Skip to main content
Log in

Reconfigurable Parallel Turbo Decoder Design for Multiple High-Mobility 4G Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

For high-mobility 4G applications of LTE-A and WiMAX-2 systems, this paper presents a dual-standard turbo decoder design with the following three techniques. 1) Circular parallel decoding reduces decoding latency and improves throughput rate. 2) Collision-free vectorizable dual-standard parallel interleaver enhances hardware utilization of the interleaving address generator. 3) One-bank extrinsic buffer design with bit-level extrinsic information exchange reduces size of the extrinsic buffer compared with the two-bank extrinsic buffer design. Furthermore, a multi-standard turbo decoder chip is fabricated in a core area of 3.38 mm2 by 90 nm CMOS process. This chip is maximally measured at 152 MHz with 186.1 Mbps for LTE-A standard and 179.3 Mbps for WiMAX-2 standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and decoding: Turbo Codes. In Proceedings of IEEE International Conference Communications (ICC) (pp. 1064–1070).

  2. 3rd Generation Partnership Project (3GPP). [Online]. Available: http://www.3gpp.org/

  3. Berrou, C., & Jezequel, M. (1999). Non-binary convolutional codes for turbo coding. Electronics Letters, 35(1), 39–40.

    Article  Google Scholar 

  4. Worldwide Interoperability for Microwave Access (WiMAX). [Online]. Available: http://www.wimaxforum.org/home/

  5. International Telecommunication Union. [Online]. Available: http://www.itu.int/

  6. Lin, C.-H., Chen, C.-Y., & Wu, A.-Y. (2008).High-throughput 12-Mode CTC decoder for WiMAX standard. In Proceedings of IEEE International Symposium on VLSI Design, Automation, and Test (VLSI-DAT) (pp. 216–219).

  7. Wong, C.-C., Lee, Y.-Y., & Chang, H.-C. (2009). A 188-size 2.1 mm2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system. In Proceedings of IEEE International Symposium on VLSI Circuits (VLSIC) (pp. 288–289).

  8. Bahl, L. R., et al. (1974). Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, 20(2), 284–287.

    Article  MathSciNet  MATH  Google Scholar 

  9. Robertson, P., Villebrun, E., & Hoeher, P. (1995). A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In Proceedings of IEEE International Conference on Communication (ICC) (pp. 1009–1013).

  10. Papaharalabos, S., Sweeney, P., & Evans, B. G. (2005). SISO algorithms based on combined max/max* operations for turbo decoding. Electronics Letters, 41(3), 142–143.

    Article  Google Scholar 

  11. Vogt, J., & Finger, A. (2000). Improving the max-log-MAP turbo decoder. Electronics Letters, 36(23), 1937–1939.

    Article  Google Scholar 

  12. Lin, C.-H., Chen, C.-Y., & Wu, A.-Y. (2011). Area-efficient scalable MAP processor design for high-throughput multistandard convolutional turbo decoding. IEEE Transactions Very Large Scale Integration (VLSI) Systems, 19(no. 2), 305–318.

    Article  Google Scholar 

  13. Viterbi, A. J. (1998). An intuitive justification and simplified implementation of the MAP decoder for convolutional codes. IEEE Journal on Selected Areas in Communications, 16, 260–264.

    Article  Google Scholar 

  14. Masera, G., et al. (1999). VLSI architecture for turbo codes. IEEE Journal on Selected Areas in Communications, 7(no. 3), 369–379.

    Google Scholar 

  15. Boutillon, E., Gross, W. J., & Gulak, P. G. (2003). VLSI architectures for the MAP algorithm. IEEE Transactions on Communications, 51(2), 175–185.

    Article  Google Scholar 

  16. Kaza, J., & Chakrabarti, C. (2004). Design and implementation of low-energy turbo decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(no. 9), 968–977.

    Article  Google Scholar 

  17. Wu, C.-M., et al. (2005). VLSI architectural design tradeoffs for sliding-window log-MAP decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(no. 4), 439–447.

    Article  Google Scholar 

  18. Li, F.-M., Lin, C.-H., & Wu, A.-Y. (2008). Unified convolutional/turbo decoder design using tile-based timing analysis of VA/MAP kernel. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(no. 10), 1358–1371.

    Article  Google Scholar 

  19. Lin, C.-H., Chang, E.-J., Chen, C.-Y., & Wu, A.-Y. (2011). A 0.16 nJ/bit/iteration 3.38 mm2 Turbo Decoder Chip for WiMAX/LTE Standards. In Proceedings of the IEEE International Symposium on Integrated Circuits (ISIC) (pp. 178–181).

  20. Nimbalke, A., et al. (2008). ARP and QPP interleavers for LTE turbo coding. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1032–1037).

  21. Zhan, C., et al. (2006). An efficient decoder scheme for double binary circular turbo codes. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 229–232).

  22. Kim, J.-H., & Park, I.-C. (2009). Bit-level extrinsic information exchange method for double-binary turbo codes. IEEE Transactions on Circuits and Systems Part II, Express Briefs., 56(1), 81–85.

    Article  Google Scholar 

  23. Lin, C.-H., et al. (2009). Low-power memory-reduced traceback MAP decoding for double-binary convolutional turbo decoder. IEEE Transactions on Circuits and Systems Part I, Regular Papers, 56(5), 1005–1016.

    Article  Google Scholar 

  24. Benkser, C., et al. (2009). Design and optimization of an HSDPA turbo ASIC. IEEE Journal of Solid-State Circuits, 44(1), 98–106.

    Article  Google Scholar 

  25. Lim, J.-H., & Park, I. C. (2009). A unified parallel radix-4 turbo decoder for mobile WiMAX and 3GPP-LTE. In Proceedings of IEEE Custom Integrated Circuits Conference (CICC) (pp. 487–490).

  26. Kim, J.-H., & Park, I.-C. (2008). A 50Mbps double-binary turbo decoder for WiMAX based on bit-level extrinsic information exchange. In Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp. 305–308).

  27. Wong, C.-C., & Chang, H.-C. (July 2010). Reconfigurable turbo decoder with parallel architecture for 3GPP LTE System. Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 7.

Download references

Acknowledgment

The authors would like to thank Chip Implementation Center (CIC) for the support of chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hung Lin.

Additional information

This work was supported in part by National Science Council, R.O.C., under grants NSC 99-2218-E-155-011 and NSC 97-2220-E-002-012. The material in this paper was presented in part at the IEEE ISIC 2011, Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., Chen, CY., Chang, EJ. et al. Reconfigurable Parallel Turbo Decoder Design for Multiple High-Mobility 4G Systems. J Sign Process Syst 73, 109–122 (2013). https://doi.org/10.1007/s11265-013-0735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0735-5

Keywords

Navigation