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Abstract
Reliability, scalability and clinical viability are of utmost importance in the design of wireless
Brain Machine Interface systems (BMIs). This paper reports on the design and implementation of
a neuroprocessor for conditioning raw extracellular neural signals recorded through
microelectrode arrays chronically implanted in the brain of awake behaving rats. The
neuroprocessor design exploits a sparse representation of the neural signals to combat the limited
wireless telemetry bandwidth. We demonstrate a multimodal processing capability (monitoring,
compression, and spike sorting) inherent in the neuroprocessor to support a wide range of
scenarios in real experimental conditions. A wireless transmission link with rate-dependent
compression strategy is shown to preserve information fidelity in the neural data. At 32 channels,
the neuroprocessor has been fully implemented on a 5mm×5mm nano-FPGA, and the prototyping
resulted in 5.19 mW power consumption, bringing its performance within the power-size
constraints for clinical use. The optimal design for compression and sorting performance was
evaluated for multiple sampling frequencies, wavelet basis choice and power consumption.
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I. Introduction
Large scale ensemble recordings with penetrating microelectrode arrays have been shown to
yield affluent information content about motor intent in subjects with severe motor and
communication deficits [1-3]. One major obstacle that precludes the extraction of this
pristine information in awake, behaving subjects is the need to be tethered to large size
recording equipment that are typically found in laboratory settings. Clinical viability,
however, requires developing fully implantable and wireless neural recording microsystems
capable of optimizing the power consumption and data bandwidth without compromising
the information in the neural activity, thereby enabling the subject to interact freely with the
surrounding and minimize any risk of infection and discomfort.

NIH Public Access
Author Manuscript
J Signal Process Syst. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
J Signal Process Syst. 2012 December 1; 69(3): 351–361. doi:10.1007/s11265-012-0670-x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wireless neural recording system design has been the community trend in a number of labs
in recent years, including our own [4]. Wireless data telemetry is by far the most challenging
problem in this respect. For example, a 25 kHz data stream with 8-bit precision from a 100
electrodes would require at least 20 Mbps transmission bandwidth, which is far beyond the
capability of commercial, low-power transcutaneous wireless telemetry chips. There are two
schools of thought to circumvent this problem: 1) equip the system with an ultra-wide band
(UWB) commercial transceiver that transmits the entire raw data for offline processing; 2)
increase the “smartness” of the system by extracting and sending the most critical
information, i.e., the most significant features of the neuronal signals that characterize the
firing pattern of the recorded neurons. The latter solution is more appealing for a number of
reasons: 1) it enables elimination of the large computing power (i.e. the PC) from the BMI
signal processing path, effectively making the system more versatile and portable to use; 2)
it minimizes the latency incurred in the entire system during the translation of patterns of
neural activity from cortical ensembles to control commands for actuating the artificial
device.

Custom built neuroprocessors, if carefully designed, can efficiently fulfill the need for
“smarter” implants [5-8]. The design options available could be to reduce the data resolution
at the expense of signal quality as reported in [5]. Alternatively, one could detect and send
the time stamps of data samples that surpasses a predefined threshold – presumably to
indicate the presence of a spike event as in [6] – at the expense of compromising event
identity (the label of the neuron that generated the spike). Another option would be to only
transmit a snippet of data samples around the threshold crossing point as in [7, 8]. More
sophisticated techniques would be to extract certain features on-chip and allow clustering
those features to take place off-chip [9]. This latter approach, however, relies on the
presence of an external computer with potential user supervision to classify and label the
extracted features.

The approach we adopt in this work circumvents the above limitations, as well those in other
systems [10-28], and merits rapid translation of high density microelectrode technology
towards the emerging BMI use in clinical applications [29]. Specifically, the approach we
propose reduces the telemetry bandwidth without compromising spike identities and enables
direct coupling of the implanted system output to the neural decoder input that controls the
artificial device. The approach reported here builds on an extensive body of prior work that
demonstrated the preservation of critical information in the sparse representation of the
neural data in the wavelet domain [3, 30]. A key element to enable rapid translation of these
findings to clinical use is the design of low cost, highly programmable hardware platforms
that recalibrate the system on the fly in the face of unreliable neural signals over chronic use
or over the wireless telemetry link [31]. Herein, we describe the detailed architecture of the
neuroprocessor, its modes of operation and its actual implementation on cheap, small size
and low power commercially available nano-FPGA.

