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Abstract In recent years, parameterized dataflow has evolved as a useful framework

for modeling synchronous and cyclo-static graphs in which arbitrary parameters can

be changed dynamically. Parameterized dataflow has proven to have significant expres-

sive power for managing dynamics of DSP applications in important ways. However,

efficient hardware synthesis techniques for parameterized datafow representations are

lacking. This paper addresses this void; specifically, the paper investigates efficient

field programmable gate array (FPGA)-based implementation of parameterized cyclo-

static dataflow (PCSDF) graphs. We develop a scheduling technique for throughput-

constrained minimization of dataflow buffering requirements when mapping PCSDF

representations of DSP applications onto FPGAs. The proposed scheduling technique

is integrated with an existing formal schedule model, called the generalized sched-

ule tree, to reduce schedule cost. To demonstrate our new, hardware-oriented PCSDF

scheduling technique, we have designed a real-time base station emulator prototype

based on a subset of long-term evolution (LTE), which is a key cellular standard.
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1 Introduction

Synchronous dataflow (SDF) [1] has been used widely as an efficient model of compu-

tation (MOC) to analyze performance and resource requirements when implementing

DSP algorithms on various kinds of target architectures (e.g., see [2], [3], and [4]). The

SDF model has been incorporated in many commercial tools for DSP system design,

such as ADS from Agilent, LabVIEW from National Instruments, Signal Processing

Designer from CoWare, and System Studio from Synopsys. In SDF semantics, DSP

applications are modeled by directed graphs in which vertices (actors) correspond to

computational blocks, and edges represent the passage of data between blocks. SDF

imposes the restriction that the number of data values (tokens) that is produced on

each output edge is constant per actor execution (firing), and similarly, the number of

tokens consumed per firing is constant for each actor/input-edge pair. Thus, SDF does

not accommodate actors that can have dynamically varying token production and con-

sumption rates. Such “dynamic dataflow” actors are employed in many modern DSP

applications, including the LTE physical layer, and therefore, when developing such

applications, we must explore models of computation that are more general than pure

SDF.

Cyclo-static dataflow (CSDF) is a generalization of synchronous dataflow in which

production and consumption rates are allowed to vary dynamically as long as the

variates follow periodic patterns that are fully predictable at compile time [5]. Although

CSDF production and consumption rates can vary at run-time, CSDF is typically not

viewed as a dynamic dataflow model due to the predictability of the run-time variations.

Parameterized cyclo-static dataflow (PCSDF) further extends expressive power by

allowing dynamic changes in production and consumption rates that are formulated

in terms of changes to parameters of parameterized CSDF graphs (PCSDF graphs) [6].

A PCSDF graph can be viewed as a parameterized family of graphs such that each

instance in the family (i.e., each specific setting of the parameters) corresponds to

a CSDF graph. PCSDF significantly improves upon the expressive power of CSDF

while providing a framework in which many CSDF analysis techniques can be natu-

rally adapted into parameterized versions [7]. Thus, parameterized dataflow modeling

approaches allow for dynamic capabilities without excessively compromising the key

properties of existing static dataflow models (e.g., SDF and CSDF) — compile-time

predictability and potential for rigorous optimizations. For example, techniques for

constructing efficient parameterized looped schedules have been developed for PSDF

graphs [6]. These scheduling techniques can provide for efficient simulation or software

synthesis from PSDF specifications.

When describing a DSP application with a PCSDF graph, functional blocks and

storage space for transferring data between adjacent blocks are modeled as graph ver-

tices (actors) and edges, respectively. When mapping dataflow graph edges into storage

locations, care must be taken to make effective use of limited storage locations (e.g.,

on-chip memory in programmable digital signal processors, and block RAM and dis-

tributed memory in FPGAs). However, reducing the storage space for transferring

data between actors may result in decreased throughput due to less frequent firing of

actors to prevent buffer overflow — as buffers become smaller, the frequency and dura-
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tion for such overflow-avoiding idle time generally increases, which leads to decreased

throughput. The limited amounts of storage available in DSP implementation targets,

and the importance of meeting real-time performance constraints motivate the goal

of throughput-constrained buffer minimization for PCSDF graphs. In this paper, we

study this problem in the context of FPGA-based implementation.

2 Related Work

Several approaches are known to date for exploring trade-offs between throughput and

buffer memory requirements in dataflow graphs. Traditionally, throughput analysis for

SDF graphs is performed by solving an instance of the maximum cycle mean problem

(e.g., see [8], and [9] after converting the input SDF graph into an equivalent homoge-

neous SDF (HSDF) graph [1]. Throughput analysis based on SDF-to-HSDF conversion

suffers from high worst case complexity because neither the time nor space required to

perform this conversion is polynomially bounded (e.g., see [10]).

Ghamarian et al. [11] have developed a method for SDF throughput analysis that

avoids conversion to an HSDF graph, and uses state space exploration techniques —

in terms of the buffer state — instead. In general, executions of actors change the

buffer state by removing (consuming) tokens from input edges of the actors that fire,

and inserting (producing) tokens onto output edges. Ghamarian exploits the property

that when SDF graphs execute in a purely data driven (“self-timed”) manner under

bounded memory space, the state space is also bounded, and execution eventually

settles into a periodic pattern (periodic steady state or PSS). In Ghamarian’s method

for throughput analysis, only selected states need to be stored when detecting the PSS

of execution, and through Ghamarian’s careful pruning technique for state storage,

significant improvements can be achieved in the efficiency of performance analysis.

However, the technique requires simulation of the overall schedule, and the worst case

complexity is linear in the length (number of firings in) the given periodic schedule,

which, as described above, is not polynomially bounded in the size of the input SDF

graph.

Stuijk [12] develops a systematic approach for exploring throughput and storage

trade-offs for SDF graphs. This approach applies methods developed by Geilen [13]

for determining minimum storage requirements based on state-space analysis of buffer

memory requirements. Stuijk’s approach operates by first finding a minimal storage

distribution, and then recursively increasing the storage space for each edge that has

a storage dependency. This results in a family of buffer distribution-throughput pairs

as a representation of Pareto solutions for the graph.

These approaches are generally based on the self-timed execution model, which

means that each actor is fired as soon as all of its input edges have sufficient data. When

actors execute and communicate on dedicated resources (so that resource contention is

not an issue), this type of execution generally enhances throughput by facilitating the

exploitation of parallel processing capabilities on the target hardware. Since each actor

can be executed only after its input edges have certain numbers of tokens in self-timed

execution, each edge has an associated bound on the required buffer memory (allocated

buffer space) for avoiding deadlock [14]. In FPGA design, patterns of receiving and

producing data in a functional intellectual property (IP) block are often known from

associated data sheets. Even before input edges of a functional block have enough

tokens to satisfy a full execution of the block, the block can typically be fired if we can
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guarantee that enough tokens will be delivered to its input edges during the overall

execution of the block. A schedule that takes into account such possibility for operating

on partial input sets can be expected to require less buffer space in general compared

to conventional self-timed execution.

