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Abstract In this paper, we present an energy-aware
informed prefetching technique called Eco-Storage that
makes use of the application-disclosed access patterns to
group the informed prefetching process in a hybrid storage
system (e.g., hard disk drive and solid state disks). Since
the SSDs are more energy efficient than HDDs, aggressive
prefetching for the data in the HDD level enables it to have
as much standby time as possible in order to save power.
In the Eco-Storage system, the application can still read
its on-demand I/O reading requests from the hybrid stor-
age system while the data blocks are prefetched in groups
from HDD to SSD. We show that these two steps can be
handled in parallel to decreases the system’s power con-
sumption. Our Eco-Storage technique differs from existing
energy-aware prefetching schemes in two ways. First, Eco-
Storage is implemented in a hybrid storage system where
the SDD level is more energy efficient. Second, it can group
the informed prefetching process and quickly prefetch the
data from the HDD to the SSD to increase the frequent
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HDD standby times. This will makes the application finds
most of its on-demand I/O reading requests in the SSD level.
Finally, we develop a simulator to evaluate our Eco-Storage
system performance. Our results show that our Eco-Storage
reduces the power consumption by at least 75 % when com-
pared with the worst case of non-Eco-Storage case using a
real-world I/O trace.

Keywords Informed prefetching · Power consumption ·
Parallel storage systems · Hybrid storage system

1 Introduction

Prfetching techniques are well known for solving the I/O
bottleneck problem (see [30] and [19]) in data-intensive
computing systems. A wide rang of prefetching tech-
niques have been proposed by researchers to preload
data from disks into the main memory prior to the
data accesses. Prefetching techniques are mainly catego-
rized into two types—predictive and informed prefetching.
Informed prefetching makes use of the applications ability
to disclose hints about their future I/O accesses to prefetch
the data before it is actually accessed by the application
[3]. Predictive prefetching schemes predict future I/O access
patterns based on historical I/O accesses of applications
[4]. Recent studies show that prefetching paradigm is not
only used to solve the I/O bootlenick but also to create
an energy-aware storage system [34]. These studies implies
that hard disk drives (HDDs) consume too much power dur-
ing both active and idle modes when they are compared to
the standby (sleeping) mode. In case the HDDs is set to
the standby mode or powered off frequently, the system’s
power consumption will be reduced. Aggressive prefetching
process from the HDD to the main memory will makes the
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HDD to standby frequently for long time intervals and save
power. However, memory size and prefetching accuracy are
the most important factors that helps in saving the power
consumption. Another study [40] shows that solid state
drives (SSDs) are more energy efficient than HDDs. For this
reason, prefetching can be used effectively in hybrid stor-
age system to prefetch the data from the HDDs level to the
SDDs one in order to reduce the HDD power consumption.

When it comes to informed prefetching, the applications
are ale to disclose accurate hints about their future accesses.
These hints can be used to prefetch the data in groups from
the HDDs level to the SSDs in a hybrid storage system.

In this study, we focus on an informed prefetch-
ing scheme that prefetch the data in groups and inves-
tigate its energy saving impact on a hybrid storage
system.

1.1 Motivations

As the HDDs energy consumption is significant, relying on
an energy efficient storage devices (e.g. SDDs) becomes
important. Recent studies show that prefetching can reduce
the HDDs power consumption [34]. In a hybrid storage
system that consists of HDDs and SSDs, informed prefetch-
ing can aggressively prefetch the application’s future hinted
accesses from the HDDs to the SSDs to extend the HDDs
frequent standby times intervals. This reduces the system’s
power consumption.

The following key factors motivate us to investigate our
energy-aware informed prefetching:

1) the growing needs of hybrid storage systems,
2) The SSDs energy efficiency when compared to the

HDDs,
3) the I/O access hints offered by applications, and
4) the possibility of prefetching mechanisms and appli-

cation on-demand I/O reading requests to work in
parallel.

1.2 Contributions

The following list summarizes the major research contribu-
tions made in this paper:

• To reduce the power consumption in a hybrid stor-
age systems, we propose new energy-aware informed
prefetching approaches to aggressively prefetch the data
from an energy inefficient level (e.g. HDD) to an energy
efficient level (e.g. SSD). This enables the energy inef-
ficient level to sleep as much as possible. The informed
prefetching algorithm developed in this study is called
Eco-Storage. We show that with our prefetching mecha-
nism in place, aggressive prefetching operations in form
of groups can be processed in a hybrid storage system

in parallel with the application on-demand I/O reading
requests.