The paper is organized as follows: an overview of the system housing the neuroprocessor is
discussed in section II. Section III focuses on the design of the neuroprocessor. Section IV
demonstrates the results of individual modules and the entire system implementation,
summarizes its features compared to other state-of-the-arts systems and discusses the
optimal design in terms of scalability, wavelet basis selection, power and size. Conclusions
are drawn in Section V.
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II. Theoretical Background
A. System Architecture

As shown in Figure 1, the neuroprocessor is one of three major blocks of a fully implantable
Neural Interface Node (NIN) that comprises an analog conditioning block [10] and a
wireless telemetry block [35, 36]). The NIN is hardwired to the electrode array and
communicates the extracted information to an external Manager Interface Module (MIM)
that is fixated within a few millimeters of the implanted NIN. The MIM manages power,
clock, data and control commands to and from a single (or multiple) NINs. The MIM
wirelessly communicates data and command over a longer range to a Central Base Station
(CBS) equipped with a graphical user interface to program and control the entire system and
perform more advanced data analysis (if needed). The MIMs also are equipped with an
algorithm (a decoder) that translates the neural firing patterns to control commands to
actuate an artificial device.

B. Smart Thresholding
As shown in Figure 1, the system supports three operational modes. In the “monitoring
mode”, the system transmits the full-bandwidth raw neural data – or a compressed version of
it - including spikes and local field potentials (LFP). In the “Compression mode”, the DWT
coefficient data are thresholded [3]. In particular, values below a specific threshold are set to
zero while values above that threshold are used to fully reconstruct the signal, if needed.
Threshold selection provides a tradeoff between signal integrity and compression rate. The
thresholded coefficient stream is typically sparse, with long sequences of zeros that are
encoded using a lossless Run Length Encoder (RLE) scheme. Notably, the same
thresholding operation – with a different threshold selection mechanism we outlined in [32]
– can also enable spike sorting to take place. Briefly, this is achieved by choosing the most
significant coefficient per spike event to pass such that only the time stamp of that
coefficient is marked and transmitted along with information about its magnitude and sign.
This is what we refer to as the “Sensing mode” of operation of the system.

III. VLSI Architecture
Though highly scalable to accommodate many channels and wavelet decomposition levels,
the prototype design reported and illustrated in Figure 2 is targeted for 32 channels, 4-level
lifting-based DWT with 25 kHz sampling rate and 8-bit precision using Symlet 4. It mainly
includes a system controller, thresholding block, communication module, a customized
computation core (CC), and the DWT block including several memories for incoming data,
filter coefficients, intermediate computation core products, intermediate values for multiple
channels and levels.

A. Operation Management
To control the sequence and timing of operations, a controller employing a finite state
machine is used, where a 4-bit counter is used to specify the current state out of the total 16
states. In this controller, an 8-bit counter is used as a marker to keep track of the channel and
level information sequentially (5 bits for the 32-channel index and 3 bits for the 4-level
index) for properly addressing the memory. The level bits also help decide whether input
stream should be picked up from the input or the pairing buffer and whether the output
approximation coefficient is sent to the output bus or stored in pairing memory.