Horstmannshoff et al. [15], [4] developed an SDF scheduling method for complex

register-transfer level building blocks. Based on timing patterns associated with token

production and consumption in each actor, this method constructs a retiming graph

to generate a stall signal for each SDF actor such that buffer cost is minimized. This

minimum-area retiming approach is applied to determine optimum actor activation

times in polynomial time complexity. This work provides a motivation for us to develop

a framework for generating a buffer-efficient hardware schedules for the more general

family of PCSDF graphs.

In addition to minimizing the amount of buffer space required for data communi-

cation channels, minimizing the memory required for storing the generated schedules

is another important implementation issue in scheduling PCSDF graphs. In this paper,

we address these challenges, and develop new scheduling techniques for throughput-

constrained minimization of data channel buffer requirements when mapping PCSDF

representations of DSP applications onto FPGAs. In our schedule construction frame-

work, a previously developed data structure called the generalized schedule tree (GST)

is integrated in a novel way to reduce PCSDF schedule size, which in turn reduces the

storage cost associated with schedule control. In this work, we impose the restriction

that the given PCSDF graph is in the form of a tree-structured, directed acyclic graph.

A preliminary version of part of this work was presented in [16]. While the previous

work [16] focused on developing the FPGA-based framework for modeling parametrized

SDF graph, we presented a scheduling technique for throughput-constrained minimiza-

tion of dataflow buffering requirements in PCSDF representations of DSP applications

in this paper. This paper goes beyond the developments of [16] in that it generally

requires less buffer space in data communication channels.

3 Background

3.1 Cyclo-static dataflow(CSDF)

As described earlier, cyclo-static dataflow (CSDF) is an extension of SDF that allows

for static, periodic variations in token production and consumption rates [5]. Each

element of such a periodic variation corresponds to a distinct phase of execution for

the associated actor. Thus firings of CSDF actors can be viewed as progressing through

periodic sequences of phases.

Fig. 1(a) illustrates an example of a CSDF representation. Actor vsrc has an exe-

cution sequence of fsrc(1), fsrc(2), · · · ,fsrc(Psrc), where each fsrc(i) represents the

ith phase, and Psrc represents the length (number of phases) in the execution period

of vsrc. Given a CSDF actor x, we refer to P (x) as the phase count of x.

The periodic pattern of production rates associated with vsrc can be represented

as [psrc(1), psrc(2), · · ·, psrc(Psrc)]. In the ith firing of vsrc, the actor produces psrc(i)

tokens onto edge et. From the periodic pattern in which vsrc executes, we have that the

actor produces psrc((n− 1) mod (Psrc + 1)) tokens in each n-th phase. The execution

sequence and consumption rate sequence associated with Snk can be represented in a

manner analogous to the representations given above for vsrc.
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Fig. 1 CSDF graph and PCSDF graph examples.

3.2 Parameterized Cyclo-static Dataflow (PCSDF)

Parameterized Cyclo-static Dataflow (PCSDF) extends the expressive power of CSDF

to manage DSP application dynamics in terms of run-time configuration of dataflow

actor, edge, and subsystem parameters [6], [7]. PCSDF representations of applications

are developed in terms of PCSDF specifications; when a PCSDF specification is en-

capsulated as a hierarchical actor in a higher level PCSDF graph, it is referred to as

a PCSDF subsystem. A PCSDF specification is composed of three distinct PCSDF

graphs — the init graph, subinit graph, and body graph [6].

The body graph models the core functional behavior of the enclosing specification,

while the init and subinit graphs enable run-time configuration control for the behavior

of the body graph. These configuration controllers provide two different levels of gran-

ularity in the run-time configuration processing — the init graph can form parameter

configurations that are in general less restricted but also less frequent compared to the

kinds of configurations that are allowed by the subinit graph.

Fig. 1(b) shows a PCSDF graph.

Conceptually, production and consumption rates in a CSDF actor have two prop-

erties — the period of the cycle of phases, and the data rate (i.e., the rates of token

production and consumption) associated with each phase. In PCSDF, the value of any

parameterized period and data rate values must (for valid operation) remain constant

during any iteration of the underlying CSDF graph execution. However, across iter-

ations, the length of the period and the associated data rates can be changed based

on changes to parameter values that are propagated by the init or subinit graph. This
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feature — in a manner analogous to other forms of paramterized dataflow [6] — allows

PCSDF representations to express significant levels of application dynamics.

The modeling discipline imposed by the subinit and init graphs in PCSDF is de-

signed to provide significant flexibility in how and when parameters are configured,

while ensuring that configurations that affect the structure of subsystem schedules

are allowed to occur only between iterations (in terms of CSDF repetitions vectors)

of the associated subsystems. This allows each subsystem to be viewed as a dynam-

ically evolving sequence of CSDF graphs whose SDF properties can change only at

well-defined points in time (between CSDF graph iterations).

4 Scheduling Model

Given a DSP system represented as a CSDF graph that is to be mapped onto an

FPGA, an important design problem is that of minimizing the buffer size (the memory

requirements for the graph edges) subject to ensuring maximum throughput execution.

To help address this problem, we introduce in this section a graphical schedule rep-

resentation that captures relevant properties of the data transfer on edges in a given

CSDF graph. This schedule representation helps to formalize our proposed synthe-

sis approach, and ensure that the approach generates valid schedules that result in

minimal buffer distributions over all maximal throughput solutions.

In our synthesis approach, we assume that every functional actor has a port to

receive an internal clock control signal from a controller that enables or disables the

internal clock signal. An actor is able to execute only if its internal clock signal is

enabled. The controller provides a Boolean signal to each actor, and manages the

firing pattern of actors based on a pre-defined schedule. Such a control port is common

in commercial IP blocks for FPGAs, and our controller-based synthesis approach can

therefore be incorporated naturally in practical DSP design flows that are based on

existing FPGA IP blocks.

4.1 Modeling IP Blocks

To derive an efficient schedule that minimizes buffering costs, it is useful to have infor-

mation about the timing patterns associated with token production and consumption

in IP blocks. In our analysis, we model each IP block as a CSDF actor. In each phase

of execution, the actor consumes and produces a certain number of tokens from each

input and output edge, respectively. Such production and consumption is assumed to

occur as an “atomic” action. That is, tokens are loaded (consumed) and unloaded (pro-

duced) from and to the associated buffers consecutively without any idle time between

successive read and write operations. We refer to such atomic loading and unloading

of data for a CSDF actor as the contiguous interface model of CSDF actor execution.

