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Abstract In this paper, we consider the multiclass clas-
sification problem based on sets of independent binary
classifiers. Each binary classifier represents the output
of a quantized projection of training data onto a ran-
domly generated orthonormal basis vector thus produc-
ing a binary label. The ensemble of all binary labels
forms an analogue of a coding matrix. The properties
of such kind of matrices and their impact on the max-
imum number of uniquely distinguishable classes are
analyzed in this paper from an information-theoretic
point of view. We also consider a concept of reliability
for such kind of coding matrix generation that can be
an alternative to other adaptive training techniques
and investigate the impact on the bit error probability.
We demonstrate that it is equivalent to the considered
random coding matrix without any bit reliability infor-
mation in terms of recognition rate.

Keywords Classification · Coding matrix design ·
Reliability · Maximum number of classes · Complexity

1 Introduction

In this paper we will address the multiclass categoriza-
tion problem in a Machine Learning formulation requir-
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ing the assignments of labels to instances that belong
to a finite set of classes (M > 2). While multiclass ver-
sions of most classification algorithms exist (e.g., [4]),
they tend to be complex [10]. Therefore, a more com-
mon approach is to construct the multiclass classifier by
combining the outputs of several binary classifiers [1, 6],
an approach that also extends to error correcting output
codes (ECOC).

The ECOC framework consists of two main steps: a
coding step, where the codeword or some representa-
tion of an entry is assigned to a row of a coding ma-
trix, and a decoding step, where a given observation is
mapped into the most similar codeword of the coding
matrix. There are many methods of coding matrix
design based on a predefined set of codewords that
follow different heuristics with the overall idea to max-
imize the inter-codeword Hamming distances, as that
is believed to correspond to the most robust coding
matrix design in terms of classification accuracy. How-
ever, these predefined coding matrices are problem-
independent and can not cover a broad class of varying
models. The design of an optimal decoder minimiz-
ing the overall classification error probability is also
mainly accomplished based on the minimum Hamming
distance decoder, which is a form of hard decoding.
Although several score-based decoding rules (e.g., loss-
based and loss-weighted decoding) attempt to con-
sider the effect of binary classification reliability in the
overall fusion rule, theoretically justified probabilistic
fusion rules are still missing. Despite several recent
remarkable exceptions [5, 7, 12], these problems are
little studied and the problem of joint coding matrix
design and probabilistic decoding maximizing the num-
ber of uniquely recognizable classes is of great practical
interest.



414 J Sign Process Syst (2011) 65:413–430

The remaining part of the paper is organized in the
following way. The information-theoretic formulation
of multiclass classification problem based on the set of
binary classifiers is given in Section 2. The proposed
approach is introduced in Section 3, where both perfor-
mance and complexity are analyzed for two types of de-
coding. Experimental validation results are presented
in Section 4. Finally, Section 5 contains conclusions and
draws some future extensions of the obtained results.

Notations We use capital letters to denote scalar ran-
dom variables X, bold capital letters to denote vector
random variables X, corresponding small regular letters
x and small bold letters x to denote the realizations of
scalar and vector random variables, respectively. The
superscript N is used to denote length-N vectors x =
{x(1), x(2), . . . , x(N)} with ith element x(i). bx is used
to denote the binary version of x. We use X ∼ pX(x)

or simply X ∼ p(x) to indicate that a random variable
X is distributed according to pX(x). The mathematical
expectation of a random variable X ∼ pX(x) is denoted
by EpX [X] or simply by E[X] and σ 2

X denotes the
variance of X. Calligraphic fonts X denote sets X ∈ X
and |X | denotes the cardinality of the set. Finally, IN

denotes a N × N identity matrix.

2 Problem Formulation: Information–Theoretic Limits

In this paper we will follow the information-theoretic
machine learning approach thus providing a link with
coding theory for optimal joint coding matrix and de-
coder design and estimation of the maximum number of
uniquely distinguishable classes.

Assuming that the data are independent or weakly
dependent and can be treated as almost identically
distributed, one can use the definition of information
density:

I(N) = 1

N
log2

p(x, y)

p(x)p(y)
, (1)

where x is the template for the learning set and y is a
template of the data to be classified, N is the template
length, and p(x, y), p(x) and p(y) are joint probability
density of X and Y and their marginals, respectively.
When the template distributions are known, a so-called
recognition or identif ication capacity [11] can be used:

Ī(X; Y) = lim
N→∞

E[I(N)], (2)

provided that the limit is well defined and the ex-
pectation is taken with respect to the joint distribu-

tion of X and Y that reduces to the Kullback–Leibler
Divergence (KLD) between p(x, y) and p(x)p(y). This
also corresponds to the Bayesian multiclass classifier
minimizing the average probability of misclassification
and is invariant under linear invertible transformations.
In this case, the maximum number of classes that can
be recognized with vanishing probability of error under
the above conditions is limited as [3]:

M ≤ 2NĪ(X;Y). (3)

For the case of i.i.d. Gaussian data X ∼ N (0, σ 2
XIN)

and the memoryless additive white Gaussian model of
interaction y = x + z with Z ∼ N (0, σ 2

Z IN), the recog-
nition capacity is readily found as:

Ī(X; Y) = 1

2
log2

1

1 − ρ2
XY

= 1

2
log2

(
1 + σ 2

X

σ 2
Z

)
, (4)

where ρ2
XY = σ 2

X

σ 2
X+σ 2

Z
is a squared correlation coefficient

(SCC) between X and Y. The results can be extended
to a more general model of interaction with training
model p(v|x) and observation model p(y|x) shown in
Fig. 1a. For the i.i.d. Gaussian case with the training
data model v = x + zt and observation model y = x + zr

with Zt ∼ N (0, σ 2
Zt

IN) and Zr ∼ N (0, σ 2
Zr

IN) (Fig. 1b),
the recognition capacity is:

Ī(V; Y) = 1

2
log2

1

1 − ρ2
VY

, (5)

where ρ2
VY = σ 4

X

(σ 2
X+σ 2

Zt
)(σ 2

X+σ 2
Zr

)
is the SCC between V and

Y that transforms into ρ2
VY = ρ2

XY for v = x.
In the general case, the computation of recogni-

tion capacity (Eq. 2) based on the information density

Figure 1 General model of interaction: a generic mapping of
x into training data v and observation data y and b Gaussian
setup with the additive noise Zt for training and Zr for clas-
sification/recognition.
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(Eq. 1) requires knowledge of the corresponding joint
and marginal pdfs. If these pdfs are available, one can
achieve this capacity using optimal Bayessian classifier.
However, due to the lack of reliable priors and the
high complexity of multiclass classification, it is often
reduced to the multiple binary problems. The general
structure of such a reduction is shown in Fig. 2, where
the outputs of L binary classifiers (BC) are combined
into a binary label bx(m) ∈ {−1; +1}L for a given input
x(m). This procedure will be referred to as a binary
label estimation (BLE). In this case, the general model
of interaction with the training model is reduced to two
binary symmetric channels (BSC) [3] defined by the
binary counterparts bx, bv, by and bzt, bzr of x, v, y and
zt, zr, respectively: bv = bx ⊕ bzt and br = bx ⊕ bzr with
⊕ denoting the modulo 2 addition. Assuming that the
Bx follows the Bernoulli probability mass function with
the probability Pr[−1] = Pr[+1] = 0.5 and Zt, Zr are
Bernoulli vectors with the parameters Pb t and Pbr , one
can easily estimate the recognition rate of this binarized
system as:

Ī
(
Bv; By

)= H
(
By

)−H
(
By|Bv

)=1−H2
(
Pb∑

)
, (6)

where H(.) denotes the entropy, H2(Pb∑) = −Pb∑ ×
log2 Pb∑ − (1 − Pb∑) log2(1 − Pb∑) is the binary en-
tropy and Pb∑ = Pb t(1 − Pbr ) + Pbr (1 − Pb t). There-
fore, the maximum number of recognizable classes is
bounded as:

Mb ≤ 2LĪ(Bv;By), (7)

that also provides the lower bound on the required
number of binary classifiers L for a given M according
to the recognition rate (Eq. 6):

L ≥ log2 Mb

1 − H2
(
Pb∑

) . (8)

It is important to note that most of existing multiclass
classification strategies based on the set of binary clas-

Figure 2 General structure of binary label generation based on
L binary classifiers.

sifiers use either one-vs-one or one-vs-all designs that
require Mb (Mb −1)

2 and Mb binary classifiers respectively.
Comparing these numbers with the theoretical bound
(Eq. 8), one can immediately conclude that these de-
signs are highly superficial and overestimated, for large
Mb that makes these approaches highly unfeasible from
the point of view of complexity and storage. More-
over, the one-vs-one or one-vs-all designs completely
disregard the impact of binary classification error and
keep the number of classifiers fixed. Contrarily, in the
scope of the advocated approach the needed number
of classifiers is proportional to the theoretically min-
imum requested number of bits to uniquely encode
Mb classes, i.e., log2 Mb and the additional fraction
1 − H2(Pb∑) is requested to compensate the ambiguity
caused by the binary classification errors.

These theoretical results represent the basis for the
further consideration of various multiclass classification
strategies based on the set of binary classifiers. In
following, we will concentrate on the popular ECOC
approach to characterize its assumptions with respect to
the achievable limits.

Once the binary class label bx(m) ∈ {−1; +1}L is
generated, the training stage of the ECOC consists in
the assignment of a class label m ∈ M, where M =
{1, 2, · · · , M}, to the closest codeword c(n) of the
coding matrix C = {c(1), c(2), · · · , c(M)} with c(m) ∈
{−1; +1}L and storing this re-assignment m → n. One
can also re-index the codewords as c(n̂) → c′(m) result-
ing into a coding matrix C ′ = {c′(1), c′(2), · · · , c′(M)}.
The explanation of the training stage re-assignment is
shown in Fig. 3. The label re-assignment at the training
stage can be performed in two different ways depending
on the information about the training input. If it is given
that the input x(m) belongs to one of M classes, one can
use the maximum likelihood (ML) rule. In the above
considered binary case, the ML based matching of
bx(m) with c(n) ∈ C is reduced to a minimum Hamming
distance rule:

n̂ = arg min
1≤n≤M

dH(c(n), bx(m)), (9)

Figure 3 Training stage.
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Figure 4 Training strategies: left the ML training and right BD
training.

where dH(., .) denotes the Hamming distance. Other-
wise, if the training input x(m) is irrelevant to any class,
it is preferable to train with an erasure option based on
the bounded distance (BD) decision rule. According to
the BD rule, one decides that the input x(m) belongs
to some class n, if its binary counterpart bx(m) matches
the coding matrix entry c(n) as:

dH (
c(n̂), bx(m)

) ≤ γ L, (10)

for a unique n̂ and a properly defined threshold γ .
If such a unique n̂ cannot be found, the rule decides
that the training sample does not belong to any of the
assigned class codewords c ∈ C.1

The difference between the ML and BD-based train-
ing is schematically shown in Fig 4. In both cases,
the training rules are based on the Hamming distance,
where all bits are treated equally, and no soft informa-
tion about bit reliability is used. Obviously, the success
of label re-assignment at the training stage strongly
depends on the construction of the coding matrix C, i.e.,
on the success of selection of the codewords c ∈ C, that
is by itself not a trivial problem that should be solved
using all available priors. Selecting an inappropriate c
might result in a very high training/classification error
when the number of classes increases.

The main problem of ECOC based training consists
in the very low probability of success of finding a corre-
spondance between a binary class label bx(m) and the
coding matrix. The training rule (Eq. 10) should ensure
that bx(m) is close to some c(n̂) with some fidelity
γ L. There is no dependence between these two binary
vectors and the probability that they match by chance
is very low. Moreover, for large numbers of classes
Mb , L grows according to Eq. 8 or even quadratically

1In practice, the ML or BD training is directly implemented in
the error correction code decoder used in the ECOC.

if one-vs-one strategies are used. The increase of the
length L reduces the chance of a matching at random
at an exponential rate. Equivalently, it means that the
training error Pb t approaches 1

2 and, regardless of the
value of Pbr , the overall error Pb z in Eq. 6 is close to 1

2 ,
resulting in recognition rate nearing zero.

The classification stage is shown in Fig. 5. The ob-
served vector y, which represents some distorted ver-
sion of x(m), is transformed into a binary counterpart
by, which is matched versus the codewords of the re-
assigned matrix c′ ∈ C ′. The matching can also be ac-
complished based on either the ML or BD decision
rules. The decoded index m̂ indicates the class label
deduced for the observation y. As it was mentioned in
the introduction, the ECOC are facing several prob-
lems related to the ambiguity in the construction of
the optimal coding matrix and sub-optimal hard train-
ing/classification based on the Hamming distance. Ad-
ditionally, the impact of training error on the overall
system performance remains an open issue. Finally,
the maximum number of reliably recognizable classes
based on the ECOC is not established with respect to
the limit (Eq. 7) due to the lack of direct correspon-
dence between the selection of the codewords in the
coding matrix and training/classification statistics.