DWT decomposition for multiple levels and multiple channels requires holding many
intermediate values to process future samples while switching between different channels
and levels. The first channel/level memory is used for this purpose to store four 8-bit values
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with a 32-bit register and thus 128 SRAM or DRAM registers are needed for a 32-channel,
4-level design. For level 2 and beyond, the CC input data uses previous results from a lower
level. Hence the value a−1 must be saved in a pairing memory, which contains two 8-bit
values for every channel and level except the highest level. At the same time, all
computation cycles except the highest level generate one 8-bit value to be updated in the
pairing memory. Similarly, because DWT operates on pairs of data samples, an input buffer
is required to hold the input first samples in a holding cycle, during which the beyond level
one decomposition is computed. To ensure the sequential reuse of the CC, four
corresponding 8-bit intermediate values from channel/level memory and two input values
from neural signals or pairing memory are loaded into the CC in parallel at the beginning of
each computation cycle, and are moved to appropriate CC phase. Six 8-bit registers
implemented with flip-flops were designed for this purpose.

There are two 840-bit communication memories employed to work alternately in order to
ensure no loss of neural data packets. In addition, there are four programmable registers
used to control the bandwidth and gain of analog conditioning circuits, the channel selection
for the monitoring mode, and system mode setting as illustrated in Figure 2. Their internal
values are updated through the command decoder. Finally, a threshold SRAM memory for
both compression and/or spike sorting is needed. For compression, we use channel-specific
thresholds and hence 32 7-bit registers are needed. For sorting, we use DWT node-specific
thresholds and hence 128 7-bit registers are needed for the 4 decomposition levels per
channel [30]. Hence, 128 7-bit registers are shared for both compression and sensing modes.
The threshold values in the memory are updated on demand using the commands sent from
MIM to NIN based on analysis of raw neural data collected in the monitoring mode.

B. Data and Command Communication Protocol
To meet the requirements of bidirectional communication and low power consumption in
the system, a half-duplex communication protocol is used to wirelessly transfer neural
information and power status data from the NIN and receive clock, power, and command
from outside. As shown in Figure 3, the data packetizer organizes the processed data in three
different structured frames with overhead for synchronization and error detection, where the
frame length is 840 bits (N1=N2=3N3-3=93, where N1, N2 and N3 are the number of bytes in
the monitor, compression and sensing modes, respectively). This amounts to 8.45% of frame
overhead, with 7.62% contributed by the header and ender. A relatively long 32-bit header
and ender design is employed here to ease the data post-processing of multimodal outputs
and minimize the transmission error. The command frame is 80 bits long, and includes
command (CMD) and command data (CMD_data) to switch between different modes,
control the analog conditioning circuits such as bandwidth and gain, select the channel for
monitoring mode, and update the threshold values for either compression or sorting mode.

Both the transmitter and the receiver use serial data in and data out lines with the same 1
MHz clock signal to communicate with the wireless transceiver. In this way, with a
transmission frequency of 1 Mbps, the 840-bit data packet and the 80-bit command packet
takes 0.84 msec and 0.08 msec for transmission, respectively. Hence, assuming that the
packet propagation delay and the idle time between receipt and transmission are negligible
due to the close proximity of the NIN to the MIM (only a few mm across the skin), the
shortest time it affords to wait for the incoming data to be packetized and filled into the
communication buffer is 0.92 msec, where two 840-bit communication buffers are used. At
any given time, only one buffer is active for receiving incoming data, and the other acts as a
reserve buffer after sending the data collected during its active period. The power byte here
is used to monitor the power level received by the NIN for closed loop power supply of
MIM to NIN to make the system operate at a steady power level [35]. The timer in
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monitoring and compression modes is used to record the timestamp of the first data in this
data packet, which makes recovering the neural information possible even in case of packet
loss.

C. Compression and On-the-fly Spike Sorting
As shown in Figure 2, the DWT coefficient data are fed to a magnitude comparator where
they are continuously compared to a mode-dependent set of thresholds. In the compression
mode, the above-threshold DWT coefficient data are formatted through the RLE block and
packetized for wireless telemetry. The RLE is mainly realized with an 8-bit zeroing counter.
The RLE rules are abbreviated as follows:

a. Each byte refers to one 8-bit value;

b. Signal value will range from −127 to +127;

c. Convert all negative zeros (10000000) into positive zeros (00000000);

d. Transmit all non-zeros as they are;

e. When only one zero, still send one zero;

f. Replace a sequence of zeros (two or more) with negative zero (10000000) and
zero-count byte (totally 16-bits);

g. If zeroing counter reaches 255, send negative zero and 255, and then reset and
restart counting.

