Skip to main content
Log in

Improved Sliced Message Passing Architecture for High Throughput Decoding of LDPC Codes

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents an architecture for high-throughput decoding of high-rate Low-Density Parity-Check (LDPC) codes. The proposed architecture is a modification of the sliced message passing (SMP) decoding architecture which overlaps the check-node and variable-node update stages, achieving a good tradeoff between area and throughput, and also, high hardware utilization efficiency (HUE). The proposed modification does not affect the performance of the SMP algorithm and yields an area reduction of 33%. As an example, SMP architecture and the proposed modification was synthesized in a 90 nm CMOS process for the 2048-bit LDPC code of the IEEE802.3an standard with 16 iterations achieving a throughput of 5.9 Gbps with 15.3 mm2 and 6.2 Gbps with 10.2 mm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

References

  1. Gallager, R. G. (1963). Low-density parity-check codes. MIT Press.

  2. Digital Video Broadcasting (DVB); second generation. ETSI EN 302 307, vol. 1.1, 2005.

  3. IEEE Draft Standard for Info. Tech.-Telecomm. and information exchange between systems-Local and MAN-Specific requirements-Part 11: Wireless LAN MAC and PHY Layer specifications. IEEE Standard. P802.11n, 2008.

  4. IEEE Standard for LAN and MAN Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: PHY and MAC Layers for Combined Fixed and Mobile Operation in Licensed Bands. IEEE Standard. 802.16e, 2008.

  5. IEEE 10 GBase-T Task Force. http://grouper.ieee.org/groups/802/3/an/index.html.

  6. MacKay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45, 399–431.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fossorier, M., Mihaljevic, M., & Imai, H. (1999). Reduced complexity iterative decoding of LDPC codes based on belief propagation. IEEE Transactions on Communications, 47–5, 673–680.

    Article  Google Scholar 

  8. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M., & Hu, X.-Y. (2005). Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications, 53–8, 1288–1299.

    Article  Google Scholar 

  9. Wang, Z., & Cui, A. (2007). Low-complexity high-speed decoder design for quasi-cyclic ldpc codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15–1, 104–114.

    Article  Google Scholar 

  10. Howland, C., & Blanksby, A. (2001). Parallel decoding architectures for LDPC codes. Proc. IEEE ISCAS, 4, 742–745.

    Google Scholar 

  11. Blanksby, A., & Howland, C. (2002). A 690-mw 1-gb/s 1024-b, rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-state Circuits, 37–3, 404–412.

    Article  Google Scholar 

  12. Darabiha, A., Carusoe, A. C., & Kschischang, F. R. (2005). Multi-gbit/sec LDPC decoders with reduced interconnect complexity. Proc. IEEE Int. Symp. on Curcuits Systems, 5, 5194–5197.

    Article  Google Scholar 

  13. Darabiha, A., Carusone, A., & Kschischang, F. R. (2008). Power reduction techniques for LDPC decoders. IEEE Journal of Solid-State Circuits, 43–8, 1835–1845.

    Article  Google Scholar 

  14. Mohsenin, T., Truong, D., & Baas, B. (2009) Multi-split-row threshold decoding implementations for LDPC codes. Proc. IEEE ISCAS, 2449–2452.

  15. Liu, L., & Shi, R. (2008). Sliced message passing: high throughput overlaped decoding of high-rate LDPC codes, IEEE Transactions on Circuits and Systems, 55, 3697–3710.

    Article  MathSciNet  Google Scholar 

  16. Sha, J., Lin, J., Wang, Z., Li, L., & Gao, M. (2009). Decoder design for rs-based ldpc codes. IEEE Transactions on Circuits and Systems II, 56–9, 724–728.

    Google Scholar 

  17. Mansour, M., & Shanbhag, N. (2003). High-throughput ldpc decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11–6, 976–996.

    Article  Google Scholar 

  18. Zhang, J., & Fossorier, M. (2005). Shuffled iterative decoding. IEEE Transactions on Communications, 53–2, 209–213.

    Article  Google Scholar 

  19. Zhang, Z., Anantharam, V., Wainwright, M., & Nikolic, B. (2009). A 47 Gb/s LDPC decoder with improved low error rate performance. Proc. IEEE VLSI Circuits Symp. Kyoto. 286–287.

  20. Zhong, H., Xu, W., Xie, N., & Zhang, T. (2007). Area-efficient min-sum decoder design for high-rate quasi-cyclic LDPC codes in magnetic recording. IEEE Transactions on Magnetics, 43, 4117–4122.

    Article  Google Scholar 

  21. Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Transactions on Information Theory, IT-27, 533–547.

    Article  MathSciNet  Google Scholar 

  22. Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., & Lin, S. (2003). A class of LDPC codes constructed based on Reed-Solomon codes with two information symbols. IEEE Communications Letters, 7, 317–319.

    Article  Google Scholar 

  23. Fossorier, M. P. C. (2004). Quasi-ciclyc LDPC codes from circular permutation matrices. IEEE Transactions on Information Theory, 50, 1788–1793.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by FEDER and Spanish Ministerio de Ciencia e Innovacion under Grant No. TEC2008-06787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Valls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angarita, F., Sansaloni, T., Canet, M.J. et al. Improved Sliced Message Passing Architecture for High Throughput Decoding of LDPC Codes. J Sign Process Syst 66, 99–104 (2012). https://doi.org/10.1007/s11265-011-0580-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0580-3

Keywords

Navigation