Skip to main content
Log in

Efficient Detection Algorithms for MIMO Communication Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, two new efficient detection algorithms, Type 1 (T1) with better complexity-performance tradeoff and Type 2 (T2) with lower complexity, are derived from one generalized framework for multiple-input multiple-output (MIMO) communication systems. The proposed generalized detection framework constructed by parallel interference cancellation (PIC), group, and iteration techniques provides three parameters and three sub-algorithms to generate two efficient detection algorithms and conventional BLAST-ordered decision feedback (BODF), grouped, iterative, and B-Chase detection algorithms. Since the group interference suppression (GIS) technique is applied to the proposed detection algorithms, the complexities of the preprocessing (PP) and tree search (TS) can be reduced. In (8,8) system with uncoded 16-QAM inputs, one example of the T1 algorithm can save complexity by 21.2% at the penalty of 0.6 dB loss compared with the B-Chase detector. The T2 algorithm not only reduces complexity by 21.9% but also outperforms the BODF algorithm by 3.1 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  2. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions On Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  3. van Zelst, A., & Schenk, T. C. W. (2004). Implementation of a MIMO OFDM-based wireless LAN system. IEEE Transactions on Signal Processing, 52(2), 483–494.

    Article  MathSciNet  Google Scholar 

  4. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. Proc. ISSSE, 295–300.

  5. Golden, G. D., Foschini, C. J., Valenzuela, R. A., & Wolniansky, P. W. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters, 35(1), 14–16.

    Article  Google Scholar 

  6. Waters, D. W., & Barry, J. R. (2008). The Chase family of detection algorithms for multiple-input multiple-output channels. IEEE Transactions on Signal Processing, 56(2), 739–747.

    Article  MathSciNet  Google Scholar 

  7. Luo, Z., Zhao, M., Liu, S., & Lin, Y. (2008). Generalized parallel interference cancellation with near-optimal detection performance. IEEE Transactions on Signal Processing, 56(1), 304–312.

    Article  MathSciNet  Google Scholar 

  8. Hassibi, B. An efficient square-root algorithm for BLAST. http://mars.bell-labs.com/cm/ms/what/mars/index.html.

  9. Benesty, J., & Huang, Y. (2003). A fast recursive algorithm for optimum sequential signal detection in a BLAST system. IEEE Transactions on Signal Processing, 51(7), 1722–1730.

    Article  MathSciNet  Google Scholar 

  10. Viterbo, E., & Boutros, J. (1999). A universal lattice decoder for fading channels. IEEE Transactions on Information Theory, 45(5), 1639–1642.

    Article  MathSciNet  MATH  Google Scholar 

  11. Damen, M. O., El Gamal, H., & Caire, G. (2003). On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions On Information Theory, 49(10), 2389–2402.

    Article  Google Scholar 

  12. Artés, H., Seethaler, D., & Hlawatsch, F. (2003). Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection. IEEE Transactions on Signal Processing, 51(11), 2808–2820.

    Article  MathSciNet  Google Scholar 

  13. Choi, W. J., Negi, R., & Cioffi, J. M. (2000). Combined ML and DFE decoding for the V-BLAST system. Proceedings of the IEEE International Conference on Communications, 3, 1243–1248.

    Google Scholar 

  14. Yang, L., Chen, M., Cheng, S., & Wang, H. (2004). Combined maximum likelihood and ordered successive interference cancellation grouped detection algorithm for multistream MIMO. Proceedings of the IEEE International Symposium on Spread Spectrum Techniques and Application, Aug.–Sep. 250–254.

  15. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.

    Article  MathSciNet  MATH  Google Scholar 

  16. Al-Ghadhban, S., & Woerner, B. D. (2004). Iterative joint and interference nulling/cancellation decoding algorithms for multi-group space time trellis coded systems. Proceedings IEEE Wireless Communications and Networking Conference (WCNC), 4, 2317–2322.

    Google Scholar 

  17. Shen, C., Zhang, H., Dai, L., & Zhou, S. (2003). Detection algorithm improving V-BLAST performance over error propagation. Electronic Letters, 39(13), 1107–1108.

    Article  Google Scholar 

  18. Li, D., Cai, L., & Yang, H. (2004). New iterative detection algorithm for V-BLAST. IEEE Vehicular Technology Conference, 4, 2444–2448.

    Google Scholar 

  19. Waters, D. W., & Barry, J. R. (2005). The sorted-QR chase detector for multiple-input multiple-output channels. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 1, 538–543.

    Article  Google Scholar 

  20. Li, Y., & Luo, Z. (2002). Parallel detection for V-BLAST system. Proceedings of the IEEE International Conference on Communications, 1, 340–344.

    MathSciNet  Google Scholar 

  21. Lei, Z., Dai, Y., & Sun, S. (2005). A low complexity near ML V-BLAST algorithm. Proceedings of the IEEE Vehicular Technology Conference (VTC), 2, 942–946.

    Google Scholar 

  22. Wu, D. Y., & Van, L. D. (2008). A grouped-iterative framework for MIMO detection. Proceedings of the IEEE Vehicular Technology Conference (VTC), Sep. 2008, accepted, Calgary, Canada.

  23. Huang, C. J., Yu, C. W., & Ma, H. P. (2009). A power-efficient configurable low-complexity MIMO detector. IEEE Transactions on Circuits and Systems, I, 56(2), 485–496.

    Article  Google Scholar 

  24. Wübben, D., Böhnke, R., Rinas, J., Kühn, V., & Kammeyer, K. (2001). Efficient algorithm for decoding layered space-time codes. Electronic Letters, 37(22), 1348–1350.

    Article  Google Scholar 

  25. Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (3rd ed.). Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  26. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., & Bölcskei, H. (2005). VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE Journal of Solid-State Circuits, 40(7), 1566–1577.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Science Council (NSC) Grant NSC-98-2220-E-009-042, NSC-97-2220-E-009-024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-You Wu.

Appendix

Appendix

Table 7 Glossary of acronym defined in this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, DY., Van, LD. Efficient Detection Algorithms for MIMO Communication Systems. J Sign Process Syst 62, 427–442 (2011). https://doi.org/10.1007/s11265-010-0474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0474-9

Keywords

Navigation