• We apply a novel of energy-aware cost-benefit model
to estimate the value of prefetching a future hinted data
block at a specific storage level in a hybrid storage
system. The cost-benefit model is used by prefetch-
ing mechanisms deployed in a hybrid storage levels to
reduce the power consumption.

• We develop a simulated hybrid storage system, in
which the Eco-Storage prefetching technique is imple-
mented. Simulation results show that our energy-aware
informed prefetching mechanism reduces the system’s
power consumption.

1.3 Roadmap

The rest of the paper explains and justifies our energy-
aware informed prefetching scheme in a hybrid storage
system. Section 2 reviews the related work. We out-
line the Eco-Storage architecture in Section 3. Section 4
describes the design and implementation issues of the Eco-
Storage energy-aware prefetching mechanism. Section 5
presents our experimental framework and results. Finally,
Section 6 provides conclusions and directions for future
studies.

2 Related Work

Previous researchers have suggested that prefetching
paradigm can be used to dramatically decrease the energy
consumption. To our best knowledge, however, ours is the
first study to focus on energy-aware informed prefetch-
ing in a hybrid storage and the first to offer a systematic
performance evaluation.

2.1 Hybrid Storage Systems

A hybrid storage system consists of a hierarchy of hetero-
geneous storage devices that differ in their hardware, speed,
size, energy consumption, and other specifications [32].
Hybrid storage systems provide cost-effective solutions for
large-scale data centers without significantly affecting I/O
response times. Usually, the high-level are more energy effi-
cient. For example if a hybrid storage system consists of a
HDD at the bottom and SSD at the top, the top level is more
energy efficient [40].

Typical storage devices in a modern hybrid storage sys-
tem include main memory, solid state disks, hard disks, and
magnetic tape subsystems (see, for example, [13, 14]).

Similar to multi-level caches, a Hybrid multi-level stor-
age systems [11, 12] first check their upper-level storage
devices. If data items are not found in the upper level
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storage, the next storage level is checked then. This process
is repeated until the required data block is found.

2.1.1 Solid State Disks and Hard Drives

Compared to traditional hard drives (HDD), solid state disks
(SSD) show better data read performance and less energy
consumption [40]. Tuma provides comparisons between a
wide range of SSDs and HDDs; detailed comparisons can
be found in [31].

2.1.2 Parallel Storage Systems

Parallel storage systems are commonly deployed in super-
computers [3, 13, 28]. A parallel storage system consist of
redundant storage devices that offer high I/O performance
and bandwidth [24, 27]. Disk arrays are considered the most
important components in the parallel storage systems. Scal-
able parallel storage systems (see, for example, [13, 23, 28])
provide I/O parallelisms through the stripping technique, in
which each large data block is cut into small data blocks
and stripped among an entire disk array [29]. When a par-
ticular data block is requested, the request will be directed
to the entire disk array, where multiple disk are controlled
by a disk controller that can coordinate and respond to the
request in parallel.

Parallel storage systems are reliable due to the fault
tolerance features offered by data redundancy [25, 26].

Parallel hybrid storage systems can be save energy
when energy efficient storage devices are used such as
SSDs [40].

2.2 Informed Prefetching

A study conducted by Patterson et al. [3, 7, 8, 10, 16]
inspired us to concentrate on informed prefetching issues.
Patterson et. al described the informed prefetching algo-
rithms that invokes the storage parallelisms by taking the
advantage of the application-disclosed I/O access hints.
Informed prefetching performs aggressive prefetching to
helps in wrapping the application’s I/O stalls [3, 8, 16]. The
performance benefits of informed prefetching were also pre-
sented by other researchers such as Huizinga et al. [6] and
Chen et al. [17].

When disk arrays are used, parallel informed prefetch-
ing aims to leverage parallel I/O to improve prefetching
performance. Parallel informed prefetching is made pos-
sible, because data blocks are striped across an array of
disks [15, 24]. Parallel informed prefetching eliminates I/O
stalls by prefetching the data to the cache before it is actu-
ally requested by applications. Please note that when we use
the word ”cache” as a noun, we mean the portion in the
application main memory address space that is reserved for

caching the informed prefetching process. When we use the
word ”cache” as a verb, we mean the process of caching the
informed prefetching process.

