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Abstract
Functional magnetic resonance imaging (fMRI) data are originally acquired as complex-valued
images, which motivates the use of complex-valued data analysis methods. Due to the high
dimension and high noise level of fMRI data, order selection and dimension reduction are
important procedures for multivariate analysis methods such as independent component analysis
(ICA). In this work, we develop a complex-valued order selection method to estimate the
dimension of signal subspace using information-theoretic criteria. To correct the effect of sample
dependence to information-theoretic criteria, we develop a general entropy rate measure for
complex Gaussian random process to calibrate the independent and identically distributed (i.i.d.)
sampling scheme in the complex domain. We show the effectiveness of the approach for order
selection on both simulated and actual fMRI data. A comparison between the results of order
selection and ICA on real-valued and complex-valued fMRI data demonstrates that a fully
complex analysis extracts more information about brain activation.

Index Terms
Order selection; complex-valued fMRI; linear mixing model; i.i.d. sampling; entropy rate

I. INTRODUCTION
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful brain
imaging technique that has been utilized since the early 1990s [1] to study human brain
function. The MRI signal is intrinsically complex-valued due to the fact that the signal
contrast is originally acquired in a spatial frequency space, i.e., the k-space, and image
reconstruction is achieved through an inverse Fourier transform. Conventionally, only the
magnitude of fMRI data is used in analysis and the phase information is discarded. Studies
show that phase of fMRI signal contains useful information for inference on blood
oxygenation during functional activation [2] and the orientation of large blood vessels [3] as
well as different tissue types [4]. In a recent proposed fMRI technology [5], the phase
change is utilized to estimate the brain activation.

To utilize phase information from complex-valued fMRI data, the general linear model
(GLM) based analysis has been extended to the complex domain [6], [7]. Although widely
used, the GLM is only able to infer brain activations from a priori response time sequences.
On the other hand, data-driven methods such as independent component analysis (ICA)
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provide a more flexible alternative to estimate multiple brain activation sources without a
specified response model [8]. A group of commonly used complex ICA approaches, such as
maximum likelihood, maximization of non-Gaussianity and nonlinear decorrelations [9],
[10], have been effectively applied in the analysis of complex-valued fMRI data [11], [12],
and shown advantages in estimation of brain activation [13], [14].

Given the abundance of information in complex-valued fMRI data, several challenges exist
for applying the complex ICA approach. First, fMRI data has low signal to contrast ratio,
typically about 0 dB for a robust task paradigm, which indicates that a noise model has to be
incorporated into the analysis. Second, fMRI data has high spatial and temporal dimension,
e.g., 10,000–100,000 spatial voxels by 100–1000 time points. Direct application of a
multivariate analysis method, such as ICA, on high dimensional datasets is liable to
overfitting. Therefore, order selection and dimension reduction are typically incorporated as
steps before ICA on fMRI data. Information-theoretic criteria, such as Akaike’s information
criterion (AIC) [15], Draper’s information criterion (DIC) [16] and the minimum description
length (MDL) criterion [17] are reasonable candidates of the order selection criteria, for that
the optimal model orders in these criteria are automatically selected based on the trade-off
between the maximum likelihood of the model and the penalty on model complexity [18],
[19]. In addition, other criteria are developed based on, e.g., maximizing a Laplace
approximation to the posterior distribution of the model evidence [20], and the l2 norm of
residual error [21].

One important assumption in estimating information-theoretic criteria scores for a selected
model is that the data samples are independent and identically distributed (i.i.d.). However,
the fMRI data samples have both spatial and temporal correlation. In the spatial domain, the
localization of brain function causes the brain activation pattern to be spatially smooth and
clustered [22], [23]. The dynamic cerebral perfusion and the point spread function of the
imaging system also introduce sample dependence on adjacent voxels in the image. In the
temporal domain, the hemodynamic response function introduces dependence on fMRI time
sequences. The fMRI sample dependence is localized and can be measured by entropy rate
when the spatial or temporal fMRI data are modeled as a random process. Using the
theoretical upper bound of entropy rate for Gaussian random process as the bench mark, a
sampling scheme is proposed in [19], to remove localized sample dependence in real-valued
fMRI data and identify a subset of effectively i.i.d. samples to correctly calculate
information-theoretic criteria for selecting model order.

