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ABSTRACT

In this paper we propose a novel super-resolution based al-
gorithm for the pansharpening of multispectral images. Within
the Bayesian formulation, the proposed methodology incorporates
prior knowledge on the expected characteristics of multispectral
images; that is, imposes smoothness within each band by means
of the energy associated to the `1 norm of vertical and horizontal
first order differences of image pixel values and also takes into ac-
count the correlation between the bands of the multispectral image.
The observation process is modeled using the sensor characteris-
tics of both panchromatic and multispectral images. The method
is tested on real and synthetic images, compared with other pan-
sharpening methods, and its quality is assessed both qualitatively
and quantitatively.

1. INTRODUCTION

Nowadays most remote sensing systems include sensors able to
capture, simultaneously, several low resolution images of the same
area on different wavelengths, forming a multispectral image, along
with a high resolution panchromatic image. The main advantage
of the multispectral image is to allow for a better land type and use
recognition but, due to its lower resolution, information on the ob-
jects shape and texture may be lost. In contrast, the panchromatic
image allows for a better recognition of the objects in the image
and their textures but provides no information about their spectral
properties.

The super resolution of multispectral images, also called pan-
sharpening, is a technique that jointly processes the multispectral
and panchromatic images in order to obtain a new multispectral
image that, ideally, exhibits the spectral characteristics of the ob-
served multispectral image and the resolution of the panchromatic
image. A few approaches to pansharpening have been proposed
in the literature, for instance, [1, 2, 3] and a comparison of algo-
rithms in [4]. In this paper we propose the use, within the Bayesian
formulation, of an image model which imposes smoothness into
each band of the pansharpened multispectral image by mean of
the `1 norm of vertical and horizontal first order differences of im-
age pixel values and takes into account the correlation between the
bands of the multispectral image. To the best of our knowledge,
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this correlation is the first time that it is explicitly incorporated into
the modeling of the pansharpening problem.

The paper is organized as follows. In section 2 the Bayesian
modeling and inference for super resolution reconstruction of mul-
tispectral images is presented. Section 3 describes the variational
approximation of the posterior distribution of the high resolution
multispectral image and how inference is performed. Section 4
presents experimental results and section 5 concludes the paper.

2. BAYESIAN MODELING AND INFERENCE

Let us assume that y, the unknown high resolution multispec-
tral image we would have observed under ideal conditions, has
B bands yb, b = 1, . . . , B, each of size p = m × n, that is,
y = [yt1,y

t
2, . . . ,y

t
B ]t, where each band of this image is ex-

pressed as a column vector by lexicographically ordering the pix-
els in the band, and t denotes the transpose of a vector or ma-
trix. The observed low resolution multispectral image Y has B
bands Yb, b = 1, . . . , B, each of size P = M × N pixels, with
M < m and N < n. These images are also stacked into the
vector Y = [Yt

1,Y
t
2, . . . ,Y

t
B ]t, where each band of this image

is also expressed as a column vector by lexicographically ordering
the pixels in the band. The sensor also provides us with a panchro-
matic image x of size p = m×n, obtained by spectrally averaging
the high resolution images yb.

The objective of the super resolution of multispectral images
is to obtain an estimate of the unknown high resolution multi-
spectral image y given the panchromatic high resolution observa-
tion x and the low resolution multispectral observation Y. The
Bayesian formulation of this problem requires the definition of
the joint distribution p(y,Y,x). We define this joint distribu-
tion as p(y,Y,x) = p(y)p(Y,x|y) and inference is based on
p(y|Y,x). Let us now describe those probability distributions.

In this paper we propose a prior model based on the `1 norm
[5] to take into account the smoothness within each band plus an
auto-regressive model to exploit the correlation between the image
bands, thus defining the multispectral image prior

p(y) ∝ c(y)

BY
b=1

s(yb) . (1)

The term c(y), which takes into account the correlations among



different high resolution bands, is given by

c(y) = exp

8>><>>:−
BX

b,b′=1

b′>b

νbb′

2
‖yb − yb′‖2

9>>=>>; , (2)

with νbb′ > 0 for b′ > b, thus enforcing similarity between the
pixels in the same position in the different bands with νbb′ being
the parameter that control the similarity between band b and band
b′. In order to keep the flux in each band, we will normalize the
bands to add to one. The smoothness into each multispectral band
is modeled by the terms, s(yb), b = 1, ..., B, which are `1 based
priors defined as

s(yb) = exp

(
−

pX
i=1

h
αhb‖ ∆h

i (yb)‖1 +αvb‖ ∆v
i (yb)‖1

i)
, (3)

where ∆h
i (yb) and ∆v

i (yb) represent the horizontal and vertical
first order differences at pixel i, respectively, and αhb and αvb are
the horizontal and vertical model parameter of the band b.