A informed prefetching mechanism makes prefetch-
ing decisions based on access hints and access pat-
terns being given a priority. Researchers have investi-
gated various ways of collecting information to offer
accurate access hints for informed prefetching mecha-
nisms. Without appropriate hints, the prefetching mech-
anisms are unable to make accurate decisions. Chang
and Gibson proposed an application speculative execution
scheme that pre-executes applications to record the appli-
cations future accesses [9]. Future access patterns recorded
by Chang and Gibson’s scheme can be used to guide
informed prefetching algorithms to preload data that are
likely to be accessed. Byna et al. studied a solution that
combines post-execution and runtime analysis to reduce
future I/O reads prediction overhead [20]. Byna’s study
is one step toward improving the performance of existing
informed prefetching mechanisms. Our informed prefetch-
ing algorithm presented in this paper is orthogonal to the
above research in the sense that integrating our solutions
with these techniques of collecting hints can significantly
reduce the power consumption for a hybrid storage sys-
tems.

2.3 Predictive Prefetching

Predictive Prefetching (a.k.a., automatic prefetching) relies
on past I/O accesses history in order to predict the appli-
cation’s future accesses and to prefetch the predicted future
data [4, 18]. One example of the predictive approach model
is Griffioen and Appleton’s. It was developed for encoding
past access patterns and future access probabilities [4]. In
their model, they used directed weighted graphs to estimate
access probabilities [4].

Recently, we developed another predictive approach
solution that models an automatic prefetching and caching
system called APACS [18]. We integrated three unique
techniques into APACS (1) dynamic cache partitioning, (2)
prefetch pipelining, and (3) prefetch buffer management.
Our solution—APACS dynamically partitions the buffer
cache memory, used for prefetched and cached blocks, by
automatically changing buffer/cache sizes in accordance to
global I/O performance.

2.4 Energy-aware Prefetching and Caching

Several solutions used prefetching techniques to reduce
the power consumption [34, 35]. Athanasios presented a
novel method for reducing the storage system power con-
sumption using prefetching and caching techniques. Their
main concept is to make accurate prefetching decisions



168 J Sign Process Syst (2013) 72:165–180

in order to aggressively prefetch and cache the data from
the disk. This makes the disk sleep as much as possi-
ble and save power. They tested their system performance
using a wide variety of real world benchmarks. How-
ever, the system efficiency is restricted by the cache size
and the prefetching process accuracy. Our solution differs
from the existing energy-aware prefetching and caching
techniques. It works for hybrid storage systems in the
sense that it prefetch the data to an energy efficient
storage device of the system based on the application-
disclosed access patterns (prefetching process is always
accurate).

3 System Design

Compared with existing energy-aware prefetching schemes,
Eco-Storage introduces a set of salient features: support
application-disclosed I/O access hints and can prefetch
the data in a hybrid storage system in parallel with the
application’s on-demand I/O read requests. Before pre-
senting the Eco-Storage implementation details, we first
outline a high-level overview of its hardware and software
architectures.

3.1 Hardware and Software Architectures

The system consists of an application (user) that can pro-
vide hints of its future accesses. The hierarchy from top
to bottom consists of a cache and an array of two levels
of storage devices (Solid State Drive (SSD) and Hard
Disk Drive (HDD)) as shown in Fig. 1. SSD level is more
energy-efficient than the HDD one.

Concerning Eco-Storage software architecture, the appli-
cations provide hints on future I/O accesses. Eco-Storage
contains a software module that do informed prefetching
process by fetching hinted blocks from hard drives to the
solid state disks. Eco-Storage works in parallel with the
application’s on-demand I/O reading request that are issued

Figure 1 Eco-Storage’s hardware architecture consists of an array of
hybrid disks.

to the hybrid storage system. Eco-Storage keeps prefetch-
ing a particular number—which depends on available I/O
bandwidth and the desired number of prefetching groups—
of hinted blocks to the SSD level. The application can use
the cache to buffer its on-demand reads. In a hybrid stor-
age system, the application’s on-demand reading requests
are first issued to solid state disks. If hinted blocks are not
residing in the solid state disks, the blocks will be read from
hard drives.

3.2 Assumptions

In this paper, we will assume a similar conservative assump-
tion as we did in [1] and in [2]. We assume that hinted data
blocks are initially allocated to HDDs thanks to the large
capacity of the HDDs. It is noteworthy that I/O performance
and energy efficiency of the hybrid storage systems can be
improved if hinted blocks are initially placed in SSDs rather
than HDDs.