In [14], information-theoretic criteria for order selection on complex-valued model is
developed and preliminary results are presented on complex-valued fMRI data. However,
the i.i.d. sampling scheme in the complex domain is based on a limiting assumption that the
real and imaginary parts of the fMRI samples are uncorrelated. A general form of entropy
rate for complex random Gaussian process which takes into account the correlation between
real and imaginary parts of complex-valued processes is given in [24]. We use the general
entropy rate formula to calibrate the i.i.d. sampling scheme and hence to correctly calculate
the information-theoretic criteria scores for order selection. We compare order selection
results on real-valued (magnitude-only) and complex-valued fMRI dataset to observe that
the additional information provided by the complex-valued data causes information-
theoretic criteria to select a model with higher order. We also study real-valued and
complex-valued ICA estimation results to identify common components estimated by both
methods, as well as additional components obtained by complex ICA only. The common
and additional components suggest that a fully complex analysis may be more efficient in
utilizing the fMRI data and hence provides a promising way of investigating brain function.
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In the next section, we introduce the order selection with information-theoretic criteria and
i.i.d. sampling on complex-valued fMRI data. We present experimental results of the order
selection scheme using i.i.d. sampling, on simulated and actual fMRI data in Section III, and
provide a discussion of the results in Section IV. In the Appendix, we give the entropy rate
formula for a complex-valued Gaussian random process.

II. METHODS
A. Linear mixing model of complex-valued fMRI data

We assume independence of spatial brain activations (spatial ICA) in fMRI data, and write
the complex ICA model as:

(1)

Here, sk, ak ∈ ℂN, represent, respectively, the activation intensity of each voxel for the kth
spatial map and the kth corresponding time course, M is the number of informative spatial
map sources, N is the number of voxels in each spatial map source, T is the number of time
points in the time course, and N is the T × N matrix of Gaussian noise.

With different assumptions on sk and ak, the linear model can also be fitted to other
multivariate analysis methods, such as principal component analysis (PCA) and ICA. For
this linear model, order number M is often assumed to be less than the temporal dimension
T, and it needs to be identified prior to further analysis such as PCA and ICA. If we choose
M to be too small, some meaningful components may be omitted in the subsequent analysis.
On the other hand, if we choose M to be too large, a meaningful component would split into
several ones and also, a number of components would represent the noise in the data, which
all lead to insensitivity and instability of ICA analysis [19].

B. Information-theoretic criteria
Information-theoretic criteria are commonly used for order selection in many signal
processing problems. Since they do not require the specification of an empirical threshold to
decide the optimal model order, they fit naturally into the framework of exploratory data
analysis methods such as PCA and ICA. There are a number of information-theoretic criteria
commonly used for order selection, such as, AIC [15], Kullback-Leibler information
criterion (KIC) [25], DIC [16], and MDL [17] or the Bayesian information criterion [26].
The formulas for AIC, KIC, DIC and MDL criteria assume similar forms:

where ℒ(x|Θk) is the maximum log-likelihood of i.i.d. observations x based on the model
parameter set Θk, and Θk) is the penalty for model complexity given by the total number of
free parameters in Θk. For DIC and MDL, the penalty term is scaled by terms related to the
sample size N. The order number is determined as the value for which the information-
theoretic criteria are minimized,
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In [27], Wax and Kailath provide a practical form of the maximum log-likelihood for
complex-valued data, based on multivariate Gaussian data model, as

(2)

where T is the original dimension of multivariate data, k is the candidate order, N is the
sample size, and λi’s are the eigenvalues of the sample covariance matrix of the multivariate
observations. The number of free parameters for complex-valued data is given by

All these order selection formulations are based on the assumption of i.i.d. samples. When
dependent samples are used, the actual number of i.i.d. samples is less than N, and the
likelihood term given by (2) improperly dominates the information-theoretic criteria,
resulting in an over-estimation of the order. Since samples of fMRI data have spatial
correlation, induced at scanning and preprocessing procedure, directly using information-
theoretic criteria often leads inflated order numbers. In Section III, we show the over-
estimation of order number on simulated and actual fMRI data.