For these reasons, we will consider the multiclass
classification problem based on the direct assignment of
class labels deduced from the training data. In this way,
the link between the training data and the entries of
the coding matrix will be naturally defined. Moreover,
such a construction will explicitly avoid the training
error and allows the application of the information-
theoretic framework for the accurate computation of
the achievable recognition rate with respect to the
theoretical limit (Eq. 6). Finally, this framework makes
it possible to easily characterize the reliability of each
binary classifier and to develop new soft classification
rules with the increased classification rate compara-
tively to the hard decision-based ECOC. In addition,
we will demonstrate how this framework can lead to
low-complexity classification that is especially impor-
tant for multiclass applications.

Figure 5 Classification stage.
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3 Proposed Approach

Instead of following the above discussed construction
of an ECOC coding matrix and training the classifiers,
we will consider a scheme that targets maximization of
the number of correctly distinguishable classes based
on binary classification with respect to Eq. 7. We will
demonstrate that the structure of the coding matrix that
corresponds to the above objective and simultaneously
maximizes minimum distance is obtained directly from
the training stage by mapping each vector of a training
set into a row of the coding matrix.

Without loss of generality, we will assume at this
stage that we have a mapper/encoding function f (.)
that maps the training set and observation entries as
f : X N → BL

x , Bx ∈ {−1, +1}, and f : YN → BL
y , By ∈

{−1, +1}, respectively. Therefore, the link between the
binary representation bx of vector x and its noisy coun-
terpart by of vector y is defined according to the BSC
model. We assume that v = x and noise in the direct do-
main might cause a bit to flip in the binary domain with
a certain average probability P̄b . The corresponding
maximum number of recognizable classes Mb is defined
by Eq. 7 with Pb t = 0 and Pb∑ = Pbr = P̄b . Extending
the mutual information between binary representations
or classifiers outputs in Eq. 7, one obtains:

Ī
(
Bx; By

) = H (Bx) − H
(
Bx|By

)
. (11)

It can be immediately noticed that to maximize Mb ,
one needs to maximize Ī(Bx; By) for a given L that
can be achieved by: (a) maximization of H(Bx) and
(b) minimization of H(Bx|By). In the considered bi-
nary case, the maximum value of term H(Bx) is 1,
that can be achieved for equiprobable independent
data, i.e., Pr(−1) = Pr(+1) = 0.5. This suggests that the
multi-class rate maximizing coding matrix should have
equiprobable independent binary entries that is known
as a random coding matrix.

The second term H(Bx|By) is defined by the aver-
age error probability of binary classification P̄b and
H(Bx|By) = H2(P̄b ). In the considered setup it is not
possible to control P̄b . Therefore, we will consider
an alternative design where P̄b can be considerably
reduced due to basis adaptation based on decision re-
liability information. At the same time, we will demon-
strate that this decrease of bit error probability comes
at the cost of an increased size of the coding matrix that
equivalently reduces the recognition rate. In fact, we
will demonstrate that these two approaches are equiv-
alent in terms of recognition rate and simply repre-
sent different designs of coding matrices. Nevertheless,

this construction could be very useful for certain low
complexity implementations of multiclass classifiers for
a large number of classes. The only increase of the
recognition rate can be achieved by changing the fusion
rule based on reliability information for a fixed size of
the random coding matrix.

3.1 Design of Coding Matrix and Training

According to the above analysis the coding matrix
should maximize H(Bx). Simultaneously, we have as-
sumed the existence of a generic encoding function
f (.) that maps the real-data entries into binary repre-
sentations stored in the coding matrix. To achieve the
maximum of H(Bx) = 1, Bx should be equiprobable
and independent. In this section, we will consider a
possible design of such kind of encoding function based
on random projections and binarization.

The random projections are considered as a dimen-
sionality reduction step and are performed as:

x̃ = Wx, (12)

where x ∈ R
N , x̃ ∈ R

L, W ∈ R
L×N and L ≤ N and W =

(w1, w2, · · · , wL)T consists of a set of projection basis
vectors wi ∈ R

N with 1 ≤ i ≤ L. Instead of following a
particular consideration of mapping W, we will assume
that W is a random matrix. The matrix W has elements
wi, j that are generated from some specified distribution.
An L × N random matrix W whose entries wi, j are
independent realizations of Gaussian random variables
Wi, j ∼ N (0, 1

N ) is of a particular interest for our study.
In this case, such a matrix can be considered as an
almost orthoprojector, for which WWT ≈ IL.2

The second step uses labeling or Grey codes to en-
sure closeness of labels for close vectors. Such kind of
labeling is known as soft hashing. When only the most
significant bit of the Grey code is used, it is known as
binary or hard hashing.

The most simple quantization or binarization of ex-
tracted features is known as sign random projections:

b xi = sign
(
wT

i x
)
, (13)

where b xi ∈ {−1; +1}, with 1 ≤ i ≤ L and sign(a) = +1,
if a ≥ 0 and −1, otherwise. The vector bx ∈ {−1; +1}L

computed for all projections represents a binary label of
the class computed from the vector x. The ensemble of

2Otherwise, one can apply special orthogonalization techniques
to ensure perfect orthogonality.
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all binary labels bx(m) with 1 ≤ m ≤ M forms a coding
matrix.

It can be readily validated that under the proper se-
lection of a random projection matrix with Gaussian ba-
sis vectors one can expect that the projected vector will
follow a Gaussian distribution X̃ ∼ N (0, K̃X) where the
covariance matrix K̃X can easily be estimated. How-
ever, it does not guarantee that K̃X will be diagonal
to ensure uniformly distributed bits after binarization.
To achieve this goal, one can apply a diagonalization
operator �, which is designed based on the principal
component analysis (PCA) transform, i.e., its basis vec-
tors correspond to the eigenvectors of K̃X . As a result,
one can obtain uncorrelated random variables in the
vector X̃ in general and independent components for
Gaussian distributions. The independent components
will lead to equiprobably valued bits which satisfies the
necessary conditions for entropy maximization.

Another strategy consists in the decorrelation data at
the first stage and then applying the random projection
transform. To avoid the computation of optimal basis
vectors one can use a block-based discrete cosine trans-
form (DCT) with the fixed basis for each block, which
closely approximates the PCA for the correlated data.