In a hybrid storage system, a small portion of SSD
space is reserved for retaining copies of the prefetched data.
In order to save the I/O bandwidth, Eco-Storage keeps
original copies at the HDD level while fetching duplicated
copies to SSDs, instead of migrating data from HDDs to
SSDs,

3.2.1 Bandwidth Limitations

We assume that the maximum I/O bandwidth offered by
a parallel storage system equals the maximum number of
concurrent read requests that may take place in the storage
system without causing any congestion. Thus, the maximum
I/O bandwidth depends on the scalability of the storage sys-
tem. This means that each disk (storage node) can serve one
reading request at a time without any congestion. A similar
assumption can be find in the literature (see, for example,
[3]). Striping patterns vary among the different parallel stor-
age systems types (e.g. RAID various types). Our solution is
valid whenever the storage system can provide parallelism.
The study and evaluation of different striping patterns is
out of our research scope. However, whatever stripping pat-
tern is used, we stay on our assumption that the parallel
storage system can serve a limited number of concurrent
reading request at a time depending on the number of
available disks.

3.3 Data Initial Placement

Let us consider a simple hybrid storage system, where
there are two-level disk arrays composed of an SSD (top)
and an HDD (bottom). The data initial allocation could be
distributed between the two levels. In our simulation studies,
we initially place all of the data blocks in the HDDs (bottom
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level). This initial data placement is reasonable because of
the following five reasons.

• HDDs have larger storage capacity than SSDs. So, it is
more likely to find the data in the HDDs more than the
SSDs.

• Research of prefetching in hybrid storage systems
(see previous studies conducted by Nijim and Zhang
et al.) indicates that the lower levels of the hierarchy
contain the less important data [5, 13]. This implies
that prefetching techniques comes to move data that is
likely to be accessed in the future to the uppermost-level
storage devices. This increases the probability of find-
ing hinted data blocks in the HDDs level.

• To assume that all the data are initially allocated in the
lowest level (e.g., HDDs in our study) represents the
worst case scenario. This is because SSDs are more
energy efficient than HDDs.

• In case that a hinted data block is already allocated in
the SSD level, the corresponding informed prefetching
request will be discarded.

3.4 Prefetching for Data Transfers

We build a prefetching model to transfer data to the top level
in a hybrid storage system in parallel with the application
on-demand read requests. In our design, the lowest-level
storage devices (i.e. HDD) always achive original copies
of prefetched data. Where the top-level (i.e. SSD) achieve
copies of the original data. Our motivations behind this
design are:

• Saving the higher-level storage devices space which
are more expensive than the lower-level counterparts.
Eco-Storage prefetching does not consume the
higher-level storage space as we will see later.

• Migrating the entire data blocks from HDDs to SSDs
needs to keep moving the data back and forth among
multiple-level storage, which consumes I/O bandwidth.

3.5 Block Size

As we did in [1], hybrid storage systems consist of a storage
devices hierarchy where the top level’s performance is the
best. Using SSDs and HDDs installed in the servers in our
laboratory, we observed that an SSD does not provide bet-
ter performance than an HDD for small data blocks; SSDs
are faster than HDDs when the block size is at least 10MB.
For this reason, we validated our system parameters based
on that block size.

In addition, several file systems use large data block sizes
to improve the I/O performance. They pack data into large
blocks in order to achieve that. For example, HDFS (Hadoop
Distributed File System) data block size is 64 MB [21].

In reference [22], HDFS block size is increased in order
to obtain an improved system performance.In case the data
blocks are small, Hadoop achieves (HAR) tool is used to
pack them into a large one [33].

In case a different block size is used, our solution will
stay valid and able to save energy. This is because it
prefetches the data blocks from HDD (energy inefficient)
to SDD (energy efficient). In addition to energy saving, our
solution cares about achieving performance improvement.
For this reason, in this paper we will use a 10MB block size.

3.6 LASR Traces

We developed a trace-driven simulators to evaluate per-
formance of our Eco-Storage prefetching mechanisms
under I/O-intensive workload. Traces used in our exper-
iments represent applications that have negligible CPU
processing time and a particular on-demand read time
between each two subsequent I/O reading requests that
we will validate later. All data blocks in the tested traces
have identical block size. More specifically, we use the
machine06 trace (called LASR2) [37] in our simulation
study.