C. IID sampling in the complex domain
Commonly there is sample dependence among the fMRI data samples, which violates the
i.i.d. assumption of information-theoretic criteria. In fMRI data, spatially the samples are not
i.i.d. due to the point spread function of the scanner as well as the use of spatial smoothing
as a preprocessing step. However, the dependence among the data is typically localized, i.e.,
lies within a few adjacent samples. Hence, an i.i.d. sampling scheme previously applied to
real-valued data [19] can be extended to identify an effectively i.i.d. sample set in the
complex domain.

First, we model the data as a complex-valued finite-order moving average (MA) process,
i.e., an second-order stationary Gaussian random process, which is the output of a linear
system with an i.i.d. complex Gaussian input. The second-order statistics of the finite-order
MA sequence z(n) has finite length, i.e., R(m) = E{z(n + m)z*(n)} = 0 and R̃(m) = E{z(n +
m)z(n)} = 0 for |m| ≥ L, where L is a small positive integer. The sampled sequence zs(n) =
z(Ln) is a doubly white Gaussian random sequence, i.e., after normalization, Rs(m) = δ(m)
and R̃s(m) = cδ(m), where c ∈ ℂ, |c| ≤ 1. Here c is a measure for the degree of noncircularity
and c = 0 in circular case.

The entropy rate can be used to measure the sample dependence, and it reaches the upper
bound when the samples are i.i.d. The entropy rate of a complex second-order stationary
Gaussian random process is given by

where S(ω) is power spectrum function and S̃(ω) is pseudo power spectrum function, which
is introduced in the Appendix. Thus, the theoretical upperbound value for the entropy rate to
the normalized complex Gaussian random sequence z(n), i.e., R(0) = 1 and R̃(0) = c, where
c ∈ ℂ, |c| ≤ 1, is given by
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Since subsampling removes localized sample dependence, by progressively decreasing the
sampling rate, the entropy rate of the spatial process increases. A grid of locations on which
the data samples are considered to be effectively independent is determined when the
entropy rate reaches its upperbound. Therefore, an effective i.i.d. sample set is obtained on
this grid of spatial locations at which the dependence among the samples is small enough to
be ignored. Since the sampling procedure decreases the number of samples for estimation,
an eigenspectrum adjustment scheme [20] is used to mitigate the finite sample effect.

To show the effect of i.i.d. sampling, we plot the entropy rate of the sampled data with
different sampling depths on sixteen sets of unsmoothed and smoothed complex-valued
fMRI data sets in Fig. 1. The standard deviation is stacked on the mean value in each bar
plot. The difference between unsmoothed and smooth data is that there is no spatial
smoothing applied to the unsmoothed data, which is a typical preprocessing step on fMRI
data to decrease the effect of noise. Details of the utilized data sets are described in Section
III. We observe that as the sampling rate decreases, the entropy rate increases and converges
to its upperbound. Thus the sampling depth is determined when all the samples are
independent. Since the smoothed data have greater sample dependence compared to the
unsmoothed data, lower subsampling rate is required to achieve convergence.

III. EXPERIMENTS
A. Simulated data

We generate eight complex-valued spatial maps to simulate the fMRI sources and
corresponding time-courses, the magnitudes of which are similar to the ones used in [28], as
in Fig. 2. In an fMRI experiment, the phase difference induced by the task activation is
typically less than π/9 [2], [13]. Therefore, we keep the phase of each pixel uniformly
distributed in the range [−π/18, π/18]. The phase of each complex-valued time point is
generated proportional to its magnitude, but is again restricted to a small range [7], which in
our case is [−π/18, π/18]. The spatial sources are rearranged into one-dimensional vectors
and mixed by the corresponding time-courses as in (1). Complex-valued Gaussian noise is
added to the data set with a specified contrast to noise ratio (CNR), calculated as the ratio of
the standard deviation of the mixed data set without noise to the standard deviation of the
Gaussian noise. The mixture data are spatially smoothed, separately for the real and
imaginary parts, by a Gaussian kernel with a full-width at half maximum (FWHM) of 2
pixels.