At the same time, one can notice that the binary
labels are deduced directly from the training data and
stored in the coding matrix thus avoiding the additional
stage of matching a binary label deduced from a train-
ing vector with the closest row of the coding matrix as
it is done for the methods discussed in the introduction.

Depending on the number of available training in-
puts per class, several constructions of the coding ma-
trix are possible. In the case of a single training input
per class, the training inputs are directly assigned into
the coding matrix as shown in Fig. 6, i.e., c(m) = bx(m),
m ∈ M. These codewords are automatically considered
as the centers of the corresponding decoding regions.
In the case of multiple training inputs per class, one
can proceed in two different ways. Assuming K training
inputs per class, i.e., for a class m one has bx(m, k)

inputs with 1 ≤ k ≤ K, one can directly store all K

Figure 6 Coding matrix based on single training input.

training inputs in the coding matrix by assigning to all
of them a corresponding common bin index m as shown
in Fig. 7. The classification is then reduced to estab-
lishing the bin index based on the BD decoder. Con-
trarily, one can deduce centroids for each class c(m) =
centroid(bx(m, 1), · · · , bx(m, K)) and store them in the
coding matrix similarly to the above case. The clas-
sification is based on the same BD decoder but with the
increased decoding region.

The performance and complexity of classification
severely depends on the type of information produced
by the binary classifiers. In following, we will consider
the classification under hard and soft decoding.

3.2 Classification Under Hard Decoding

The classification under hard decoding assumes that
only binary outputs of the BLE are used for the clas-
sification, i.e., the binary counterpart by of observation
y is matched versus the coding matrix C composed of
binary entries bx(m), m ∈ M. The decision about the
class label m̂ is made based on the BD decoder:

dH (
by, bx(m̂)

) ≤ γ L, (14)

for a unique m̂. If the number of errors or Hamming
distance between by and bx(m) is smaller than γ L, a
positive decision is taken, otherwise m̂ is rejected.

It should be noticed that this classification strategy
is a particular case of the Forney’s erasure decision
rule [9]:

p
(
by|bx(m̂)

) ≥ 2τ L, (15)

where τ is the threshold related to γ as γ =
−τ+log2(1−P̄b )

log2
1−P̄b

P̄b

. It can be also shown that this threshold

Figure 7 Coding matrix based on multiple training inputs.
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should satisfy τ ≤ −H2(P̄b ) for the unique decoding of
index m and rejection hypothesis.

3.2.1 Performance Analysis

The performance of this classifier depends on the selec-
tion of the threshold γ with respect to the probability of
error P̄b . Therefore, the performance analysis consists
of two parts. First, we will determine the probability of
bit error P̄b for the considered above coding matrix.
Then, the performance of the BD decoder can be ex-
pressed as the average probability of misclassification:

Pe = 1

Mb

Mb∑
m=1

Pr[m̂ �= m|given class m], (16)

with respect to the relationship between γ, P̄b , M
and L.

The bit error probability indicates the mismatch of
signs between x̃ and ỹ, i.e., Pr[sign(x̃) �= sign(ỹ)]:

Pb = Pr
[
Ỹ ≥ 0|X̃ < 0

]
Pr

[
X̃ < 0

]
(17)

+ Pr
[
Ỹ < 0|X̃ ≥ 0

]
Pr

[
X̃ ≥ 0

]
, (18)

or by symmetry for Pr[X̃ < 0] = Pr[X̃ ≥ 0] = 1
2 it can

be rewritten as:

Pb = Pr
[
Ỹ < 0|X̃ ≥ 0

]

= 2
∫ ∞

0

∫ 0

−∞
p(ỹ|x̃)p(x̃)dỹdx̃

= 2
∫ ∞

0
Pb |x̃ p(x̃)dx̃, (19)

where:

Pb |x̃ =
∫ 0

−∞
p(ỹ|x̃)dỹ

=
∫ 0

−∞
1√

2πσ 2
Z

e
−(ỹ−x̃)2

2σ2
Z dỹ

= Q
( |x̃|

σZ

)
, (20)

stands for the bit error probability for a given pro-
jection coefficient x̃ under the assumption that p(x̃, ỹ)

corresponds to jointly Gaussian distribution in the ran-
dom projection domain. The modulo sign is used for

completeness of the consideration for the above sym-
metrical case when X̃ < 0. One can immediately note
that some projections can be more reliable in terms of
bit error probability than others and the Eq. 20 can be
a good measure of bit reliability.

The origin of Pb |x̃ for a given configuration of x and
wi is shown in Fig. 8. The vector x forms an angle θXWi

with the basis vector wi and the projection results into
the scalar value x̃i. The closer angle θXWi is to π/2, the
smaller value x̃i will be. This leads to a larger probabil-
ity that the sign of ỹi will be different from the sign of x̃i

that is shown by the gray area under the curve of p(ỹi).
One can immediately note that since the projections are
generated at random there is generally no guaranty that
two vectors can be collinear. However, at the same time
some of the projections might form angles with x that
deviate from π/2 thus leading to a smaller probability
of binary classification error. Incerasinf the

Substituting Eq. 20 into Eq. 19, one obtains:

Pb = 2
∫ ∞

0
Q

( |x̃|
σZ

)
1√

2πσ 2
X

e
−x̃2

2σ2
X dx̃

= 1

π
arccos(ρX̃Ỹ), (21)

where ρ2
X̃Ỹ

= σ 2
X

σ 2
X+σ 2

Z
is the squared correlation coeffi-

cient between X̃ and Ỹ.
Remarkably, the average probability of error de-

pends on the correlation coefficient between the direct
domain data and is determined by the channel and
source statistics. It can be easily verified for the more
general model that the average bit error probability
(Eq. 21) is:

P̄b = π−1 arccos(ρVY), (22)

that coincides with Eq. 21 for the noiseless training
case. Obviously, this sort of ambiguity during training

Figure 8 The bit error probability for a given x and some wi.
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causes an additional increase in probability since ρXY ≥
ρVY .

The second part of the performance analysis con-
sists in finding the average probability of classification
error for the decoding rule (Eq. 14) according to the
established bit error probability (Eq. 21). We assume
that all codewords in the coding matrix are symmetric
and equivalently processed. Due to the symmetry of the
coding matrix, one can consider a representative case of
m = 1 for the output By(1). The average probability of
error (Eq. 16) can be rewritten as:

Pe = Pr

[
(E(1) > γ L) ∪

Mb⋃
m=2

(E(m) ≤ γ L)

]

≤ Pe1+ ≤ Pe2 , (23)

where the inequality follows from the union bound and
E(1)=dH(Bx(1), By(1)) and E(m)=dH(Bx(m), By(1)).