We assume that Y and x, for a given y, are independent and
write

p(Y,x|y) = p(Y|y)p(x|y) . (4)

For each multispectral image band, we consider the model Yb =
Hyb + nb, b = 1, . . . , B, where the degradation matrix H can
be written as H = DB, with B a p × p blurring matrix and D
a P × p decimation operator, and nb is the noise term assumed
to be independent white Gaussian of known variance β−1

b . The
conditional distribution of the observed image Y given y is given
by

p(Y|y) =

BY
b=1

p(Yb|yb)

∝
BY
b=1

exp


−1

2
βb ‖ Yb −Hyb ‖2

ff
. (5)

The panchromatic image x is modeled as [3]

x =

BX
b=1

λbyb + v,

where λb ≥ 0, b = 1, 2, . . . , B, are known quantities that can
be obtained from the sensor spectral characteristics, and v is the
capture noise that is assumed to be Gaussian with zero mean and
known variance γ−1. Based on this model, the distribution of the
panchromatic image x given y, is given by

p(x|y) ∝ exp

(
−1

2
γ ‖ x−

BX
b=1

λbyb ‖2
)
. (6)

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION OF THE POSTERIOR DISTRIBUTION

In this paper we assume that all the model parameters are known
or previously estimated. Then, the Bayesian paradigm dictates that
inference on y should be based on

p(y|Y,x) = p(y,Y,x)/p(Y,x) = p(y)p(Y,x|y)/p(Y,x),

where p(y), p(Y,x|y) have been defined in Eqs. (1) and (4), re-
spectively.

Since p(y|Y,x) can not be found in closed form, we apply
variational methods to approximate this distribution by a distribu-
tion q(y). The variational criterion used to find q(y) is the mini-
mization of the Kullback-Leibler (KL) divergence, given by [6]

CKL(q(y)||p(y|Y,x))

=

Z
q(y) log

„
q(y)

p(y|Y,x)

«
dy

=

Z
q(y) log

„
q(y)

p(y,Y,x)

«
dy + const

= M(q(y),Y,x) + const , (7)

which is always non negative and equal to zero only when q(y) =
p(y|Y,x).

Unfortunately, due to the form of the `1 prior, the above inte-
gral can not be evaluated. However, we can rewrite s(yb) in Eq. (3)
in the more convenient form

s(yb) = exp

(
−

pX
i=1

»
αhb

q
(∆h

i (yb))2 + αvb

q
(∆v

i (yb))2

–)
,

(8)
where the `1 norm can be majorized by a function which renders
the integral easier to calculate. Let us consider the following in-
equality, also used in [7], which states that, for any w ≥ 0 and
z > 0 √

w ≤ w + z

2
√
z
. (9)

Let us define the functional

M(yb,u
h
b ,u

v
b ) =

exp

(
−
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»
αh

b
2

(∆h
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–ff
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where uhb ∈ (R+)p, uvb ∈ (R+)p are any p-dimensional vec-
tors with components uhb (i) and uvb (i), i = 1, . . . , p, that need to
be computed and have, as will be shown later, an intuitive inter-
pretation related to the unknown images yb. Using the inequal-
ity in Eq. (9) and comparing Eq. (10) with Eq. (8), we obtain
s(yb) ≥ c · M(yb,u

h
b ,u

v
b ). This leads to the following lower

bound for the joint probability distribution

p(y,Y,x) ≥ c · p(Y|y)p(x|y)c(y)

BY
b=1

M(yb,u
h
b ,u

v
b )

= F(y,Y,x,uh,uv) , (11)

where ud = [ud1
t
,ud2

t
, . . . ,udB

t
]
t

for d = h, v.
Hence, by defining

M̃(q(y),Y,x,uh,uv) =

Z
q(y) log

„
q(y)

F(y,Y,x,uh,uv)

«
dy,

and using Eq. (11), we obtain

M(q(y),Y,x) ≤ min
uh,uv

M̃(q(y),Y,x,uh,uv) .