In the sorting mode, a 16-bit counter is used to keep track of the universal timing in the
module for each event detected. Once the counter is full, it automatically resets and restarts
counting. At a 25 kHz sampling rate, this counter resets approximately every 2.5 seconds,
which is long enough to minimize the possibility of losing track of the exact timing by the
observer. Keeping track of the exact timing is done externally using the transmitted time
index. Each detected event is formatted into a 24-bit packet as shown in Figure 3, where the
first 5 bits are used to store the event’s channel index, the next 3 bits for the event’s node
index, and the last 16 bits for the timestamp.

IV. RESULTS
A. Synthesis of the Neuroprocessor

The highly nonstationary nature of neural signals, particularly over long term chronic
implants, mandates having a highly flexible hardware platform to continuously program the
numerous parameters of the system to provide the most reliable signal at its output. ASIC
and FPGA, with different value propositions, were carefully evaluated before choosing one
over the other, where cost, programmability, power and size were key decision criteria. The
programmability of the FPGA is a superior feature for our application because changes in
embedded algorithmic design are much easier, cheaper, faster and more risk-free than
changes in ASIC hardware design, particularly after the system is implanted in the brain.

The neuroprocessor was designed in Verilog and its implementation was fully synthesized
with Libero IDE 9.0, which consisted of about 750000 system gates. The required hardware
resources for memory are summarized in Table I. The other blocks such as the computation
core (about 15706 system gates/386 D-flip-flops) required a very small number of gates. In
an initial run, however, memory demands shown in Figure 4 were found to consume more
than 90% of the system logic gates and the nano-FPGA could not accommodate the entire
neuroprocessor implementation. Embedded memory blocks were thus preferred to
accommodate the memory demand and reduce heavy consumption of system gates.
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B. Implementation on Nano-FPGA
The flash-based IGLOO nano-FPGAs [37] with embedded memory blocks exhibit power
characteristics similar to those of an ASIC design, making them an ideal choice for power-
sensitive applications. In particular, the 130 nm process based AGLN 250, has enough
resources (250000 system gates and configurable 36 kb memory blocks) and is small in size
(5mm×5mm). Replacing the above memory demand estimate with the embedded memory
blocks in the nano-FPGA is employed to optimize the resource allocation. It is worth to note
that, once programmed, the configuration data becomes an inherent part of the FPGA, and
no external configuration data need to be loaded at system power-up (unlike SRAM-based
FPGAs).

In order to test the system’s full speed operation (6.4 MHz), neural data were uploaded to
the SRAM of a Cyclone III FPGA for testing purposes to provide 8-bit formatted data to the
neuroprocessor implemented on the AGLN 250 FPGA. For 32-channel, 4-level DWT with
Symlet4, and sampling rate of 25 ksps per channel, the total power consumption of the
neuroprocessor was 5.14 mW, evaluated with the Smart Power tool in the Actel Designer,
which matched closely with the measured 5.19 mW. The detailed distribution of the power
budget is plotted in Figure 5.

C. Implementation Scalability
Our design allows scalability in terms of both sampling rate, the number of channels and
decomposition levels. In Figure 6, the power consumptions for 32-channel, 4-level DWT
implementation at different sampling rates are illustrated. The master clock frequency of the
neuroprocessor is 8 times the sampling rate multiplied by the number of channels [33, 34].
Based on this information, power consumption could therefore be estimated as a function of
the number of channels at the nominal 25 kHz sampling rate as shown in the inset.