The production and consumption patterns of a CSDF actor are represented by

sequences of non-negative integers, which are called data rate signatures. Each input

and output port of a CSDF actor has a unique data rate signature, as shown in Fig. 2.

Here, actors A and C have a single phase (per execution period) each and produce and

consume 2 token and 1 token per firing, respectively. In contrast, B has two phases. In

the first phase, B consumes 2 tokens and produces 1 token, while in the second phase,

B consumes 1 token and produces 1 token.
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Given a CSDF actor x, we model the patterns of loading and unloading tokens for

x in terms of the Execution Time Sequence(ETS ), the Loading Index Sequence(LIS ),

and the Unloading Index Sequence(UIS ). Each of these sequences has P (x) elements

(recall that P (x) represents the phase count of x).

We define the ETS of a CSDF actor vi, denoted ET (vi), as the time duration

sequence spent for each phase starting from the time instant that begins a phase

execution to the time that finishes unloading the last token of the corresponding phase.

The Execution Time of the k-th phase for an actor vi is a positive integer that is

represented by ET (vi, k). We define the Loading Index LI (vi, k) and Unloading Index

UI (vi, k) as the time index (relative to the beginning of the corresponding execution

phase) when the first token is loaded and unloaded, respectively, during the kth phase

of an execution period of vi.

Note that if vi does not consume (produce) any token in kth phase, then UI (vi, k)

(LI (vi, k)) is defined to be infinity.

The sequences LIS and UIS are composed of the loading indices and the unload-

ing indices, respectively. That is, for each j, the jth elements of LIS and UIS are,

respectively, equal to LI (vi, j), and UI (vi, j).

An example is shown in Fig. 2. Here, ET (B) = [6, 5] so the time durations required

by the first and second phases of actor B’s execution are 6 and 5 time units, respectively.

Also, UI (B) = [5, 4] so that the time indices to first unload a token in phase 0 and 1

are 5 and 4, respectively.

The formulation of LISs and UISs can be extended naturally to actors with mul-

tiple inputs and outputs (by adding an additional argument corresponding to the in-

put/output port index). In this paper, for conciseness and clarity we focus on the single

input, single output notation for conciseness and clarity — however our work is equally

applicable to graphs that contain actors with multiple input and output ports.

Note that since in each phase tokens are loaded and unloaded consecutively without

any idle time in between, the time index of the first loaded (unloaded) token within

each phase can be used for representing the pattern of loading (unloading) tokens in

through the phase That is, under our assumed scheduling model, LIS and UIS are

sufficient to fully describe the loading and unloading patterns for actor firings. Profiles

of loading and unloading patterns as well as actor execution times for each phase can

typically be derived from data sheets of FPGA IP blocks. With this information, we

can model a CSDF actor with its data rate signature, ETS , LIS , and UIS .

4.2 Contiguous Interface Scheduling Graph

In this section, we introduce a model called the contiguous interface scheduling graph

(CISG) for representing periodic data transfers across a given edge (e ∈ E) in an en-

closing CSDF graph G = (V, E). Based on the CSDF modeling formulations developed

in the previous sections, we specify attributes of vertices and edges in the CISG, and

formulate buffer minimization as a linear programming problem.

We define a CISG GSCH
k = (V SCH , ESCH ) to represent token transfers on an edge

ek in G. In GSCH
k , a scheduling node (vSCH

j (vi ) ∈ V SCH ) represents the j-th firing

of actor (vi ∈ V ) in a valid schedule, where vi is connected to ek. A scheduling edge

(eSCH
t ∈ ESCH ) represents either idle time between consecutive firings (phases) of vi

or token transfer on ek.



8

Clock

Unloading pattern 

of Node ‘A’

Loading pattern of 

Node ‘B’

t=0

0
th

phase of ‘B’ 1
st

phase of ‘B’

Unloading pattern of 

Node ‘B’

0   1   2  

0   1   2   3   4 0   1   2   3   4   5

2     [2,1]

A B

[1,1]     1

C

* Time information of node *

ET(A) = [3],     LI(A) = N/A,   UI(A) = [1],     rep(A) = 3

ET(B) = [6, 5], LI(B) = [0, 0],  UI(B) = [5, 4], rep(B) = 2

ET(C) = [1],     LI(C) = [1],      UI(C) = N/A,   rep(C) = 2

Fig. 2 An example of a CSDF graph with timing information and patterns of token loading
and unloading.

The initial node vSCH
initial is added as an additional scheduling node. This node, which

represents the beginning of the time clock, is connected to all vSCH
0 (vi ) via scheduling

edges. The logical delay (number of initial tokens) on each of these scheduling edges e

represents the time that elapses until the first firing of the associated sink actor (i.e.,

the actor at the sink of e). Thus, the initial node together with its outgoing edges

provides offsets among the initial starting times of actors that are connected to those

outgoing edges.

A properly constructed CSDF graph has an associated repetitions vector qG =

[q(v0), q(v1), · · · , q(v|V |−1)], where each q(vi) represents the number of firings of the

lumped SDF actor vi in a valid schedule for G [5], and a lumped SDF actor is derived

from a corresponding CSDF actor vi by merging all of the phases of vi [17]. Thus,

the total number of firings of a CSDF actor vi in a valid schedule is Ni(= q(vi) ∗
phase#(vi )), where phase#(vi ) is the phase count of vi. Also, there are Ni instances

of the scheduling node vSCH
j (vi ) in GSCH

k , where 0 ≤ j ≺ Ni.
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A scheduling edge can either be an idle time delay edge or a token transfer edge.

An idle time delay edge connects a scheduling node vSCH
j (vi ) to vSCH

(j+1 )mod Ni
(vi ) with

non-negative time delay d(eSCH
t ), and all nodes vSCH

j (vi) representing firings of vi are

connected in a cycle by these edges. Non-negative time delays on edges represent idle

times between consecutive firings of actor vi. The unit of this time delay is one tick of

the associated FPGA clock. Hence, idle time delays on this type of edge determine the

schedule of the associated actor vi.

While idle time delay edges connecting vSCH
j (vi ) to vSCH

(j+1 )mod Ni
(vi ) determine

schedule evolution for the periodic steady state of graph execution, another schedule,

which we call the transient schedule, is first needed to determine actor firing patterns

before execution enters the steady state.

In GSCH , edges connecting node vSCH
initial to all vSCH

0 (vi ) belong to the set of idle

time delay edges. Because of differences among the time delays on these edges, a given

actor vi can have its initial firing earlier or later compared to the first firings of other

actors in the application.