Therefore, by finding a sequence of distributions {qk(y)} that
monotonically decreases M̃(q(y),Y,x,uh,uv) for fixed uh and



uv , it is also obtained a sequence of an ever decreasing upper
bound of CKL(q(y)||p(y|Y,x)) due to Eq. (7). Even more, min-
imizing M̃(q(y),Y,x,uh,uv) with respect to uh and uv , also
generates vector sequences {uhk} and {uvk} that tightens the
upper-bound for each distribution qk(y). Therefore, the sequence
{qk(y)} is coupled with the sequences {uhk} and {uvk}. We
develop the following iterative algorithm to find such sequences.
We note that the process to find the best posterior distribution ap-
proximation of the image in combination with uh and uv is a very
natural extension of the Majorization-Minimization approach to
function optimization [8].

Algorithm 1 Posterior image distribution estimation.

Given u1 ∈ (R+)Bp, for k = 1, 2, . . . until a stopping criterion
is met:

1. Find

qk(y) = arg min
q(y)
M̃(q(y),Y,x,uh

k
,uvk) . (12)

2. Find

{uhk+1
,uvk+1} =

argmin{uh,uv} M̃(qk(y),Y,x,uh,uv) . (13)

Set q(y) = limk→∞ qk(y).

To calculate {uhk+1
,uvk+1}, for b = 1, . . . , B, we have

from Eq. (13) that

uhb
k+1

= arg min
uh

b

PX
i=1

Eqk(y)

ˆ
(∆h

i (yb))
2
˜

+ uhb (i)p
uhb (i)

,

and

uvb
k+1 = arg min

uv
b

PX
i=1

Eqk(y)

ˆ
(∆v

i (yb))
2
˜

+ uvb (i)p
uvb (i)

,

and consequently

uhb
k+1

(i) = Eqk(y)

h
∆h
i (yb))

2
i
, (14)

and
uvb

k+1(i) = Eqk(y)

ˆ
∆v
i (yb))

2˜ , (15)

for i = 1, . . . , p and b = 1, . . . , B.
It is clear from Eqs. (14) and (15) that vectors uhb

k+1
and

uvb
k+1 are respectively functions of the spatial first order hori-

zontal and vertical differences of the unknown image y under the
distribution qk(y) and represent the local spatial activity of y.

To calculate qk(y), we observe that differentiating the integral
on the right-hand side of Eq. (12) with respect to q(y) and setting
it equal to zero, we obtain that

qk(y) = N
`
y | Eqk(y)[y], covqk(y)[y]

´
,

with
covqk(y)[y] = A−1(uh

k
,uvk) ,

and
Eqk(y)[y] = covqk(y)[y]φk ,

where φk is the (B × p)× 1 vector

φk =
`
diag(β)⊗Ht´Y + γ (λ⊗ x) ,

and

A(uh
k
,uvk) = diag(β)⊗HtH + γ(λλt)⊗ Ip

+
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k
,uv1
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0p G(uh2
k
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...

...
. . .

...
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−µ21
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b=1 µ2b . . . −µ2B

...
...

. . .
...

−µB1 −µB2 . . .
PB
b=1 µBb

1CCCA⊗Ip ,

where ⊗ is the Kronecker product, β = (β1, β2, . . . , βB)t, λ =
(λ1, λ2, . . . , λB)t, µbb = 0, ∀b, µbb′ = νb′b, b

′ > b and µb′b =
µbb′

G(uhb
k
,uvb

k) = αhb∆htW (uhb
k
)∆h + αvb∆vtW (uvb

k)∆v,

for b = 1, . . . , B, where ∆h and ∆v represent p × p convolu-
tion matrices associated with the first order horizontal and vertical
differences, respectively, and W (uhb

k
) and W (uvb

k) are a p × p

diagonal matrices of the form W (udb
k
) = diag

„
udb

k
(i)
− 1

2

«
, for

i = 1, . . . , p, d = h, v. These matrices can be interpreted as spa-
tial adaptivity matrices since they controls the amount of smooth-
ing at each pixel location depending on the strength of the intensity
variation at that pixel, as expressed by the horizontal and vertical
intensity gradients, respectively. That is, for pixels with high spa-
tial activity in the horizontal (vertical) direction, the corresponding
entries of W (uhb

k
) (W (uvb

k)) are very small, which means that
no smoothness is enforced in this direction, while for areas where
pixels have similar values in the horizontal or vertical direction the
corresponding entries of W (uhb

k
) or W (uvb

k), respectively, are
very large, which means that smoothness is enforced in the corre-
sponding direction.