The mixtures of eight sources, with noise levels of CNR = −3, 0, 3 and 6 dB, are created and
the complex-valued order selection with i.i.d. sampling scheme is applied to these mixtures.
To study the effect of sample dependence on the estimated order, we also apply order
selection without sampling to simulated data with CNR = 3 dB. The criteria used in the
experiment are AIC, KIC, DIC and MDL. Fig. 3 and Fig. 4 show the results of 10 Monte
Carlo simulations where a different noise realization is used for each run. The standard
deviation is also shown on the bar plot.

Without i.i.d. sampling, the order number is significantly over-estimated as observed in Fig.
3, since the samples are spatially correlated. As shown in Fig. 4, the criteria based on the
effective i.i.d. samples yield accurate estimates (8 sources) when the CNR is higher than 0
dB. Fig. 5 shows the DIC criterion value corresponding to each number of sources on the
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data with different CNR values, using effective i.i.d. samples. It is observed that as the CNR
value increases, the DIC curve becomes more discriminative, and hence, the minimum value
in the DIC curve is more effectively identified, which is corresponding to the correct order
number M = 8. For the other criteria, it is also observed that the robustness of the order
selection increases as the data are more informative. The CNR of actual fMRI data is
typically in the range [0, 3] dB, and the complex-valued order selection scheme is thus
effective in this CNR range, as shown in Fig. 4.

B. FMRI data
1) Data acquisition and preprocessing—All fMRI experiments are performed at the
Mind Research Network on a 3T Siemens TRIO TIM system with a 12-channel radio
frequency coil. The fMRI experiment uses a standard Siemens gradient-echo echo-planar
imaging sequence modified so that it stores real and imaginary data separately. We use a
Field-of-View = 240 mm, Slice Thickness = 3.5 mm, Slice Gap = 1 mm, Number of slices =
32, Matrix size = 64 × 64, TE = 29 ms, and TR = 2 s. The fMRI experiment uses a block
design with periods of 30 s OFF and 30 s ON. Sixteen healthy subjects, all of whom provide
informed consent, participate in the experiment. The subjects tap their fingers during the ON
period and rest during the OFF period. There are six and a half cycles, starting with OFF and
ending with the OFF period. We collect 15 whole head fMRI images during each ‘ON’ or
‘OFF’ period. The total experiment time is 6.5 minutes.

Data are preprocessed using the SPM5 software package1. Data are motion corrected using
INRIalign – a motion correction algorithm unbiased by local signal changes [29]. Real and
imaginary parts of the complex data are spatially smoothed with a 10 × 10 × 10 mm FWHM
Gaussian kernel respectively, and spatially normalized into the standard Montreal
Neurological Institute space. Motion correction and spatial normalization parameters are
computed from the magnitude data. The magnitude of the smoothed complex-valued data is
taken as real-valued fMRI data. To study the effect of sample dependence on order
selection, the data without spatial smoothing is used in the experiments as the “unsmoothed”
fMRI data set in contrast to the “smoothed” fMRI data which are fully preprocessed.

2) Order selection—We apply the order selection scheme with and without i.i.d.
sampling to smoothed and unsmoothed fMRI data. To compare the order number of real-
valued and complex-valued fMRI data, a real-valued order selection scheme in [19] is
applied to the magnitude-only fMRI data. Fig. 6 and Fig. 7 show the results based on sixteen
subjects. The standard deviation across different subjects is stacked on the mean value in
each bar plot.

In Fig. 6, we can see that the order numbers are close to original temporal dimension
without i.i.d. sampling scheme for both unsmoothed and smoothed fMRI data, due to the
intrinsic spatial correlation in the fMRI data. For order selection results based on effectively
i.i.d. samples, the estimated order number for smoothed fMRI data is lower than that of the
unsmoothed data, since smoothing leads to a certain degree of signal loss in the high
frequency range. Unlike the case of simulated data where the true order is known and thus
can be used to justify the order selection results, the order numbers on the fMRI data can not
be directly verified. However, the impact of order selection manifests itself, for example, by
ICA estimation results at different selected orders. The stability of the components from
multiple Monte Carlo ICA trials is a relevant index closely linked to the order number, and
is studied in [19], [30]. As observed in [14], the range of values indicated by KIC, DIC and

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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MDL on i.i.d. samples are appropriate for performing complex ICA of fMRI data and lead
to stable estimation results.