Figure 7 shows the distribution of the time needed to fill the communication buffers. As
shown in the inset, the minimal time required to fill a packet was recorded to be 1.25 msec,
which is larger than the minimal time limit of 0.92 msec, stated in Section II.B, to avoid data
overflow. As shown in Figure 8, for the sensing mode, the filling time of the communication
buffer is at the minimum value of 3.15 msec and an average value of 26.02 msec. This is
much larger than the filling times during the compression mode, suggesting that
compression and spike sorting on chip are achievable with minimum system latency and
results in orders of magnitude savings in data reduction and transmission efficiency.

D. Data Quantization and Signal Integrity
To investigate the optimal bit precision that preserves information fidelity in the transmitted
neural signals, the Receiver Operating Characteristics (ROC) for different bit precisions of
the neural data is shown in Figure 9. Spike sorting thresholds are selected to maximize the
area under the ROC graphs. We found that an 8-bit resolution leads to similar performance
as 10-bit precision but reduces resource allocation by more than 20%. Taking together, 8-bit
data quantization offers the best compromise among hardware complexity, bandwidth
efficiency and signal fidelity.

E. System Optimization and Performance Tradeoff
For optimal data compression, a wavelet basis needs to be selected that best approximates
the neural signal waveform with a small number of large coefficients. From a compression
standpoint, the near-optimal choice was proposed in [38] and demonstrated that the Symlets
are advantageous over other wavelet basis families, such as Daubechies and Coiflets for
processing neural signals in terms of the SNR improvements.
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Here, a compromise between signal fidelity and the ease of hardware implementation is
made to suggest the selection of the order of the Symlet. Different lengths of the wavelet
kernels represent different computation complexity. For example, using Symlet 2 over
Symlet 4 reduces two computational steps out of the required five steps in the lifting
implementation [3, 30]. This obviously leads to less power and memory requirements due to
smaller number of intermediate computations. Table II lists the coefficients of Symlets 2 to
5. A maximum number of six computational steps are needed for the Symlet 5. Since the
DWT design in [32] allows 6 out of the 8 clock slots for the computation core, the current
design can handle all these four different Symlets.

Figure 10 shows quantitatively that the relationship between the normalized mean square
error (NMSE) and the sampling rate at 50% compression for Symlets 2, 3, 4 and 5,
respectively. It can be seen that the Symlet 4 always produces the best reconstruction
performance. Figure 11 gives the qualitative verification when the sampling rate is fixed at
30 ksps and compression rate is 50%.

Figure 12 demonstrates an example of the original and reconstructed waveforms sampled at
25 ksps where the tradeoff between signal integrity and the compression rate is visible.
Here, only 20% and 50% of the coefficients were used to obtain the reconstructions shown
for the two compression rates. This also demonstrates how the system can compress neural
signals while simultaneously preserving the spike waveforms features.

The sorting performance in terms of spike class separability between the different neuronal
clusters in the feature space was also investigated over different sampling rates and Symlet
bases functions. The class separability in this case is defined as the Euclidean distance
between spike waveforms of two neurons represented in the compression domain by a fixed
number of coefficients at a constant compression rate [30]. In Figure 13, quantification by
the degree of separability is shown for different Symlets at different sampling rates. Clearly,
Symlet 2 could support higher separability for most sampling frequencies and hence is the
best choice for the sorting mode. Figure 14 shows the corresponding relation between spike
class separability and compression rate.

The implementations of Symlets 2 to 4 are well within the resource capability of the AGLN
250 nano-FPGA. The corresponding measured power consumptions are plotted in Figure 15.
Overall, this kind of power-Symlet performance tradeoff is beneficial for different scenarios,
operational modes and the system sampling rate.

Table III briefly summarizes a system level comparison of the features in the proposed
neuroprocessor relative to some other state-of-the-art systems. From this Table, multiple
systems that feature “record all, transmit all” strategies are reported. Many of these systems,
however, are head-mounted and not fully implantable. Those that are implantable feature
information extraction early in the data stream to cope with bandwidth limitations, but are
limited by the number of channels that they could process at a given time [9]. Our system,
on the other hand, circumvents all these limitations by featuring full implantability while
preserving all the critical information in the multichannel recordings, which is the first
report of such capability to the best of our knowledge.

