Skip to main content
Log in

Tunable Mismatch Shaping for Quadrature Bandpass Delta-Sigma Data Converters

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents an architecture for quadrature bandpass mismatch shaping that allows the center frequency of the mismatch suppression band to be tunable over the entire Nyquist range. The approach is based on the previously reported complex-valued tree-based mismatch shaper, and extends this to allow tunable operation. The proposed design has been implemented using VHDL and synthesized to logic gates. The hardware complexity and mismatch shaping performance of the proposed architecture are compared to that of a reference architecture, which uses separate tunable mismatch shapers for each complex component path. Simulation results show consistent mismatch shaping performance across the entire tuning range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Akram, W., & Swartzlander Jr., E. E. (2003). Digital frequency synthesis using piece-wise polynomial interpolation. In 37th Asilomar Conference on Signals, Systems and Computers (pp. 2237–2241).

  2. Akram, W., & Swartzlander Jr., E. E. (2009). Tunable N-path mismatch shaping for multibit bandpass delta-sigma modulators. In 43rd Asilomar Conference on Signals, Systems and Computers (pp. 1288–1291).

  3. Akram, W., & Swartzlander Jr., E. E. (2010). Tunable mismatch shaping for quadrature bandpass delta-sigma data converters. In IEEE Workshop on Signal Processing Systems (pp. 198–203).

  4. Akram, W., & Swartzlander, Jr. E. E. (2010). A novel technique for tunable mismatch shaping in oversampled digi tal-to-analog converters. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1534–1537).

  5. Breems, L. J., Dijkmans, E. C., & Huijsing, J. H. (2001). A quadrature data-dependent DEM algorithm to improve image rejection of a complex sigma-delta modulator. IEEE Journal of Solid-State Circuits, 36, 1879–1886.

    Article  Google Scholar 

  6. Galton, I. (1997). Spectral shaping of circuit errors in digital-to-analog converters. IEEE Transactions on Circuits and Systems II, 44, 808–817.

    Article  Google Scholar 

  7. Galton, I. (2010). Why dynamic-element-matching DACs work. IEEE Transactions on Circuits and Systems II: Express Briefs, 57, 69–74.

    Article  MathSciNet  Google Scholar 

  8. Jantzi, S. A., Martin, K. W., & Sedra, A. S. (1997). Quadrature bandpass delta-sigma modulation for digital radio. IEEE Journal of Solid-State Circuits, 32, 1935–1950.

    Article  Google Scholar 

  9. Jerng, A., & Sodini, C. G. (2007). A wideband ΔΣ digital-RF modulator for high data rate transmitters. IEEE Journal of Solid-State Circuits, 42, 1710–1722.

    Article  Google Scholar 

  10. Kaplan, T. S., Jensen, J. F., Fields, C. H., & Chang, M.-C. F. (2005). A 2-GS/s 3-bit ΔΣ-modulated DAC with tunable bandpass mismatch shaping. IEEE Journal of Solid-State Circuits, 40, 603–610.

    Article  Google Scholar 

  11. Luschas, S., Schreier, R., & Lee, H.-S. (2004). Radio frequency digital-to-analog converter. IEEE Journal of Solid-Sate Circuits, 39, 1462–1467.

    Article  Google Scholar 

  12. Miller, M., & Petrie, C. S. (2003). A multibit sigma-delta ADC for multimode receivers. IEEE Journal of Solid-State Circuits, 38, 475–482.

    Article  Google Scholar 

  13. Norsworthy, S. R., Schreier, R., & Temes, G. C. (1997). Delta-Sigma Data Converters. New York: IEEE Press.

    Google Scholar 

  14. Reekmans, S., De Maeyer, J., Rombouts, P., & Weyten, L. (2006). Quadrature mismatch shaping with a complex, tree structured DAC. In IEEE International Symposium on Circuits and Systems (pp. 2969–2972).

  15. Reekmans, S., De Maeyer, J., Rombouts, P., & Weyten L. (2006). Quadrature mismatch shaping for digital-to-analog converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 2529–2538.

    Article  Google Scholar 

  16. Schreier, R. (2002). Quadrature mismatch-shaping. In IEEE International Symposium on Circuits and Systems (Vol. 4, pp. 675–678).

  17. Schreier, R., & Zhang, B. (1995). Noise-shaped multibit D/A converter employing unit elements. Electronics Letters, 31, 1712–1713.

    Article  Google Scholar 

  18. Synopsys, Inc. (2010). Design-Compiler Ultra. http://www.synopsys.com.

  19. Talaeie, S. M., Copani, T., Bakkaloglu, B., & Kiaei, S. (2006). A bandpass ΔΣ RF-DAC with embedded FIR reconstruction filter. IEEE International Solid-State Circuits Conference, 1, 578–579.

    Google Scholar 

  20. Vadipour, M. (2004). A bandpass mismatch noise-shaping technique for sigma-delta modulators. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 130–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Akram.

Additional information

This is an expanded version of a paper presented at the 2010 SiPS conference [3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, W., Swartzlander, E.E. Tunable Mismatch Shaping for Quadrature Bandpass Delta-Sigma Data Converters. J Sign Process Syst 65, 199–210 (2011). https://doi.org/10.1007/s11265-011-0611-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0611-0

Keywords

Navigation