Pe1 corresponds to the probability of error due to a
false negative:

Pe1 = Pr
[
dH (

Bx(1), By(1)
)

> γ L
]

= Pr
[
wH (

Bx(1) ⊕ By(1)
)

> γ L
]

=
∑

γ L≤wH≤L

(
L

wH

)
P̄wH

b

(
1 − P̄b

)L−wH

≤ 2−LD(γ ||P̄b). (24)

where wH denotes the Hamming weight and D(γ ||P̄b ) =
γ log2

γ

P̄b
+ (1 − γ ) log2

1−γ

1−P̄b
stands for the divergence

between 0 ≤ γ ≤ 1 and 1 ≤ P̄b ≤ 1. By increasing the
number of binary classifiers L, one can make this error
probability arbitrary small.

Pe2 corresponds to the probability of error due to a
false positive:

Pe2 =
Mb∑

m=2

Pr
[
dH (

Bx(m), By(1)
) ≤ γ L

]

=
Mb∑

m=2

Pr
[
wH (

Bx(m) ⊕ By(1)
) ≤ γ L

]

=
Mb∑

m=2

∑
0≤wH≤γ L

(
L

wH

) (
1

2

)L

≤ (Mb − 1)2−LD(γ || 1
2 )

= (Mb − 1)2−L(1−H2(γ ))

= 2−L(1− 1
L log2 Mb −H2(γ )). (25)

It is important to note that if H2(γ ) ≤ 1 − 1
L log2 Mb ,

one can make this error probability arbitrary small by
increasing L.

Thus, combing Pe1 and Pe2 , one obtains:

Pe ≤ 2−LD(γ ||P̄b ) + (Mb − 1)2−L(1−H2(γ ))

≤ 2 · 2−LD(γopt||P̄b),

where γopt = 1− 1
L log2 Mb +log2(1−P̄b )

log2

(
1−P̄b

P̄b

) defines the optimal

threshold minimizing the average probability of error.
Remarkably, for recognition capacity achieving the

maximum number of classes satisfying Eq. 7 with
the mutual information (Eq. 11), i.e., 1

L log2 Mb ≤ 1 −
H2(P̄b ), the above optimal threshold yields γopt = P̄b .
This means that the decoding region around each
codeword is defined by the radius P̄b L and the iden-
tification capacity is achieved based on the DB decoder.

Alternatively one can obtain this result by analyzing
the maximum number of errors Tb in the observation
by as a result of passing via the BSC. The number
of bits that can be flipped is random and Tb follows
binomial distribution, i.e., Tb ∼ B(L, P̄b ). According
to the weak law of large numbers, one can state with
the probability close to 1 that Tb is very close to
its mean P̄b L. Thus, the threshold should be chosen
accordingly to keep all deviations due to the noise
within the acceptance region that also corresponds to
the above recognition capacity achieving selection of
the threshold.

Not less important condition is to ensure that the
observations by that are not related to any entry of
coding matrix bx(m) are not falsely accepted. We define
the corresponding probability as probability of false
acceptance under the hypothesis H0:

P f = Pr

[
Mb⋃

m=1

dH (
Bx(m), By

) ≤ γ L|H0

]

≤(a)

Mb∑
m=1

Pr
[
dH (

Bx(m), By
) ≤ γ L|H0

]

= Mb Pr
[
dH (

Bx(m), By
) ≤ γ L|H0

]
≤(b) 2−L(1− 1

L log2 Mb −H2(γ )), (26)

where (a) follows from the union bound and (b) from
the Chernoff bound on the tail of binomial distributions
B(L, 0.5) that results from dH(Bx(m), By) ∼ B(L, 0.5)

under the hypothesis H0. It can be readily verified that
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for the above optimal threshold γopt both Pe and P f are
minimized.

3.2.2 Complexity Analysis

Being capacity achieving, the classification based on
ML or BD hard decoding requires the computation
of Mb Hamming distances that might be prohibitively
high for large numbers of classes Mb . Thus, the
classification complexity is exponential in terms of
the input length, i.e., O(2Lb ) with Lb = LI(Bx; By) =
L(1 − H2(P̄b )). Another alternative for the BD decod-
ing exists based on the fact that the observation by

can be at the distance Tb from the original codeword
bx(m). Therefore, in the case of large Mb , instead
of exhaustively checking all codewords, one can only
check the presence of the true codeword bx(m) within
the Hamming sphere around by defined by tb max . In
this case, the number of verifications one needs to per-
form is:

N =
tbmax∑
tb =0

(
L
tb

)
, (27)

where tb max is the maximum number of errors.
According to the above mentioned weak law of large

numbers, the most likely distorted codewords by will be
on the radius t̄b = LP̄b from bx for sufficiently large
L. It can also easily be confirmed using the Stirling
approximation formula [8] that the number of these
codewords will not exceed:

N̄ =
(

L
t̄b

)
≈ 2

LH2

(
t̄b
L

)
, (28)

which yields N̄ ≤ 2LH2(P̄b ) for t̄b = LP̄b . Thus, the re-
sulting complexity of this classification strategy is still
exponentional with the input length. It is now of the
order O(2LH2(P̄b ) log2 Mb ) that is reduced with respect
to the previous case. Moreover, it is also dependent on
the quality of the observation data given by the bit error
rate P̄b . The term log2 Mb is due to the complexity of
checking the existence of a given bitstring in a sorted
version of the coding matrix.

However, even though this problem is known to be
NP-hard, in the next section we will consider an alter-
native decoding rule that preserves the same number
of uniquely recognizable classes as the BD decoder but
operates with considerably lower complexity.

3.3 Classification Under Soft Decoding

The above classification problem is NP-hard and there
is no known algorithm to deterministically compute its

solution efficiently. Therefore, in this section we will
try to reformulate the decoding problem in such a way
where some additional information about the binary
classifier reliability is provided by the BLE from the
observation y.