4. EXPERIMENTAL RESULTS

Although we performed a wide set of experiments to assess the
quality of the proposed approach, here we report results only on a
synthetic color image and a real Landsat multispectral image.

Our first experiment was conducted on the 120 × 160 color
image displayed in Fig. 1(a) and helps to illustrate the useful-
ness of the term that takes into account the correlation between
image bands (see Eq. (2)) in the prior model. To obtain a low
resolution color image, each band of the original image was first
convolved with the mask 0.25 × 12×2 to simulate sensor inte-
gration, and then downsampled by a factor of two by discarding
every other pixel in each direction. Zero mean Gaussian noise
was finally added to each band to obtain two observed multispec-
tral images with a signal-to-noise ratio (SNR) of 20 dB and 30
dB, each. The panchromatic image was obtained from the origi-
nal high resolution color image using the model in Eq. (6), with
λ = [0.3, 0.6, 0.1]t, and adding zero mean Gaussian noise with



(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original RGB image; (b) Corresponding synthetic multi-spectral image and (c) synthetic panchromatic image; (d) Reconstruction
using the proposed method; (e) Reconstruction using `1 method; (f) Reconstruction using the method in [3].

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Region of interest of the observed multispectral image; (b) Corresponding region of interest of the observed panchromatic image;
(c) Reconstruction using the method in [2]; (d) Reconstruction using the method in [3]; (e) Reconstruction using the method in [12]; (f)
Reconstruction using the proposed method.



Table 1. Values of PSNR, COR, SSIM and ERGAS values for the synthetic color image.
PSNR COR SSIM ERGAS

SNR Method / Band 1 2 3 1 2 3 1 2 3
Bicubic interpolation 25.5 25.7 25.6 0.37 0.38 0.37 0.67 0.68 0.68 6.88
method in [3] 32.8 35.6 29.6 0.97 0.90 0.98 0.63 0.97 0.90 3.19

20 dB `1 method 32.9 34.2 30.5 0.98 0.99 0.77 0.83 0.86 0.84 3.12
proposed method 33.2 34.5 33.1 0.97 0.99 0.95 0.84 0.87 0.86 2.74
Bicubic interpolation 29.2 29.2 29.3 0.53 0.54 0.52 0.84 0.85 0.85 4.50
method in [3] 36.4 40.9 30.6 0.96 0.99 0.71 0.96 0.98 0.97 2.45

30 dB `1 method 40.1 42.4 31.9 0.99 1.00 0.79 0.97 0.98 0.90 2.00
proposed method 40.3 42.8 37.7 0.99 1.00 0.97 0.97 0.98 0.95 1.31

Table 2. Values of PSNR, COR and ERGAS for the Landsat image in Fig. 2.
PSNR COR ERGAS

Method / Band 1 2 3 4 1 2 3 4
method in [2] 39.8 39.6 35.5 35.6 0.73 0.75 0.62 0.91 2.75
method in [3] 42.5 41.9 37.5 29.1 0.70 0.78 0.84 0.91 3.20
method in [12] 42.2 42.0 37.5 28.8 0.69 0.76 0.77 0.96 3.29
proposed method 42.3 41.9 37.6 29.3 0.69 0.75 0.79 0.93 3.15

an SNR of 20 dB and 30 dB. Details of the 30 dB observed mul-
tispectral and panchromatic images are depicted in Figs. 1(b) and
1(c), respectively.

To assess the quality of multispectral images both spatial and
spectral measures have to be considered. Spatial improvement was
assessed by means of the correlation of the high frequency com-
ponents (COR) [9] which takes values between 0 and 1 (the higher
the value the better the quality of the reconstruction), while spec-
tral fidelity was assessed by means of the peak signal-to-noise ratio
(PSNR) and SSIM index [10] between each band of the recon-
structed and original multispectral images, and the standard ER-
GAS index [11] for which the lower the value, especially a value
under the number of bands B, the higher the quality of the multi-
spectral reconstructed image.