In Fig. 7, it is observed that the order number estimated for complex-valued fMRI data is
higher than that of real-valued data, which indicates that complex-valued fMRI data contain
more information than real-valued data. Fig. 8 shows the DIC criterion value corresponding
to each number of sources on one set of complex-value fMRI data and the corresponding
real-valued data, using effective i.i.d. samples. The minimum value in the DIC curve of
complex-valued data is more effectively identified, and thus order selection on complex-
valued fMRI data is more robust than that of the real-valued data, which also can be
observed from other criteria curves (not shown here as they are similar). The complex-
valued fMRI data are thus expected to be more informative, as also further investigated by
ICA results on fMRI data presented next. For subsequent ICA analysis, we use the order
estimated by DIC, i.e., 20 for real-valued data and 25 for complex-valued data.

3) ICA analysis on complex-valued fMRI data—In our experiments, a group ICA
analysis [18] is applied on fMRI data sets, which improves statistical power by
incorporating the inferences across a group of subjects compared with ICA on a single
subject. Although the group ICA method in [18] is based on the analysis of real-valued data,
it can be extended to complex-valued data straightforwardly, since PCA and ICA are
applicable to both real-valued and complex-valued data. For performing ICA, we use
nonlinear decorrelations with the nonlinear function atanh(·) [9], [10], implemented in group
ICA [18]. In ICA analysis, we find that the motion artifact has much influence to the results
for complex-valued fMRI data, since the values of the boundary area, especially phase
values, are deteriorated by even slight brain movement in experiments [31]. Therefore, we
use an eroded mask to remove the background and boundary area, while in the real-valued
case, only the background area outsides the brain boundary is removed.

The time-courses and spatial maps are reconstructed after ICA. For the real-valued fMRI
data, the average of resulting spatial maps across the subjects are converted to Z-scores,
while for the complex-valued data, there are two sets of average spatial maps, i.e.,
magnitude and phase. The magnitude spatial maps are thresholded at |Z| > 1.2, and the phase
spatial maps are thresholded at |Z| > 1. It is observed that the typical components for finger
tapping task [32] exist in both real-valued and complex-valued results of our experiments,
such as, the task-related component in the primary motor cortex, the default mode network
component and components in auditory and visual cortex.

Furthermore, order number suggested by the information-theoretic criteria for the complex-
valued data is higher than that of the real-valued data. The interesting question is whether
this indicates the existence of new components of interest not observed in the real-valued
data. As an example, in Fig. 9, we show a component that is consistently estimated as a
result of performing ICA on complex fMRI data. The active area in both the magnitude and
phase spatial maps indicates parietal cortex, part of parietal lobe, which is related to visual
and motor function.

IV. DISCUSSION
In this paper, we study order selection for multivariate analysis on complex-valued fMRI
data. By modeling the complex data as a finite-order MA process, we extend the i.i.d.
sampling scheme proposed in [19] into complex-valued sample space, using entropy rate
derived for the complex domain. It is shown both by simulated and actual data that the
scheme improves the performance of order selection with information-theoretic criteria
when the samples are correlated. The order selection scheme with i.i.d. sampling on
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complex-valued fMRI data is important for the performance of data-driven analysis
approaches such as ICA. The developed method can be utilized in other signal processing
scenarios where a lower dimensional informative subspace needs to be identified from high
dimensional noisy observations.