4 Eco-Storage Algorithm

The informed prefetching algorithm—TIP (see [3] for
details)—makes use of applications’ hints of future
I/O accesses to prefetch the data before it is actu-
ally accessed. In this section, we will use the informed
prefetching technique to bring the data in groups from the
lower levels to the upper-most one in a hybrid storage
system. This mechanism will be held in parallel with the
application’s on-demand I/O reading requests. Our hybrid
storage system consists of two levels, SSD on the top and
HDD in the bottom. In such system, SSD level is more
energy efficient. The purpose of grouping the data prefetch-
ing process from the HDD to the SDD is to give the HDD as
much as possible of standby time which reduces its energy
consumption. At the HDD standby time, all the applica-
tion’s on-demand I/O reading requests will be found in the
SDD level. We call our new informed prefetching technique
Eco-Storage.

Our empirical experiments indicate that parallel stor-
age systems may have I/O congestion. Evidence shows
that there is a maximum number of read requests being
concurrently processed in a parallel storage system. In
the event that the application issues only one on-demand
I/O reading request at a time, the rest unused I/O band-
width can be allocated for our prefetching mechanisms
to bring hinted blocks from lower-level to upper-level
storage.
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This section presents an algorithm that guides us in
implementing the Eco-Storage mechanism for a single node
parallel hybrid storage systems.

4.1 Definitions

Eco-Storage does informed prefetching between SSD level
and the HDD one. When an application starts its execution,
it starts to issue on-demand I/O reading request. Recall that
we assume no caching. This means that the application con-
tinues to issue a single I/O reading request at a time. This
may not utilize the parallel storage system’s bandwidth.
Based on the non-utilized portion of the I/O bandwidth,
Eco-Storage assigns its prefetching depth.

Let MaxBW be the maximum number of read requests
that may take place concurrently in the parallel hybrid
storage system. Since each disk can handle at least one read
request without congestion, the value of MaxBW depends
on the number of disks nodes and the available aggregated
I/O bandwidth. So, we will set MaxBW equals to the num-
ber of disks nodes. Since the application issues only a single
on-demand I/O reading request to the parallel hybrid stor-
age system, the rest bandwidth is used for Eco-Storage’s
prefetching depth. The prefetching depth is determined by
Eq. 1; this number represents the maximum space that needs
to be reserved for each group of Eco-Storage prefetching
requests in the uppermost level (i.e, SSDs). Eco-Storage
prefetching depth does not consume the SSD storage space

Figure 2 Eco-storage with single/ double prefetching group(s). When
the application starts, it will continue to issue on-demand I/O read-
ing requests. Eco-Storage starts to prefetch future hinted data blocks
in groups from the HDD to the SSD. Each group is of Pdepth depth.
pPosition represents the distance between the consequent Eco-Storage

grouped prefetching requests. When all the prefetched data blocks
are accessed by the application, Eco-Storage issues new grouped
prefething requests. When the number of prefetching groups increases,
more on-demand requests will be satisfied from the SSD. This enables
the HDD to sleep and to save power.
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because it will reserve only a single data block space at each
SSD of the array for each prefetching group. Please note
that a prefetching group is a number of adjacent informed
prefetching reads from the HDD to the SDD that equals to
Pdepth)(see: Fig. 2).

Pdepth = MaxBW − 1 (1)

where;

Pdepth Eco-Storage prefetching depth
MaxBW Maximum bandwidth

The application continues to issue a single on-demand
I/O reading request to the hybrid storage system at a time.
The request may be found in either levels. At the same time,
Eco-Storage keeps fetching one or more future hinted data
blocks groups from HDDs to the SSDs. Each group is of
size Pdepth hinted data blocks. Please note that the num-
ber of prefetching groups is arbitrary. Eco-Storage consists
of an algorithm (pPosition) that determines the position of
the first hinted block of the next consequent group to be
prefetched from HDDs to the SSDs. At the beginning of the
program execution, next consequent group to be prefetched
from HDDs to the SSDs will be the first one. Initially, the
application on-demand requests are found either in the HDD
or in the SSD levels. This continues until the hinted data
blocks arrive in the uppermost level(i.e., SSD). At this point,
the application on-demand requests will be satisfied from
the SSD level. As more I/O bandwidth becomes available
for Eco-Storage to fetch hinted blocks, a more prefetch-
ing depth requests can be handled in the uppermost level.
When the prefetched data blocks are completely read by the
application’s on-demand requests, they will be consumed
from the SSD’s prefetching buffer and new Eco-Storage
prefetching requests are initiated. As we mentioned, more
I/O bandwidth will increase the Eco-Storage prefetching
depth which opens more room for the HDD to sleep and to
save power.

