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where ŷt,b = yt −Yt−1b. Integrating both sides of eqn. (51) with respect to xt (since the left
hand side must integrate to unity):

p(yt | y1:t−1, θθθ 0:t , b) =
1

(2π)
Q+P

2 |ΣΣΣ wt |
1
2 |ΣΣΣ t|t−1|

1
2

×
∫

exp
{
−1

2

[
xT

t ΣΣΣ
−1
t|t xt −2xT

t ΣΣΣ
−1
t|t µµµ t|t

+ ŷT
t,bΣΣΣ

−1
wt ŷt,b +µµµ

T
t|t−1ΣΣΣ

−1
t|t−1µµµ t|t−1

]}
dxt

(52)

By applying the Gaussian identity,∫
RN

exp
{
−1

2

[
α +2βββ

T y+yΓΓΓ y
]}

dy

=
(2π)

N
2

|ΓΓΓ | 12
exp
{
−1

2

[
α−βββ

T
ΓΓΓ
−1

βββ

]} (53)

eqn. (52) can be rewritten as

p(yt | y1:t−1, θθθ 0:t , b) =
|ΣΣΣ t|t |

1
2

(2π)
M
2 |ΣΣΣ wt |

1
2 |ΣΣΣ t|t−1|

1
2

(54)

×exp
{
−1

2

[
ŷT

t,bΣΣΣ
−1
wt ŷt,b+µµµ

T
t|t−1ΣΣΣ

−1
t|t−1µµµ t|t−1−µµµ

T
t|tΣΣΣ

−1
t|t µµµ t|t

]}
Defining K̂t = IQ−KtCT , such that from eqn. (17a), µµµ t|t = K̂t µµµ t|t−1+Kt ŷt,b, then the term

µµµ
T
t|t−1ΣΣΣ

−1
t|t−1µµµ t|t−1−µµµ

T
t|tΣΣΣ

−1
t|t µµµ t|t −η

= µµµ
T
t|t−1

(
ΣΣΣ
−1
t|t−1−K̂T

t ΣΣΣ
−1
t|t K̂t

)
µµµ t|t−1−2ŷt,bKT

t ΣΣΣ
−1
t|t K̂t µµµ t|t−1

where η , ŷT
t,bKT

t ΣΣΣ
−1
t|t Kt ŷt,b is independent of µµµ t|t−1. Now, as ΣΣΣ t|t = K̂tΣΣΣ t|t−1 using eqn. (17d),

= µµµ
T
t|t−1

(
IQ− K̂T

t
)

ΣΣΣ
−1
t|t−1µµµ t|t−1−2ŷt,bKT

t ΣΣΣ
−1
t|t−1µµµ t|t−1

= µµµ
T
t|t−1CKT

t ΣΣΣ
−1
t|t−1µµµ t|t−1−2ŷt,bKT

t ΣΣΣ
−1
t|t−1µµµ t|t−1

Using eqn. (18), KT
t ΣΣΣ
−1
t|t−1 = ΣΣΣ

−1
zt CT :

= µµµ
T
t|t−1CΣΣΣ

−1
zt CT

µµµ t|t−1−2ŷt,bΣΣΣ
−1
zt CT

µµµ t|t−1

Inserting into eqn. (54), note that the terms independent of µµµ t|t−1 can be rewritten as

ŷT
t,bΣΣΣ

−1
wt ŷt,b− ŷT

t,bKT
t ΣΣΣ
−1
t|t Kt ŷt,b

= ŷT
t,b

(
ΣΣΣ
−1
wt −KT

t ΣΣΣ
−1
t|t Kt

)
ŷt,b

= ŷT
t,b

(
ΣΣΣ
−1
wt −KT

t

(
CΣΣΣ
−1
wt CT +ΣΣΣ

−1
t|t−1

)
Kt

)
ŷt,b
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= ŷT
t,b
(
ΣΣΣ
−1
wt −KT

t CΣΣΣ
−1
wt CT Kt −ΣΣΣ

−1
zt CT Kt

)
ŷt,b (55)

Inserting eqn. (18) into eqn. (19),

ΣΣΣ zt = ΣΣΣ wt +CT
ΣΣΣ t|t−1C = ΣΣΣ wt +CT KtΣΣΣ zt

⇒ CT Kt = IP−ΣΣΣ wt ΣΣΣ
−1
zt (56)

such that eqn. (55) can be written as

ŷT
t,b
(
ΣΣΣ
−1
wt −KT

t CΣΣΣ
−1
wt

(
IP−ΣΣΣ wt ΣΣΣ

−1
zt

)
−ΣΣΣ

−1
zt CT Kt

)
ŷt,b

= ŷT
t,b
(
IP−KT

t C
)

ΣΣΣ
−1
wt ŷt,b = ŷT

t,bΣΣΣ
−1
zt ŷt,b

Finally, note that

det(ΣΣΣ t|t)

det(ΣΣΣ t|t−1)
= det

(
IQ−KtCT )= 1−CT Kt = ΣΣΣ wt ΣΣΣ

−1
zt

by using eqn. (56) and the identity det(IQ+uvT ) = 1+vT y. Hence, eqn. (52) can be written
in the simplified form:

p(yt | y1:t−1,θθθ 0:t ,b) = N
(

yt
∣∣Yt−1b+CT

µµµ t|t−1, ΣΣΣ zt

)
(20)

C.2 Marginalization of channel

p(yt | y1:t−1,θθθ 0:t) =
∫

p(yt ,b | y1:t−1,θθθ 0:t)db

=
∫

p(yt | y1:t−1,θθθ 0:t ,b) p(b | y1:t−1,θθθ 1:t−1,θθθ t)db

=
∫

p(yt | y1:t−1,θθθ 0:t ,b)

× p(θθθ t | y1:t−1,θθθ 0:t−1,b) p(b | y1:t−1,θθθ 0:t−1)

p(θθθ t | y1:t−1,θθθ 0:t−1)
db

Applying first-order Markov properties of θθθ t , and independence of y1:t−1 and channel,
p(θθθ t | y1:t−1,θθθ 0:t−1, ·) reduces to p(θθθ t | θθθ t−1). As both terms cancel,

=
∫

p(yt | y1:t−1,θθθ 0:t ,b) p(b | y1:t−1,θθθ 0:t−1)db

by inserting eqns. (44) and (29), then after rearrangement,

=
(2π)−P

|ΣΣΣ zt |
1
2 |ΣΣΣ b,t |

1
2

∫
exp
{
−1

2

[
bT

ΣΣΣ
−1
b,t b−2bT

ΣΣΣ
−1
b,t µµµb,t

+ ỹT
t ΣΣΣ
−1
zt ỹt +µµµ

T
b,t−1ΣΣΣ

−1
b,t−1µµµb,t−1

]}
db. (57)

Eqn. (57) is identical to eqn. (52) and reduces to eqn. (34).
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