For a token transfer edge, eSCH
t connects vSCH

i (vsrc) to vSCH
j (vsnk ) when a token

produced from the i-th firing of a source actor vsrc is consumed in the j-th firing of a

sink actor vsnk , where vsrc is connected to vsnk by and edge ek in G. The time delay

d(eSCH
t ) on this edge represents the time elapsed from when a token is produced by

vSCH
i (vsrc) to when the same token is consumed by vSCH

j (vsnk ). For example, if a token

is consumed one clock tick after being produced, the value of the time delay on the

associated token transfer edge is 1. For correct operation, we must have d(eSCH
t ) ≥ 0

for every token transfer edge.

In addition to assigning the edge time delay, we assign a weight w(eSCH
t ) to each

scheduling edge eSCH
t . The weight w(eSCH

t ) represents the number of tokens trans-

ferred across eSCH
t . For example, when eSCH

t connects vSCH
i (vsrc) to vSCH

j (vsnk ) in

GSCH
k , w(eSCH

t ) represents the number of tokens consumed by the jth firing of the

sink actor vsnk out of the total number of tokens produced in the ith firing of the

source actor vsrc . A larger edge weight generally implies potential for larger buffer

space requirements. Thus, the edge weight is involved in the objective function of our

scheduling approach, and this weight is used to prioritize the scheduling edges so as to

minimize overall buffer space requirements.

Since a token transfer edge represents the communication of data, the weight of a

token transfer edge is always positive. Also, the weight of an idle time delay edge is

always zero because there is no token transfer between consecutive firings of vSCH
j (vi )

and vSCH
(j+1 )mod Ni

(vi ). As token transfer edges and their associated weights in GSCH

are built from the fixed production and consumption rates of actors in a CSDF graph

G, the weight of any given token transfer edge is constant. This is different from the

time delay attribute of a scheduling edge, which can be changed by the schedule.

The initial schedule for actors can be generated by assigning time delays on idle

time delay edges in GSCH . Also, initial values of time delays on the token transfer edges

are determined by this initial schedule. Since all actors are executed concurrently in

FPGA implementation, a low-latency actor is generally delayed to synchronize with

a high-latency actor with which it communicates. Thus, in our targeted scheduling

model, the system throughput is determined by the highest-latency actor, and the

maximum system throughput is achieved when this actor is executed without any idle

time between consecutive firings.

In our scheduling analysis, we define the system latency as
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.

Lsys = max
vi∈V

8<
:q(vi) ∗

phase#(vi)−1X
j=0

ET (vi, j)

9=
; (1)

In general, a low-latency node must be delayed to synchronize in terms of this

system latency, and the total idle time delay for each actor vi is therefore computed as

follows

Didle
i = Lsys − q(vi) ∗

phase#(vi)−1X
j=0

ET (vi, j) (2)

In a valid schedule, vi in G should have Didle
i of idle time delay to achieve the

maximum system throughput, and the sum of the time delays on idle time delay edges
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connecting vSCH
j (vi ) in a cycle should be equal to Didle

i . For generating GSCH , we

initialize the schedule by assigning zero time delay to all idle time delay edges except

for the one that connects vSCH
Ni−1 (vi ) to vSCH

0 (vi ). We assign Didle
i to this edge time

delay to make all actors synchronized with Lsys . Delays on idle time delay edges are

then changed by our proposed scheduling algorithm to generate a valid and optimal

schedule. This scheduling algorithm is presented in Section 5.

Fig. 3 shows an example to demonstrate the process of CISG generation. This

example shows the CISG for token transfer on e0 of Fig. 2 with the initial schedule.

In Fig. 3, actors A and B are connected by e0. In a valid schedule, A and B are fired

three and four times, respectively, because q(A) = 3, phase#(A) = 1, q(B) = 2, and

phase#(B) = 2. Schedule nodes in Fig. 3(b) represent these firings in the schedule.

vSCH
initial is added for the initial offset between the first firings of A and B.

Solid and dotted edges in Fig. 3(b) represent the idle time delay edge and the token

transfer edge, respectively. As shown in Fig. 2, the actor B has the highest latency in

the system, and the time delays of idle time delay edges in the cycle for firings of B are

all set to zero to achieve the maximum system throughput. Time delays on all edges

that are incident to the initial node vSCH
initialare initialized to zero, and time delays on

edges in the cycle for A are also zero except for e4. Since the sum of time delays in

this cycle should equal the total periodic idle time delay Didle
A in Eq 2, we have that

d(eSCH
4 ) = 13.

Time delays on token transfer edges are determined based on this initial schedule.

As shown in Fig. 3(a), the first two tokens are consumed by B one tick before being

produced by A. Hence, d(eSCH
9 ) = −1, and w(eSCH

9 ) = 2. The third and fourth

tokens are produced from vSCH
1 (A), but each of these tokens is consumed separately

by vSCH
1 (B) and vSCH

2 (B). There are two separate token transfer edges from vSCH
1 (A),

and the weight of each of these edges is 1. As described earlier, all time delays on edges

must be non-negative to satisfy schedule validity. The initial schedule shown in Fig. 3

violates this validity condition due to the negative time delay on eSCH
9 . The initial

schedule is not a valid schedule, and thus, the system needs to be re-scheduled. In the

next section, we will discuss how to systematically generate a schedule that is not only

valid but also minimizes the buffer size while achieving maximum system throughput.

5 Scheduling Algorithm

Our optimization goal for generating a CISG GSCH from a given CSDF graph G is

to minimize the total required buffer space for graph edges subject to the maximum

system throughput. The maximum system throughput can be realized when the the

highest-latency actor operates without any idle time, and synchronizes with all other

actors at this highest-latency, which becomes the system latency in Eq 1. Thus, when

the sum of idle time delays in the schedule of each actor vi is equal to Didle
i in Eq 2,

we are guaranteed that the maximum system throughput is achieved.

Two constraints , called the CISG time delay constraints, guide our proposed CISG-

based buffer minimization approach. The first constraint is that the time delay sum

of scheduling edges connecting vSCH
j (vi ), for 0 ≤ j ≺ Ni, must be equal to Didle

i in

Eq 2. This comes from the synchronization requirements discussed in Section 4.2. The

second constraint is that all time delays on scheduling edges must be non-negative.

This ensures that dataflow semantics are respected (tokens are consumed only after
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they are produced), and that multiple invocations of the same actor do not execute in

parallel, which is a requirement of our targeted implementation model.

Two attributes, the time delay (d(eSCH
t )) and the weight (w(eSCH

t )), are assigned

to each eSCH
t in a CISG GSCH . Both attributes are used in constructing the objective

function of the targeted buffer minimization problem. In general, d(eSCH
t ) is equal to

the required buffer space until d(eSCH
t ) reaches w(eSCH

t ), which represents the number

of tokens transferred via eSCH
t . If d(eSCH

t ) > w(eSCH
t ), then the buffer requirement

is saturated at w(eSCH
t ).