We study the issue of model order selection in complex-valued fMRI data analysis in this
work. Compared with magnitude-only fMRI data analysis, the results from order selection
and ICA on complex-valued fMRI data suggest that a more comprehensive approach, adding
the phase information, provides additional benefits. The fully complex analysis of fMRI data
is a promising direction where several issues are of interest, such as study of order selection
criteria other than information-theoretic criteria for complex fMRI data analysis, comparison
of complex ICA algorithms for brain source estimation, preprocessing strategies for
complex-valued fMRI data, and investigation of the phase signal variation on estimation of
brain function. In Section III, we show a brain activation pattern consistently estimated by
complex ICA on selected model order but not obtained in the real-valued analysis on the
same dataset. The component shows spatially localized activation in part of the parietal lobe,
suggesting that, part of it is involved in the performed finger tapping task. Although
preliminary, the result motivates the application of a fully complex data-driven method on
fMRI data, either as an alternative to conventional analysis, or, as a novel tool to investigate
brain function in more complicated cognitive tasks.
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APPENDIX
We present the entropy rate of a complex-valued second-order stationary Gaussian random
process using a widely linear model following an approach similar to the one given in [33].

Given a second-order stationary and zero mean random process Zk, the covariance function
is defined by  and the pseudo covariance function [34], also called the
relation function [35], as R̃(m) = E{Zk+mZk}. Without loss of generality, the random
processes and vectors discussed in this paper are assumed to be zero mean. A random
process is called second-order stationary if it is wide sense stationary and its pseudo
covariance function only depends on the index difference. The Fourier transform of the
covariance function yields the power spectrum (or spectral density) function S(ω). Similarly,
we define the Fourier transform of the pseudo covariance function as the pseudo power
spectrum function S(̃ω).

Entropy rate is a measure of average information in a random sequence, which can be
written for a complex random process Zk as

(3)

when the limit exists. As in the real case, , with equality if
and only if the random variables Zk are independent. Therefore the entropy rate can be used
to measure the sample dependence and it reaches the upper bound when all samples of the
process are independent.

The widely linear filter is introduced in [36], and any second-order stationary complex
signal can be modeled as the output of a widely linear system driven by a circular white
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noise, which cannot be achieved by a strictly linear system [35]. Given the input and output
vectors x, y ∈ ℂN, a widely linear system is expressed as

where F and G are complex-valued impulse responses in matrix form. The system function
of a widely linear system is the pair of functions [F(ω), G(ω)].

Proposition 1: The entropy rate of output y(n) of a widely linear system [F(ω), G(ω)], where
F(ω) and G(ω) are minimum phase, is given by

where hc(X) is the entropy rate of input x(n).

Theorem 1: If z(n) is a complex second-order stationary Gaussian random process with
power spectrum function S(ω) and pseudo power spectrum function S̃(ω), its entropy rate hc
is given by

The proof of Proposition 1 and Theorem 1 are given in [24].

For a second-order circular process, we have S̃(ω) = 0, thus yielding the entropy rate of a
second-order circular Gaussian random process as

For the general case in Theorem 1, |S̃(ω)|2 ≥ 0. Hence, for the second-order circular and
noncircular Gaussian random sequences with the same covariance function R(m), we have

which can be also verified using the result for complex entropy [34], [37] and the definition
of entropy rate given in (3).
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Fig. 1.
The entropy rate of the sampled data with different sampling depths Δ on unsmoothed and
smoothed fMRI data sets
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Fig. 2.
Magnitude of eight simulated sources and magnitude of their time-courses
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Fig. 3.
Order selection with and without i.i.d. sampling on simulated data (CNR = 3 dB), where the
true order is eight
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Fig. 4.
Order selection on simulated data with different CNR values: −3, 0, 3 and 6 dB, using
effectively i.i.d. samples, where the true order is eight
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Fig. 5.
DIC criterion on simulated data with different CNR values: −3, 0, 3 and 6 dB, using
effectively i.i.d. samples
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Fig. 6.
Order selection with and without i.i.d. sampling, (a) on unsmoothed fMRI data, (b) on
smoothed fMRI data
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Fig. 7.
Order selection on real-valued and complex-valued fMRI data, using effectively i.i.d.
samples
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Fig. 8.
DIC criterion on real-valued and complex-valued fMRI data, using effectively i.i.d. samples
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Fig. 9.
A component in parietal cortex from group ICA on complex-valued fMRI data, (a)
magnitude spatial map, (b) phase spatial map
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