Skip to main content
Log in

Online SVR Training by Solving the Primal Optimization Problem

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Online estimation of regression functions becomes important in presence of drifts and rapid changes in the training data. In this article we propose a new online training algorithm for SVR, called Priona, which is based on the idea of computing approximate solutions to the primal optimization problem. For the solution of the primal SVR problem we investigated the trade-off between computation time and prediction accuracy for the gradient, diagonally scaled gradient, and Newton descent direction. The choice of a particular buffering strategy did not influence the performance of the algorithm. By using a line search Priona does not require a priori selection of a learning rate which facilitates its practical application. On various benchmark data sets Priona is shown to perform better in terms of prediction accuracy in comparison to the Norma and Silk online SVR algorithms. Further, tests on two artificial data sets show that the online SVR algorithms are able to track temporal changes and drifts of the regression function, if the buffer size and learning rate are selected appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(\beta(\rho) = \beta + \rho (\bar{\beta} - \beta)\) and \(b(\rho) = b + \rho (\bar{b} - b)\).

References

  1. Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. MIT Press.

  2. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text classification using string kernels. The Journal of Machine Learning Research, 2, 419–444.

    MATH  Google Scholar 

  3. Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In LNAI (Vol. 2777, pp. 129–143).

    Google Scholar 

  4. Shphigelman, I., Singer, Y., Paz, R., & Vaadia, E. (2005). Spikernels: Predicting arm movements by embedding population spike rate patterns in inner-product spaces. Neural Computation, 17, 671–690.

    Article  Google Scholar 

  5. Lal, T. N., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., et al. (2004). Support vector channel selection in BCI. IEEE Transactions on Biomedical Engineering, 51(6), 1003–1010.

    Article  Google Scholar 

  6. Rasch, M. J., Gretton, A., Murayama, Y., Maass, W., & Logothetis, N. K. (2008). Inferring spike trains from local field potentials. Journal of Neurophysiology, 99, 1461–1476.

    Article  Google Scholar 

  7. Brugger, D., Butovas, S., Bogdan, M., Schwarz, C., & Rosenstiel, W. (2008). Direct and inverse solution for a stimulus adaptation problem using SVR. In ESANN proceedings (pp. 397–402). Bruges.

  8. Saunders, C., Gammerman, A., & Vovk, V. (1998). Ride regression learning algorithm in dual variables. In Proceedings of the 15th international conference on machine learning.

  9. Rojo-Alvarez, J. L., Martínez-Ramón, M., de Prado-Cumplido, M., Artes-Rodriguez, A., & Figueiras-Vidal, A. R. (2004). Support vector method for robust ARMA system identification. IEEE Transactions on Signal Processing, 52(1), 155–164.

    Article  MathSciNet  Google Scholar 

  10. Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural Computation, 15, 2683–2703.

    Article  MATH  Google Scholar 

  11. Cauwenberghs, G., & Poggio, T. (2000). Incremental and decremental support vector machine learning. In NIPS (pp. 409–415).

  12. Kivinen, J., Smola, A. J., & Williamson, R. C. (2004). Online learning with kernels. IEEE Transactions on Signal Processing, 52(8), 2165–2175.

    Article  MathSciNet  Google Scholar 

  13. Vishwanathan, S. V. N., Schraudolph, N. N., & Smola, A. J. (2006). Step size adaptation in reproducing kernel Hilbert space. JMLR, 7, 1107–1133.

    MathSciNet  MATH  Google Scholar 

  14. Cheng, L., Vishwanathan, S. V. N., Schuurmans, D., Wang, S., & Caelli, T. (2007). Implicit online learning with kernels. In NIPS (pp. 249–256). MIT Press.

  15. Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and active learning. Journal of Machine Learning Research, 6, 1579–1619.

    MathSciNet  MATH  Google Scholar 

  16. Chapelle, O. (2007). Training a support vector machine in the primal. Neural Computation, 19, 1135–1178.

    Article  MathSciNet  Google Scholar 

  17. Vapnik, V. N. (1999). The nature of s tatistical learning t heory (2nd ed.). Springer.

  18. Bo, L., Wang, L., & Jiao, L. (2007). Recursive finite newton algorithm for support vector regression in the primal. Neural Computation, 19, 1082–1096.

    Article  MathSciNet  MATH  Google Scholar 

  19. Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kimeldorf, G. S., & Wahba, G. (1970). A correspondence between bayesian estimation on stochastic processes and smoothing by splines. The Annals of Mathematical Statistics, 41(2), 495–502.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bertsekas, D. P. (2003). Nonlinear programming (2nd ed.). Athena Scientific.

  22. Crammer, K., Kandola, J. S., & Singer, Y. (2003). Online classification on a budget. In NIPS.

  23. Weston, J., Bordes, A., & Bottou, L. (2005). Online (and offline) on an even tighter budget. In Proc. of the 10th int. workshop on artificial intelligence and statistics (pp. 413–420).

  24. Csató, L., & Opper, M. (2002). Sparse on-line gaussian processes. Neural Computation, 14(3), 641–668.

    Article  MATH  Google Scholar 

  25. Keerthi, S. S., & DeCoste, D. (2005). A modified finite newton method for fast solution of large scale linear SVMs. JMLR, 6, 341–361.

    MathSciNet  MATH  Google Scholar 

  26. DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3), 189–228.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46(1–3), 131–159.

    Article  MATH  Google Scholar 

  28. Chang, M. W., & Lin, C. J. (2005). Leave-one-out bounds for support vector regression model selection. Neural Computation, 17, 1188–1222.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Brugger.

Additional information

The first author was supported by the Centre for Integrative Neuroscience, Tübingen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugger, D., Rosenstiel, W. & Bogdan, M. Online SVR Training by Solving the Primal Optimization Problem. J Sign Process Syst 65, 391–402 (2011). https://doi.org/10.1007/s11265-010-0514-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0514-5

Keywords

Navigation