In the closed-loop wireless telemetry system, power transfer takes place across the primary
and secondary coils. The information about the power level is added to the neural data and
sent back to the MIM utilizing load shift keying modulation (LSK) [36]. The forward
telemetry from MIM to NIN for commands is implemented using amplitude shift keying
(ASK) modulation of the power carrier. Both data communication and power transmission
utilize 13.56 MHz (one of the ISM bands). The industrial, scientific and medical (ISM) radio
bands are reserved internationally for the use of radio frequency (RF) energy for industrial,
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scientific and medical purposes other than communications. Hence, we do not anticipate any
legal or interference issues with the proposed system.

V. CONCLUSION
In this paper, we reported on a fully implantable, programmable and multimodal
neuroprocessor design to exclusively process high bandwidth neural signals collected from
high density microelectrode arrays implanted in the brain. We demonstrated that the
neuroprocessor can be efficiently implemented on a 5mm×5mm nano-FPGA, and consumes
5.19 mW of power to process 32 channels of neural data sampled at 25 ksps and 8-bit of
resolution. This design brings the power density to 20.76 mW/cm2, which is well within the
power density limits for clinical grade implants, estimated to be ~62 mW/cm2 [39, 40]. This
is equivalent to a power/size demand to be less than 4.1 mW·mm2/channel, confirming its
scalability feature. The system is programmable to cope with highly nonstationary neural
signals over long-term chronic use. The system is also cost effective in making it well suited
for basic neuroscience research as well as clinical BMI applications.
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Figure 1.
System diagram, where the neuroprocessor is the central block. Monitoring mode (MM, red
arrow), where single-channel raw data is transmitted sequentially at full bandwidth to permit
estimating compression/spike sorting threshold parameters; Compression mode (CM, green
arrow), in which the sparse coefficient representation of the 32-channel neural data is
transmitted simultaneously after run length encoder (RLE); and Sensing mode (SM, blue
arrow), where only spike time stamps of 32 channels are transmitted after DWT-based spike
sorting is implemented with an alternative threshold selection scheme.
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Figure 2.
Diagram for the lifting DWT based neuroprocessor
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Figure 3.
Data and command frame format
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Figure 4.
Distribution of resource consumptions of submodules
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Figure 5.
The distribution of power consumption
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Figure 6.
Equivalent sampling rate and measured power consumption of the neuroprocessor for
different master clock frequencies
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Figure 7.
Distribution of filling time of 50 data frames during compression
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Figure 8.
Distribution of filling time of 50 data frames during sensing modes.
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Figure 9.
ROC curves for different bit precisions
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Figure 10.
Relation between reconstruction and sampling rate for different Symlet bases functions
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Figure 11.
Qualitative comparisons of the reconstruction quality for different Symlet bases functions at
30 ksps sampling rate
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Figure 12.
Qualitative comparisons of reconstruction quality for compression rates at 25 ksps sampling
rate with Symlet 4
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Figure 13.
Relation between spike class separability and sampling rate for different Symlet bases
functions
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Figure14.
Spike class separability vs. compression rate
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Figure 15.
Power consumptions as a function of sampling rate and Symlet wavelet order.
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Table I

Memory Hardware Demands

Memory Memory Sizes and Resource Demand

Size (bit) System Gates D-FFs

Channel&Level Memory 32×4×32 352579 8665

Pairing Memory 32×3×16 138265 3398

Input FIFO Buffer 32×8 24373 599

Threshold Memory 32×4×7 80526 1979

Communication Buffer 105×8×2 151227 3714
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Table III

System Level Feature Comparison

Online Spike Sorting

Refs Data
Reduction

Spike
Detection Feature Extraction Spike

labeling

[10, 11, 13, 16] No No No No

[5, 7] Yes No No No

[6, 15] Yes Yes No No

[9] Yes Yes Yes (one channel) No

Proposed system Yes Yes Yes Yes
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