In this sense, in scheduling CISG, we first try to minimize values of d(eSCH
t )

that correspond to higher values of w(eSCH
t ). Note that w(eSCH

t ) is constant in a

given CISG. For example, assuming that d(eSCH
1 ) = 3, w(eSCH

1 ) = 2 for eSCH
1 and

d(eSCH
2 ) = 3, w(eSCH

2 ) = 5 for eSCH
2 , the overall buffer requirement is 5. If we reduce

d(eSCH
1 ) by 1, the buffer requirement is not changed because it is still saturated at

w(eSCH
1 ). However, if we reduce d(eSCH

2 ), the required buffer space is decreased.

Based on these considerations, the objective function of our minimization problem

is defined as

f(ESCH ) =
X

eSCH
i ∈ESCH

w(eSCH
i ) ∗ d(eSCH

i ). (3)

To minimize the buffer memory required for token transfer on ek, we minimize

f(ESCH ) in the CISG GSCH
k generated for ek. Since the weights of scheduling edges

are constant, this objective function is a linear function of scheduling edge time delay

variables. The CISG time delay constraints are taken into account in the optimization

formulation. The resulting optimization problem can be formalized as a linear program-

ming problem, and can be solved by the simplex algorithm in polynomial time [18].

We refer to the linear programming formulation associated with a CISG GSCH
k as the

buffer optimization formulation (BOF) for GSCH
k .

5.1 Scheduling Algorithm for CSDF

In Section 4.2, we introduced our proposed approach to minimize buffering costs for a

given CISG. When applying this approach, we decompose a CSDF graph G into a set

of smaller graphs (subset graphs) g1, g2, . . . , gN , and generate CISGs associated with

each of these smaller graphs. The buffer minimization problem in each of these CISG

only provides a localized optimum solution that is associated with its corresponding

gi. To achieve a globally optimized solution for G, it is critical to process the gis based

on a strategically-determined order.

Let GORD
i represent the ith CISG that is processed based on a sequentially or-

dered processing of all subset graphs. The CISG GORD
0 represents token transfer in a

subset graph G0 = (V0, E0), and the resulting schedule guarantees a minimized buffer

distribution for token transfers in E0. The generated schedule for V0 in general influ-

ences the result of buffer minimization for the CISG GORD
1 , which is built for another

subset graph G1. Any shared nodes (i.e., nodes in the set V ′(= V0 ∩ V1)) have their

schedules determined by the solution derived for GORD
0 , and time delays on cyclic

scheduling edges associated with V ′ in GORD
1 are similarly determined. This kind of

dependency link between schedules is exhibited in general for any pair GORD
i and

GORD
(i+1 ) of successive CISGs.
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Fig. 4 Example showing the impact of edge selection order in processing CISGs.

Thus, while solving the BOF for a CISG GSCH
i provides for local optimization

of the associated subset graph, choosing an effective ordering GORD
i is critical to

achieving global optimization of the overall CSDF graph G.

Fig. 4 illustrates the importance and impact of this ordering. Fig. 4(b) is the sched-

ule constructed from first selecting e0 and then e1 in generating the CISG, and Fig. 4(c)

is generated from selecting these edges in reverse order. When we choose e1 first in

generating the CISG, the overall buffer space for edges is reduced more effectively.

In the CSDF graph of Fig. 4(a), the actor C is the highest-latency actor. To achieve

maximal system throughput, it is sufficient that such maximal-latency actors operate

without idle time. In other words, if our goal is to to maximize throughput, the schedule

for C is determined beforehand. If e0 is first selected for scheduling A and B, the sched-

ule of C is not considered in the CISG for e0, and this results in a suboptimal buffer

distribution. Even if the target (desired) throughput is not the maximal achievable

throughput, the highest-latency actor should have the smallest total idle time delay

(from Eq. 2) among all actors. In other words, the schedule of the highest-latency actor

is more restricted than others due to its reduced scheduling range. Thus, to achieve a

globally minimized buffer distribution, we first examine the highest latency actor.

If multiple actors are “tied” for the highest latency, we arbitrarily choose one these

actors as the highest-latency actor in line 2 of algorithm 1.

Algorithm 1 shows our heuristic scheduling algorithm to for buffer-minimized,

FPGA implementation of a CSDF graph G. The topologically sorted array L of nodes

in line 3 is delimited by the maximum latency node and divided into two separate
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subarrays l0 and l1 in lines 5-6. In line 7, l0 is sorted in reverse order so that maxi-

mum latency nodes are located in the beginning of the list. The front node v0 is first

selected in each array during for-loop in line 10. Input edges to v0 becomes the edge

set E0 and the actor set V0 is composed of source nodes to E0 and v0 in lines 11-12.

The scheduling graph GSCH is built from this subgraph G0 = (V0, E0) in line 13. The

simplex algorithm is applied to the constraints and the objective function from GSCH

and the result schedule is assigned to V0 in lines 14-15. If a node in V0 is included in

generating another GSCH during for-loop, this schedule of the node is used in assigning

the value to time delays on idle time delay edges. Since we traverse nodes in G in the

order of array l0 and l1, the complexity of the overall algorithm is polynomial. The

proposed algorithm is implemented by the dataflow interchange format (DIF) package,

which provides a standard language and associated toolset that is founded in dataflow

semantics and tailored for DSP system design [19].

Algorithm 1 Scheduling CSDF graph object to get the minimized buffer distribution

1: procedure scheduleCSDFGraph(G)
2: vmaxLatency ← getMaxLatencyNode(V )
3: L← topologicalSort(G)
4: i← getIndex(L, vmaxLatency )
5: l0 ← getSubArray(L, 0, i)
6: l1 ← getSubArray(L, i + 1, |V | − 1)
7: l0 ← reverseSort(l0)
8: for i = 0 to 1 do
9: for j = 0 to |li| − 1 do

10: v0 ← getNode(li, j)
11: E0 ← getInputEdges(G, v0)
12: V0 ← v0 ∪ sourceNodes(E0)
13: GSCH ← generateScheduleGraph(V0, E0)
14: S ← simplexAlgorithm(GSCH )
15: assignSchedule(S,V0)
16: end for
17: end for
18: end procedure

6 PCSDF Scheduling Algorithm

In this section, we build on our scheduling technique for CSDF graphs, and develop a

more powerful technique that is geared toward PCSDF graphs. As described in Sec-

tion 3.2, PCSDF is significantly more expressive compared to CSDF, and is well-suited

to describing application dynamics for modern wireless communication applications.