According to the analysis of probability of bit error
(Eq. 20), one can note that not all bits in the vector by

have an equal probability of error. The larger the mag-
nitude x̃i of projector vector x on the basis vector wi,
the smaller the probability of bit error. This property is
the basis for our classification based on soft decoding.
Soft decoding is based on the decomposition of the
projected vector ỹ ith component as:

ỹi = sign(ỹi)
∣∣ỹi

∣∣ = b yi

∣∣ỹi
∣∣ , (29)

where b yi = sign(ỹi) and
∣∣ỹi

∣∣ denotes the magnitude
of ỹi. It should be pointed out that the coding matrix
contains only binary signs of the projected vector x̃.
Therefore, the reliability information is obtained di-
rectly from the magnitude of observation ỹ. Obviously,
for a given set of training data one can always find a
set of vectors wi, 1 ≤ i ≤ L that minimizes the overall
bit error probability. However, keeping in mind the
facts that (a) the number of classes might be in the
order of millions; and (b) it can be constantly updated;
such an optimization problem looks highly unfeasible.
Contrarily, in the scope of the proposed approach no
additional feature extraction based on training set or
PCA is needed that considerably reduces the complex-
ity of learning and classification procedures.

Moreover, the use of soft information makes it pos-
sible to enhance both the performance and reduce the
complexity of classification that is considered in the
next sections.

3.3.1 Performance Analysis

The performance analysis of classification under soft
decoding includes the consideration of both achiev-
able rate and average probability of classification error
given the information about the bits’ reliability. We first
consider the impact of bit reliability on the achievable
recognition rate along the analysis of practical decoding
rules. In the second part of our analysis, we will investi-
gate the possible reduction of the probability of bit er-
ror for different bit selection strategies. Finally, several
practical decoders are considered in Section 3.3.2.

The achievable recognition rate of classification sys-
tems under hard data representation, i.e., binarized
data, for both the coding matrix bx(m), 1 ≤ m ≤ M
and observation by is determined by Ī(Bx; By). The
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corresponding decoding strategies achieving this rate
are the ML and BD decoders based on the computation
of the Hamming distance dH(bx(m), by).

The achievable recognition rate of classification sys-
tem using soft information, i.e., using the real-valued
observation ỹ, and binarized coding matrix bx(m), 1 ≤
m ≤ M, is given by Ī(Bx; Ỹ).

One can also consider a soft coding matrix x̃(m), 1 ≤
m ≤ M, that will lead to the enhanced recognition rate
Ī(X̃; Ỹ) as in Eq. 4.

Due to the data processing inequality [3], the follow-
ing is true:

Ī(X̃; Ỹ) ≥ Ī(Bx; Ỹ) ≥ Ī(Bx; By). (30)

The results of simulation for the average proba-
bility of classification error under the AWGN model
and M = 100 classes using the ML decoder are shown
in Fig. 9 for three setups considered above as a
function of signal-to-noise ratio (SNR) defined as
SNR = 10 log10

σ 2
X

σ 2
Zr

. The soft information considerably

enhances the performance of classification system in
part of both coding matrix and observation.

The positive impact of soft information leading to
the bit reliability discrimination can be also observed
for the average probability of bit error that is very
important for the design of practical low-complexity de-
coding rules. The minimization of average probability
of error based on the selection of reliable components
can be practically implemented in two different ways
based on thresholding or order statistics.

Figure 9 The average probability of classification error under
AWGN for 100 classes for: a a soft coding matrix and soft
observations, b a binarized coding matrix and soft observations,
and c both a binarized coding matrix and observations.

The thresholding approach is based on the selection
of all components whose magnitude

∣∣ỹi
∣∣ is higher than

a certain threshold Tx̃ that is shown in Fig. 10b. The
corresponding average probability of bit error is:

P̄b T = 1∫ ∞
Tx̃

p(x̃i)dx̃i

∫ ∞

Tx̃

Pb |x̃i p(x̃i)dx̃i

= Q−1

(
Tx̃

σX

)∫ ∞

Tx̃

Q
(

x̃i

σZr

)
1√

2πσ 2
X

e
−x̃2

i
2σ2

X dx̃i, (31)

where the multiplier is the normalization constant cor-
responding to the fraction of distribution behind the
threshold.

The practical application of this approach is facing
two main concerns: (a) how many of overcomplete
projections L are needed for any x to guarantee the
necessary L′? and (b) what is a possible gain in P̄b T

versus P̄b ? We will address the issues (a) and (b) in this
section to demonstrate the feasibility of the proposed
approach. At the same time, one should take into ac-
count the increase of the coding matrix size L to store
the information about reliable projections that might
affect the achievable recognition rate, where only L′
are used for the classification. This explains the fact that
the achievable recognition rate can not be enhanced
due to the expected decrease of bit error probability
due the simultaneous decrease of vector length from L
to L′. It is easy to verify that the number of coefficients
L′ of random variable X̃i following Gaussian distribu-
tion and exceeding the threshold Tx̃ in L projections
satisfies with high probability the following equation:

Pr[L′ ≥ 	] = 1 − FBX

(
L, 	, Pr

[
X̃i > Tx̃

])
, (32)

where 	 is the necessary number of reliable coefficients
in the coding matrix (like 32, 64 or 128), the

Figure 10 Bit error reliability framework: a all values x̃i are
taken into account and b only the most reliable values are taken
for the basis selection (to be normalized to 1).
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binomial cumulative distribution function is designated

as FBX (L, 	, Pr[X̃i > Tx̃]) and Pr[X̃i > Tx̃] = Q
(

Tx̃
σX

)
.

For practical applications, one can assume that to en-
sure the existence of the desired 	 with high probability
1 − ε, the quantity FBX (L, 	, Pr[X̃i > Tx̃]) should be
bounded by a small ε that will be further assumed
not to exceed 10−10. This result is shown in Fig. 11.
Obviously, the larger the number of reliable bits that
is requested in the coding matrix, the more projections
L should be generated for a given threshold. At the
same time, the increase of the threshold leads to an
exponential number of projections L. Although these
numbers seem to be quite high, for example for L′ =
64 and Tx̃ = 2.5, the required L is about 2 · 104, this
can be compared to the discrete Fourier transform of
image of size 512 × 512 for the optimal feature selection
out of about 2.6 · 105 transform coefficients. Therefore,
this problem is computationally feasible. To answer the
second question about the possible gain in P̄b T versus
P̄b , we will plot the corresponding results (Eqs. 21
and 31) for different Tx̃ as the function of SNR. The
results are shown in Fig. 12. The proposed optimiza-
tion strategy to the reliable projection selection clearly
demonstrates a considerable increase in the accuracy
of binary classifiers with respect to the blind projection
selection. The results coincide for Tx̃ = 0 that confirms
the fact that all projections are blindly taken into ac-
count for the coding matrix generation. Although this
approach demonstrates an excellent performance in the
terms of P̄b , nevertheless the number of projections L′
exceeding the given threshold Tx̃ is varying for each
observation y. As a consequence, thresholding is not a
very useful approach for practical implementations.