We run the proposed algorithm until the criterion ‖Eqk(y)[y]−
Eqk−1(y)[y]‖2/‖Eqk−1(y)[y]‖2 < 10−4 was satisfied. The val-
ues of the parameters were determined experimentally using a method
similar to the one presented in [3]. The obtained reconstruction
is shown in Fig. 1(d). To illustrate the usefulness of the pro-
posed approach we show the reconstructed image obtained by the
proposed method without considering the correlation between the
bands (henceforth `1 method), that is, using the proposed method
with νb,b′ = 0, ∀b, b′ = 1, . . . , B (see Fig. 1(e)). The reconstruc-
tion obtained using the method in [3] which utilizes a simultane-
ous auto-regressive prior model in shown in Fig. 1(f)). From the
displayed images it is clear that the proposed method results in a
better reconstruction. The new method obtains sharper edges than
the method in [3] and achieves higher similarity to the colors of
the original image.

Numerical results, presented in Table 1, also support the use
of the proposed model. Its figures of merit are, in general, better
than the ones provided by all other methods, highly increasing the
PSNR and the COR coefficient for band 3 except for the band 3
of the 20 dB SNR image where the COR values are similar to
the ones obtained by the method in [3]. It also obtains a larger
SSIM value than the `1 method for band 3 thus obtaining a more
consistent quality for all the bands. The table also includes the
figures of merits of the reconstructions by bicubic interpolation

as a reference. The quality improvement of the proposed method
clearly manifests itself when the ERGAS index is examined, since
the value is highly reduced when the proposed method is utilized.

In a second experiment, the method was tested on a real Land-
sat ETM+ image. Figure 2(a) depicts a 128 × 128 RGB color
region of interest composed of bands 3, 2, and 1 of a Landsat
ETM+ multispectral image, and Fig. 2(b) depicts its corresponding
256 × 256 panchromatic image region. According to the ETM+
sensor spectral response, the panchromatic image covers only the
spectrum of a part of the first four bands of the multispectral im-
age. Hence, we apply the proposed method with B = 4. The
values of λb, b = 1, 2, 3, 4, calculated from the spectral response
of the ETM+ sensor, are equal to 0.0078, 0.2420, 0.2239, and
0.5263, for bands one to four, respectively [3].

Note that in this experiment we do not have access to the orig-
inal high resolution multi-spectral image to numerically evaluate
the quality of the different reconstructions. In order to obtain a
numerical comparison, like the one in the first experiment, and to
overcome the lack of an exact HR multi-spectral image to com-
pare with, an intermediate step has been performed in which a
simulated multispectral image of size 64× 64 pixels and its corre-
sponding panchromatic image of size 128× 128 pixels have been
obtained from the observed 128× 128 pixels multispectral image
and its corresponding 256×256 pixels panchromatic image by ap-
plying a simulated observation process, that is, applying the sensor
integration and downsampling the observed image. A numerical
comparison between the different 128 × 128 reconstructions and
the observed 128 × 128 multispectral image is presented in Ta-
ble 2. The table includes, together with the proposed method, nu-
merical results for the pansharpening method proposed in [2], the
method proposed in [3] and the method proposed in [12] which
uses a total variation (TV) prior model. The corresponding recon-
structed images are displayed in Fig. 2. A visual inspection of the
images shows that the method in [2] (Fig. 2(c)) produces sharp
but very noisy reconstructions, creating artifacts at the boundaries
of the objects due to noise. The method in [3] (Fig. 2(d)) pro-
duces smooth reconstructions, smoothing out sharp edges but con-
trols the noise. Note however that colors are not very well recon-



structed due to the poor contribution of the panchromatic image to
band 1. The method in [12] (Fig. 2(e)) has crisper edges and good
noise control but, as the method in [3], does not reconstruct well
the colors. However, the proposed method (Fig. 2(f)) successfully
includes the high frequencies of the panchromatic image, produc-
ing sharp edges and maintaining the small details. Furthermore, it
also preserves the spectral quality of the image by including in the
model the correlation among the bands.

5. CONCLUSIONS

We have presented a new method for pansharpening of multispec-
tral images using a super resolution approach which takes into
account the sensor characteristics in the image formation model
and incorporates prior knowledge on the expected characteristics
of multispectral images by imposing smoothness within each band
and by taking into account the correlation between the bands of the
multispectral image. This correlation is, to the best of our knowl-
edge, the first time that it is explicitly used in pansharpening. We
have used the variational approach to approximate the posterior
distribution of the pansharpened multispectral image. Based on
the presented experimental results, the proposed method success-
fully incorporates the high frequencies of the panchromatic image
into the reconstructed image while preserving the spectral quality
of the image.
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