6.1 Schedule Representation

To map a PCSDF schedule into an implementation targeted on an FPGA, we determine

for each actor the idle time between consecutive phases of the actor. These idle time

values in turn determine the starting times of the phases, and are configured so as to

minimize the numbers of tokens stored in the actor input and output buffers. In our
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analysis, we refer to each block of idle time as a Scheduling Element (SE); we refer to

a series of SEs as a Scheduling Sequence (SS).

In our approach to FPGA implementation, the generated SS for each actor is stored

in a FIFO; the required memory space for this FIFO is W ·L, where W is the SE word

length, and L is the SS length. Thus, if L is large, the scheduling logic consumes

a correspondingly large amount of memory. However, if local periodicities (repetitive

subsequences) can be detected within the SS, then the SS can be represented by appro-

priately constructed iterative constructs (loops). In each such loop, a single instance of

a periodic subsequence is stored along with the associated iteration count (number of

successive repetitions). Such use of looping constructs in the schedule representation

can save significant amounts of memory space.

We apply the previously developed generalized scheduling tree (GST) representa-

tion [20] for modeling dataflow graph schedules that involve looping constructs. We

develop a specialized form of GSTs, called the CISG GST, that is suitable for our

proposed PCSDF scheduling model. CISG GSTs are ordered trees with leaf nodes rep-

resenting SEs. An internal node of a CISG GST represents a parameterized iteration

count for a parameterized schedule loop that is rooted at the internal node. Such a

parameterized iteration count provides a representation for a loop iteration count that

can be adapted at run-time depending on values of dynamic parameters in the applica-

tion or implementation model. In our experiments, we apply two types of expressions

for parameterized iteration counts: a case expression, which provides an enumerated

set of alternative values, or an algebraic expression in terms of relevant parameters.

When processed at run-time, each parameterized iteration count must be evaluated

into a non-negative integer Z≥0. Sub-trees rooted at internal nodes that evaluate to

zero-valued iteration counts are effectively “hidden” while traversing the CISG GST. By

allowing zero-valued iteration counts, we can therefore describe conditional behaviors

within the same framework as dynamic-iteration-count looping structures.

Fig. 5 shows an example to demonstrate our CISG GST approach. In this example,

the given schedule is controlled by the parameter set p1, p2. Fig. 5(b) shows possible

scheduling sequences based on the set of different parameter combinations. From the

scheduling sequences, we can observe that the scheduling elements s1 and s2 are only

in SS(p1 = 1), while s3 and s4 are in SS(p1 = 2). Here, SS(p = v) represents the

scheduling sequence that results when parameter p has value v.

Since the parameterized iteration count of I1(p1) and I2(p1) in the CISG GST is

formulated in the form of a ”case expression”, one of the sub-trees rooted at Ij(p1) is

hidden depending on the value of parameter p1. In contrast, I3(p2) is a parameterized

iteration count expressed in algebraic form; the associated expression determines the

iteration count for the schedule element s1 in terms of the parameter p2. All other

internal nodes in the CISG GST exhibit constant iteration counts for the associated

looping constructs.

6.2 Scheduling Process

As we discussed in Section 3.2, in PCSDF semantics the production and consumption

rates of each actor in a PCSDF graph are determined before an invocation of the

graph, and this graph can be considered as a CSDF graph during such an invocation.

With the CSDF scheduling technique developed in Section 5.1, we schedule all possible

CSDF graphs defined by the set of distinct parameter combinations. The resulting set
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Fig. 5 CISG GST example.

of CSDF schedules are then stored and switched among dynamically to implement

the desired PCSDF schedule. Such an approach becomes impractical if the number of

different CSDF schedules that must be stored is very large. However, in some practical

applications, such as the LTE system that we study in Section 8, a relatively moderate

number of CSDF schedules need to be managed dynamically; our proposed technique

is geared towards exploiting the dataflow structure of such applications.

When applying this approach, the alternative CSDF schedules that are derived

will in general have different buffer distributions. We determine the buffer sizes in the

derived implementation based on the maximum buffer costs across the different CSDF

schedules (parameter combinations).

In addition to buffer memory requirements, schedule size is also an important im-

plementation metric for PCSDF graphs. Under our approach to implementing PCSDF

actors, the memory space required for storing a schedule is the sum of the underlying

CSDF schedule sizes over all valid parameter combinations.

A straightforward approach to reducing schedule size is the sharing of common

schedule elements. In our CSDF scheduling approach, such sharing can be achieved by

assigning common variables associated with scheduling edges in GSCH . After schedul-

ing GSCH , shared variables then reference common schedule elements. However, this

sharing technique not only reduces the number of independent variables in the schedul-

ing of GSCH , but it also can reduce opportunities for buffer size optimization. For
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example, if a set of delay variables is defined by [2 ∗ v0 v0 v1], any schedule that does

not conform to this matrix can be pruned out from our search space. Therefore, special

care is needed in applying the sharing technique.

In our approach for reducing schedule size, we apply a data structure called the

execution time tree (ETT), which is derived from the CISG GST. In the ETT, all in-

ternal nodes represent constant iteration counts, and all leaf nodes represent execution

times associated with actor phases. Fig. 6(a) illustrates an ETT associated with an

actor vi. The tree structure of the CISG GST is the same as the corresponding ETT,

and all internal nodes except for the root node and leaf nodes in the CISG GST have

the same iteration counts as the corresponding nodes in the ETT. The root node in the

CISG GST represents rep(vi ), the repetition count of vi. All leaf nodes in the CISG

GST represent independent delay variables.

We used the CISG GST to construct GST schedule structures where schedule

elements share references to common schedule elements. For a given actor vi, the

variable sequence generated from traversing the CISG GST for vi provides time delay

variables. These time delay variables are associated with successive scheduling edges

in GSCH for the cycle that represents periodic firings of the actor vi. Since local

periodicity in an execution time sequence can be concisely represented in the CISG

GST by appropriate iteration counts, variables on scheduling edges can share common

storage through iteration counts in the CISG GST. Fig. 6(b) illustrates the construction

of the CISG GST from the ETT, and Fig. 6(c) illustrates sharing of variables in GSCH

by use of the CISG GST in Fig. 6(b).
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7 FPGA Implementation

In Section 6, we developed methods to derive efficient schedules for FPGA implemen-

tation of PCSDF graphs. In this section, we describe how to synthesize these schedules

onto the targeted FPGA devices. In our synthesis approach, the firings of each actor v

are controlled by a schedule controller that is dedicated to v. These schedule controllers

can be viewed as hardware implementations of CISG GSTs.

7.1 Schedule Controller Implementation

In our implementation approach, a schedule controller consists mainly of an internal

counter and a generated schedule. At the end of execution of an actor phase, the

actor sends a “done” signal to the associated schedule controller. This signal triggers

initialization of a “roll-over value” associated with the internal counter in the schedule

controller. This value is based on an corresponding schedule element si from the derived

schedule. The internal counter counts from 1 to the roll-over value, and sends a “start”

signal to the actor when the count is complete (the roll-over value is reached). Hence,

the actor is maintained in an idle state for si cycles from the end of the most recently

completed phase until the start of the next phase.