Figure 11 The estimation of necessary number of projections L
for the desired number of reliable bits in coding matrix for σ 2

X = 1.

Figure 12 The average bit error probability for all and reliable
only projections selection for various thresholds.

Therefore, we use the second approach based on
order statistics, where the reliability information is
sorted in the ascending order and the predefined quan-
tity of projections L′ out of L are considered to be
reliable ones with the certain probability of bit error
P̄′

b . Obviously, if L′ = L, all projections are used and
P̄′

b = P̄b . The information-theoretic model behind this
approach will be considered in the next section along
the complexity analysis. Here, we show the impact of L′
on P̄′

b in Fig. 13 for different L′ = 8, 12, 18, 32, 128, 512
for L = 512. One observers similar behavior as for

Figure 13 The average bit error probability for the most reliable
components based on the order statistics.
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Figure 14 Classification based on the reliable bits producing the
most likely codewords within the Hamming sphere.

the thresholding approach but with a fixed number of
reliable components. Obviously, these two approaches
are related to each other since one can always re-
compute the requested number of reliable bits into
the equivalent threshold as Tx̃ = σY Q−1(1 − L′/(2L)),

where σY =
√

σ 2
X + σ 2

Zr
and Q−1(.) stands for the in-

verse Q−function.

3.3.2 Complexity Analysis

In this section we present two practical approaches to
the design of low-complexity soft decoders based on
a set of binary classifiers. The first approach is based
on the BD decoder described in Sections 3.2.1 and
3.2.2 and the second one uses a so-called overcomplete
projections.

The BD decode considers all possible candidates that
are within the distance γ L or tb max from by. However,
contrarily to the decoder presented in Section 3.2.2,
soft information is used to select only those codewords
within the Hamming sphere that are the most likely, as
shown in Fig. 14. The obtained set of codeword candi-
dates is checked versus the database. If several candi-
dates are chosen, the one with the highest likelihood is
preferred. Optionally, the decoder can output the list
of several most probable candidates ranked by their

Figure 16 Decoding strategy based on branch and bound algo-
rithm and least reliable bits.

likelihoods that can be useful in some identification,
retrieval and data mining applications of the considered
classification.

The generation of candidate codewords within the
Hamming sphere is explained in Fig. 15. According to
the results presented in the previous section regarding
order statistics based reliable bit extraction, the ordered
magnitudes

∣∣ỹ∣∣ are used to find Tb least reliable bits
in the corresponding locations in the binary vector by.
One possible implementation of the decoding using a
branch and bound algorithm [2] is shown in Fig. 16,
when one first starts with the least reliable bit and
sequentially flips the remaining Tb bits creating all pos-
sible combinations that are checked versus the coding
matrix. Remarkably, the complexity of this algorithm
is reduced to O(2Tb log2 M) = O(2LP̄b log2 M) with re-
spect to the previous case O(2LH2(P̄b ) log2 M).

Moreover, one can also enhance the classification
accuracy by using soft information about |ỹ|.

The second low-complexity decoding approach is
obtained considering only the most reliable bits con-

Figure 15 Projected observation decomposition into reliability and binary components.
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Figure 17 Channel splitting based decoding.

trary to the above decoding and completely disregard-
ing the least reliable bits. The block diagram of this
approach is shown in Fig. 17. The approach uses J
overcomplete projections to select the L′ most reliable
components based on the sorted magnitudes

∣∣ỹ∣∣. The
number of projections L′ is selected in such a way to
guarantee a very low probability of error similar to
the results presented in Fig. 13. Accordingly, one can
easily compute either the mean t̄′b = L′ P̄′

b or maximum
number t′b max

= B−1(1 − ε, L′, P̄′
b ) of error bits in L′

chosen bits, where P̄′
b denotes the probability of bit

error in the L′ most reliable bits, B−1(.) stands for
inverse binomial cumulative density function and ε is
an arbitrarily small chosen probability that the number
of error bits exceeds t′b max

. The experimental results for
J = 512 and L′ = 8, 12, 18, 32, 128, 512 are shown in
Fig. 18. It is important to note that one can expect with

Figure 18 Number of error bits in L′ = 8, 12, 18, 32, 128, 512
most reliable bits selected out J = 512 projections based on the
order statistics with the corresponding upper bound estimates.

high probability zero errors in the L′ most reliable bits
for a relatively small L′ after a certain SNR. Therefore,
the corresponding bits in by can be considered to be
error-free, that makes it possible to straightforwardly
find the corresponding codewords bx(m′) with m′ ∈
L′ = {1, · · · , M′} in the coding matrix that have the
same bits in the L′ most reliable bit positions. These
codewords form a list of candidates L′ for further
verification that can be even performed using the ML
decoder with the acceptable complexity due to the
relatively small cardinality M′ of list L′. The cardinality
of list of candidates is M′ = 2log2 M−L′

. For example,
for 1 million classes (M = 220) and L′ = 12, the list of
candidates is M′ = 28, i.e., 256 candidates that can be
easily verified. Our experiments in Matlab™indicate
that the classification of a single item to one of the 1
million classes approximately requires 121.62 seconds
while the proposed method provides a result in about
0.82 second for SNR ≥ 5dB.

It is also of interest to generalize the one-step de-
composition described above into a multi-stage or hier-
archical approach, as is schematically shown in Fig. 19.
The sorted magnitude vector

∣∣ỹ∣∣ is split into S blocks
of length L j, 1 ≤ j ≤ S. The probability of bit error in
each block P̄′

j can be computed that constitutes to the
equivalent BSC j. Therefore, the entire J bits are split
into LJ equivalent BSCs. The resulting probability of
error for all J bits can be computed as:

P̄b = 1

J

S∑
j=1

L j P̄′
j, (33)

and coincides with Eq. 21.
The resulting recognition rate represents the weighted

sum of recognition rates of all equivalent BSCs:

R = 1

J

S∑
j=1

L j

(
1 − H2

(
P̄′

j

))
(34)

Therefore, one can obtain a flexible trade-off between
the complexity and achievable rate by properly select-
ing the block sizes L j for each stage of hierarchical
search and sequentially reducing the list of candidates.
It is important to note that this result can not be
achieved by directly considering all L bits simultane-
ously. The proposed framework is conceptually sim-
ilar to multistage decoding used in multilevel error
correction codes and multiple access communication
channels [3].
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Figure 19 Channel splitting
generalized model model.