During the periodic execution of an actor vi, the actor is fired rep(vi ) ∗phase#(vi )

times. Hence, the length of the associated CSDF schedule is rep(vi )∗phase#(vi ) firings,

and the associated schedule controller has a schedule FIFO whose size is equal to this

schedule length.

7.2 Binary Tree Implementation

In our implementation approach, a schedule controller coordinates an actor schedule

in terms of its CISG GST representation. To run the schedule rooted at a node vi in

the CISG GST, all sub-schedules rooted at children nodes of vi are executed itera-

tively based on the iteration counts of the nodes. Such schedule execution is performed

recursively to execute the overall schedule represented by the CISG GST.

For example, the schedule Sj rooted at vj in Fig. 7(a) is executed by running s0

twice; the schedule Sk rooted at vk runs s1 three times; and the schedule Si rooted at

vi executes Sj and Sk once each.

A binary tree is well-suited to digital hardware implementation due to its binary na-

ture. In the remainder of this section, we develop an efficient implementation technique

for binary tree structures and associated controllers for CISG GST traversal.

Fig. 7(b) illustrates our approach to hardware implementation for executing a

schedule by means of CISG GST traversal. For the i-th level of tree execution, there

is a single counter and a memory M having 2i spaces. For execution at the ith level,

a counter is implemented to count the iterative execution of the schedule rooted by

the corresponding tree node at that level. Traversing the CISG GST requires switching

among nodes at the same level; such a switch can be managed by the address ADDRi

of the ith cell in M . The counter has two input ports and one output port. The first

input port is used to initialize the roll-over value of the counter by the data pointed to

by ADDRi. The second input port receives a Boolean input that specifies whether to
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increment the internal variable of the counter. When the internal variable reaches to

the roll-over value, the counter produces a true signal on the output port BF i.

The controller for traversing the CISG GST is composed of an address generator

for ADDRi, and an enable signal generator for EN i. The address generator should

reference the correct iteration count value at each level of the CISG GST. The value

ADDRi is computed by the following two rules: 1) The last bit of ADDRi is flipped

when a true value is asserted on BFi; 2) ADDRk = 2k−i ∗ ADDRi for k > i when

ADDRi is changed. When the counter reaches its roll-over value, the schedule rooted

by node vi at ADDRi has executed the same number of times as the the iteration count

of node vi. After this, the next schedule rooted by a sibling node vs of vi is executed.

The flip of the last bit in ADDRi changes the address to reference vs, and initialize

the roll-over value by the iteration count associated with vs. When a change of the i-th

level node occurs, the schedule rooted by vi is correspondingly changed.

The enable generator determines when to increment the internal value of the

counter. This generator asserts a true value to EN i when the last bit of ADDRi+1

is flipped from true to false. This is because the schedule rooted by the node vi

is executed once both schedules rooted by the left and right children have executed

the number of times specified by their respective iteration counts. When the schedule

rooted by the right child is complete, execution moves to the schedule of the sibling

node, and this move is represented by a flipping of the last bit in ADDRi+1.

We apply the above approach to implementing balanced binary trees. If the given

binary tree is unbalanced, some slots of the iteration count memory in Fig. 7(b) are

empty. In order to handle unbalanced trees in our scheme, we balance such a tree by

adding dummy nodes with zero-valued iteration counts, and initializing empty spaces

with zero values. Because of their zero-valued iteration counts, such dummy nodes are

effectively ignored when the tree is traversed.

8 Case Study: Long-Term Evolution(LTE) Base Station Transmitter

To demonstrate the properties and capabilities of PCSDF representations, we applied

our synthesis techniques to the physical layer for 3GPP-Long Term Evolution (LTE),

an important next generation cellular standard.
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Fig. 8 Example LTE subframe showing multiplexing of various channels on a 2D time-
frequency grid (not to scale).

The LTE downlink physical layer is based on the modulation and multiple access

scheme called Orthogonal Frequency Division Multiple Access (OFDMA) OFDMA [21].

OFDMA uses an inverse fast Fourier transform (IFFT) to divide a wideband channel

into multiple narrowband channels. This creates a two-dimensional resource grid in

frequency and time. In LTE, each element of this grid is called a resource element. This

2D grid allows multiplexing various physical channels, e.g., data and control channels,

which can be intended for multiple users.

An example of a 1ms LTE subframe comprising 14 OFDMA symbols in the normal

cyclic prefix mode is shown in Fig. 8. LTE can be configured for 4 different bandwidths,

namely 5, 10, 15, and 20 MHz, but still maintain a constant 15 kHz subcarrier spac-

ing. The LTE physical layer can also support multiple antenna transmission schemes,

including transmit diversity, beamforming, and spatial multiplexing, but our paper

primarily focuses on implementation for the single-antenna transmission mode.

Fig. 9 illustrates a PCSDF model for a single-antenna LTE Base Station (BS)

Modulator. Each of the solid blocks corresponds to a PCSDF actor whose production

and consumption rates (annotated on the solid edges) can change in terms of graph

parameters. These parameters are indicated by the dashed blocks that are communi-

cated by the dashed edges. The data, control, and reference symbol generation blocks

provide QPSK, 16-, or 64-QAM symbols that are multiplexed via the Resource El-

ement (RE) mapper. The RE mapper takes in different numbers of symbols s1, s2,

and s3 from the available input ports as a function of the number of control sym-

bols (Nctrl ∈ {1, 2, 3, 4}), subframe index (Sfidx ∈ {0, .., 9}), bandwidth configuration

(BW ∈ {1.4, 3, 5, 10, 15, 20}), cyclic prefix mode (CPmode ∈ {Normal , Extended}),
and symbol index ( SymbIdx ∈ {0, .., 13})(Fig. 10). These symbols are multiplexed

into Nu ∈ {72, 180, 300, 600, 900, 1200} used subcarriers, which is a direct map from
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Table 1 Schedule size of all actors without introducing GST