4 Results of Computer Simulation

Using computer simulation, we have investigated (1)
the probability of bit-error for different distortions in
images; (2) the probability of classification error in
a system of 220 synthetic classes using the proposed
branch-and-bound decoder; and (3) the probability of
classification error when using an overcomplete trans-
formation.

4.1 Bit Error Probabilities

The bit error probability provides an idea about the
corresponding amount of errors and necessary num-
ber of trials per observation. The test database for
these tests consists of M = 1′000′000 entries. We only
use N = 32 × 32 blocks for each image for simulation

Figure 20 Bit error probability for AWGN.

purposes. A binary feature vector of length L = 32 is
extracted from each block and stored in a database.
The tests have been performed under various distor-
tion models including additive white Gaussian, uniform
noise and lossy JPEG compression. The type of noise
reflects the incompleteness of the knowledge of the
data user regarding the classes and thus the mismatch
with the labels stored in the database.

The bit error probabilities for the AWGN, additive
uniform noise and lossy JPEG compression are shown
in Figs. 20, 21 and 22, respectively. The observation
model is considered in terms of the signal-to-noise ratio
(SNR) defined as SNR = 10 log10

σ 2
X

σ 2
Z

for additive noises
and in terms of quality factor for JPEG compression.

In conclusion, the AWGN model of distortion leads
to the largest probability of bit-error, and can therefore

Figure 21 Bit error probability for additive uniform noise.
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t

Figure 22 Bit error probability for lossy JPEG compression.

be considered as a worst-case scenario. The probability
of bit-error for uniform noise is almost equivalent to
that of the Gaussian distortion, nonetheless we have
chosen the AWGN model of distortions for large-scale
testing on both synthetic data and real images.

4.2 Branch-and-Bound Decoding

A number of simulations have been carried out, based
on the Gaussian setup, where M = 220, N = 1,024,
L = 32. The results are displayed in Fig. 23. In order
to limit the calculation time, the number of flipped bits
for the branch-and-bound decoders has limited to 16

Figure 23 Accuracy of different decoders.

(= 1
2 L), or less if that can be predicted based on the

equivalent Binary Symmetric Channel. We have tested
two versions of the branch-and-bound algorithm, one
using the approximation of the cross-correlation, and a
second one using the regular Hamming distance. These
two variants are denoted as “NP-soft”, for using soft
information; and “NP-hard” when using integer Ham-
ming distances, respectively. Both versions do select
which bit to flip first based on reliability.

Clearly, the use of an approximation of the cross-
correlation significantly improves the performance in
terms of accuracy compared to the Hamming distance.

A very interesting phenomenon is that the branch-
and-bound decoder outperforms the straightforward
exhaustive Hamming-distance decoder even when only
using the Hamming distance as a metric. The only
explanation we have for this is that in certain cases, sev-
eral codewords will have the same Hamming distance
to the channel output. In such cases, both decoders
will select the codeword they first come across. For
the exhaustive decoder, that is the codeword with the
lowest index in the codebook. For the NP-hard decoder
on the other hand, the most likely variations on the
channel output are tried first, so the first codeword
found has a higher probability of being correct than the
one with the lowest index of all codewords having the
same Hamming distance to the channel output.

Compared to the exhaustive search ML-based cross-
correlation decoder, the NP-soft decoder shows almost
identical performance, but at a significantly reduced
complexity, especially for higher SNRs.

It would be inturesting to compare the performance
of the proposed method to those of existing methods.
Unfortunately, there are several issues that make such
a comparison unpractical, if not undesirable. Certain
methods, such as one-vs-one binary strategies or Lin-
ear Discriminant Analysis require O(M2) operations
during either training or classification, which, for the
considered cases where M can be as high as 220, is
prohibitively time-consuming.

Apart from practical arguments, a fair comparison
is extremely difficult to make as any comparison be-
tween any two multi-class classification systems based
on binary classifiers would reasonably require that both
systems use an equal number of binary classifiers, i.e.
a fair comparison should be done based on a chosen
fixed value of L. Due to the general nature of one-vs-
one or one-vs-all strategies, such a restriction poses a
non-trival problem given the number of classes used in
the experiments. Conversely, it is not straightforward
to construct multi-class classifiers out of only 32 of
these binary classifiers that can successfully classify 220

classes.
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4.3 Overcomplete Transforms and Hierarchical
Decoding

To study the effects of overcomplete transforms, a set
of images has been taken and cut into blocks of 64 × 64
pixels each, producing 16,384 blocks in total of 4,096
pixels. These have been projected 512 times each, and
we consider what happens when only 12 out of 512
generated bits are used. To summarize, M = 214, N =
4,096, J = 512 and L′ = 12. Each block has been taken
to represent one class each. Distorted versions of the
images are then used as observations.

In the first test, the images are distorted by adding
Gaussian noise, in accordance with the AWGN chan-
nel. In the Fig. 24, an exhaustive ML-based Hamming
distance decoder using the full J = 512 bits has been
compared to a decoder that selects candidates based on
the L′ = 12 most reliable bits, and then selects a final
answer based on all J = 512 bits of each class in the set
of candidate classes. The full exhaustive search decoder
represents a performance limit in the binary domain. It
is clear that the use of the faster procedure produces
less accurate results, thus confirming the existence of a
trade-off between complexity and accuracy.

The second test is based on JPEG-compressed im-
ages. The same two decoders are compared as in the
previous test. As we can see in Fig. 25, the effects of
compression are less severe than for adding Gaussian
noise. This implies the conclusion that the amount
of distortions and the probabilistic overlap between
classes has an influence on the performance in terms
of accuracy on the system.

Figure 24 Probability of classification error of images versus
SNR of AWGN noise.

Figure 25 Probability of classification error of images versus
JPEG quality factor.

5 Conclusions

We have considered the multiclass classification prob-
lem based on sets of independent binary classifiers. We
have analyzed the properties of such kind of matrices
and their impact on the maximum number of uniquely
distinguishable classes from an information-theoretic
point of view.

The relation between the reliability of bits due to
projections and the bit error probability has been inves-
tigated and shown to be of crucial importance for the
complexity and accuracy of classification. We demon-
strate that it is equivalent to the considered random
coding matrix without any bit reliability information in
terms of recognition rate.

Several relatively low-complexity algorithms have been
proposed for classification that approximate the accu-
racy of more time-consuming but optimal alternatives.
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