Param. rSrc cSrc dSrc ReMap ZeroPad iFFT Snk Param. rSrc cSrc dSrc ReMap ZeroPad iFFT Snk

p=0 200 1 13 420 28 14 14 p=16 200 1 11 416 24 12 12

p=1 200 2 12 420 28 14 14 p=17 200 2 10 416 24 12 12

p=2 200 3 11 420 28 14 14 p=18 200 3 9 416 24 12 12

p=3 200 4 10 420 28 14 14 p=19 200 4 8 416 24 12 12

p=4 400 1 13 820 28 14 14 p=20 400 1 11 816 24 12 12

p=5 400 2 12 820 28 14 14 p=21 400 2 10 816 24 12 12

p=6 400 3 11 820 28 14 14 p=22 400 3 9 816 24 12 12

p=7 400 4 10 820 28 14 14 p=23 400 4 8 816 24 12 12

p=8 600 1 13 1220 28 14 14 p=24 600 1 11 1216 24 12 12

p=9 600 2 12 1220 28 14 14 p=25 600 2 10 1216 24 12 12

p=10 600 3 11 1220 28 14 14 p=26 600 3 9 1216 24 12 12

p=11 600 4 10 1220 28 14 14 p=27 600 4 8 1216 24 12 12

p=12 800 1 13 1620 28 14 14 p=28 800 1 11 1616 24 12 12

p=13 800 2 12 1620 28 14 14 p=29 800 2 10 1616 24 12 12

p=14 800 3 11 1620 28 14 14 p=30 800 3 9 1616 24 12 12

p=15 800 4 10 1620 28 14 14 p=31 800 4 8 1616 24 12 12

the bandwidth configuration BW . The Zero Pad block then takes in Nu symbols and

appends zeros at the DC and edge subcarriers forming 2048 frequency domain complex

values. The following block then performs a 2048-pt IFFT, and appends a cyclic prefix

of length that is a function of the CPmode and SymbIdx parameters.
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9 Experimental Results

In our experiments, we modeled the targeted LTE BS transmitter application using

the PCSDF graph shown in Fig. 9, and we generated PCSDF schedules based on

our proposed scheduling techniques. We first scheduled the PCSDF graph without

incorporating GSTs into the derived scheduling structures. This approach is expected

to result in a minimal data buffer distribution at the expense of increased memory

requirements for schedule storage.

Next, we scheduled the PCSDF graph with GSTs, which enables sharing of schedule

elements. To demonstrate the associated trade-offs, we compared the two scheduling

approaches in terms of implementation costs for data buffer and schedule storage. We

then derived a hybrid schedule that applies GSTs selectively based on analysis of the

schedules constructed with and without GSTs.

There are three parameters affecting the functionality of the LTE transmitter sys-

tem — the cyclic prefix mode(CPmode ∈ {Normal ,Extended}), number of subcarriers

(Nu ∈ {300, 600, 900, 1200}), and number of control symbols (Nctrl ∈ {1, 2, 3, 4}).
These parameters are encoded into “composite parameter” p, where CPmode, Nu, and

Nctrl are assigned to the most significant bit; second and third bits; and fourth and

fifth bits, respectively. For instance, p = 5′b01001 represents that the LTE transmitter

is configured to have the normal cyclic prefix mode, 900 subcarriers, and 2 control

symbols.

In an iteration of its PCSDF execution, the top dataflow graph in Fig. 9 produces

the LTE sub-frame in Fig. 8. Table 1 shows schedule sizes of actors when the schedule

structure is not confined by GSTs during scheduling.

Table 2 shows FIFO buffer distributions associated with different scheduling tech-

niques. The word length for data on each edge is specified under ei in the first row of

the table. The FIFO length for each ei under each scheduling technique is represented

in the remaining rows. The second row in Table 2 shows the buffer distribution asso-

ciated with the schedule in Table 1. The FIFO length on each edge is determined to

accommodate the the worst case among the the schedules. According to this buffer dis-

tribution, edges e3, e5 and e6 can be implemented by wires instead of FIFOs. Thus, the

generated schedules guarantee that any token produced from a source actor connected

to these edges is not stored in a FIFO; instead such a token is consumed immediately

by a “downstream” actor. In contrast, the edge e4 requires a FIFO of size 600.

The third row in Table 2 shows the buffer distribution associated with the schedule

derived using GSTs. Compared to the second row in Table 2, e2 and e5 require more

buffer spaces in this approach. These edges exhibit the trade-off of decreased schedule

storage cost under GST-based implementation at the expense of increased buffer cost.

However, the overall buffer size increase due to GST usage is only 2% of the total

memory required for implementing the FIFOs associated with dataflow graph edges.

This result shows that in the targeted LTE application, our GST-based scheduling

technique shares schedule elements efficiently with only a small overhead in buffering

cost.

Table 3 shows the height of the binary tree for each actor schedule when we use

GSTs in the scheduling process. Nodes in these trees represent either parameterized

iteration counts or parameterized schedule elements. The numbers of nodes in the

schedule trees for CntrSrc and DataSrc in Table 3 are 3 and 4, respectively. The total

number of nodes in each tree is (2h − 1), where h is the tree height.
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Table 2 FIFO Buffer distribution

Method e0 e1 e2 e3 e4 e5 e6

2bit 16bit 4bit 16bit 16bit 16bit 32bit

W/O GST 1 166 166 0 600 0 0

W/ GST 1 166 171 0 600 21 0

Hybrid 1 166 166 0 600 21 0

Table 3 Height of schedule tree when incorporating to GST

RefSrc CntrSrc DataSrc ReMap ZeroPad iFFT Snk

3 3 4 5 2 2 2

When we compare these numbers to the schedule sizes in Table 1, the memory costs

for the schedule trees are greater than those of the corresponding schedule sequences

in Table 1. This is because the iteration counts in the schedule trees are less than or

equal to 2 for the schedules of CntrSrc and DataSrc, and the tree representations are

consequently more expensive than the sequence representations. In other words, it is

more efficient not to incorporate GSTs in the scheduling of CntrSrc and DataSrc.

The last row in Table 2 shows the buffer distribution when we use GSTs for all ac-

tors except for CntrSrc and DataSrc. Since the schedule for DataSrc is not constrained

to be GST-based, we can achieve a FIFO length on e3 that is equal to that in the

second row of the table. Since we still use GSTs in scheduling iFFT and Snk, the FIFO

length on e5 is same as that in the third row.

10 Conclusion

We have presented a scheduling algorithm that jointly minimizes data buffer distribu-

tions and schedule storage costs for synthesis of parameterized cyclo-static dataflow

graph models onto FPGAs. This minimization is performed subject to the constraint

that the maximum achievable throughput is maintained. We apply generalized schedule

trees (GSTs) for realize compact scheduling representations. Incorporating GSTs in a

schedule generally increases data buffering costs, but for the targeted LTE transmitter,

we show that the increased buffering cost is relatively small. After analyzing costs for

schedule implementation with and without GSTs, we realized a hybrid schedule imple-

mentation in which GSTs are applied only to edges that benefit from their application.

This hybrid implementation is shown to provide an especially useful trade-off between

schedule and buffer storage costs. Our work appears promising for integration into

high-level design processes for FPGA-based DSP system implementation, especially in

the domain of fourth generation wireless communication systems.
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