The hybrid storage system consists of an array of HDDs
and SSDs. Thdd−cache is the time spent in retrieving a sin-
gle data block from the HDD to the application cache.
Tss−cache is the time spent in retrieving a single data block
from the SSD to the application cache. Thdd−ss is the disk
read latency from the HDD to SSD. Tss−cache is less than
Thdd−cache, because the performance of SSD is higher than
that of HDD.

4.2 The pPosition (Starting Position) Algorithm

Eco-Storage prefetch the data from the HDD level to the
SDD one in parallel with the application’s on-demand I/O

reading requests. At the beginning of the application exe-
cution, Eco-Storage issues a prefetching request for future
hinted data blocks stating from a position that is calculated
by pPosition algorithm. The depth of the prefetching request
depends on the number of the prefetching groups (groups
count is at least = 1). Each group’s depth is equal to Pdepth

value that is calculated by Eq. 1. When all the prefetched
data blocks are requested by the application, they will be
consumed from the prefetching buffer in the SSD after they
are fully fetched from the SSD to the cache (main memory)
of the application. At this time, Eco-Storage issues a new
prefetching request of the same number of groups for future
hinted data block. The pPosition algorithm will determine
the position of the next hinted data block to start prefetching
from relatively from the last prefetched data block. So, the
pPosition (starting position) is the elapsed distance between
the beginning (or between the last recently prfetched data
block) and the beginning or the next upcoming prefetching
request (see: Fig. 2).

Algorithm 1 The pPosition Calculation Algorithm: Deter-
mines the next grouped prefetching request’s starting posi-
tion. The prefetching request will be from the HDD to the
SSD

accesstime = 0
flag = true
blockcounter = 0
latestAppRequestPos = The position of the applica-
tion’s last on-demand requested data block
while flag = true do

blockcounter ++
accesstime + = Tss− cache

if accesstime Thdd − ss then
pPosition = latestAppRequestPos + blockcounter
flag = false
return pPosition

end if
end while

Algorithm 1 Returns the hinted block position for which
Eco-Storage begins/continues prefetching from. It depends
on the Thdd−ss assuming that all the on-demand data blocks
are found in the SSD (fastest). It is calculated relatively from
the position of the application’s last on-demand requested
data block. The algorithm calculates the hinted data block’s
position that will be accessed after enough time to have it
read from HDD to SSD.

Figure 2 illustrates an example of Eco-Storage working
with an application that contentiously issues on-demand I/O
reading requests when using a single or double prefetching
groups. MaxBW is set to 15. Eco-Storage prefetch Pdepth

number of data blocks per group from the HDD to the SSD.
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The application finds the prefetched data blocks in the SSD.
When the number of prefetching groups is increased, more
consequent on-demand requests will be found in the SSD.
This enables the HDD to standby and to save power. If the
number of Eco-Storage prefetching groups equals to one,
HDD will sleep for Tss−cache ∗ pGroupsCount ∗ Pdepth time
duration. On the other hand, if the number of Eco-Storage
prefetching groups is more than one, HDD will sleep for
(Tss−cache ∗ pGroupsCount ∗ Pdepth) − ((pGroupsCount −
1) ∗ Thdd−ss) time duration.

4.3 The Eco-Storage Algorithm

Algorithm 2 Eco-Storage Algorithm

pPosition = call the pPosition Calculation Algorithm
Input pGroupsCount value
MaxBW = Maximum number of concurrent reading
requests
Pdepth = MaxBW − 1
while application on-demand requests do

if all the recently prefeteched data blocks in the SSD
are requested by the application then

pPosition = call the pPosition Calculation Algo-
rithm
for block = pPosition To block = Pdepth * pGroups-
Count do

prefetch block to from HDD to SSD
if bandwidth shortage then

shrink the Pdepth value by 1
end if

end for
if any prefetched data block is altered then

discard the prefetched data block from the SSD
end if

end if
end while

Algorithm 2 The Eco-Storage algorithm calls the pPos-
tion algorithm to determine the first hinted block to be
fetched from HDD. It inputs the number of prefetching
groups. Next Eco-Storage calculates the prefetching depth
(i.e., Pdepth), which is affected by the available I/O band-
width. Then, Eco-Storage keeps prefetching the data from
the HDD to the SSD in groups in parallel with the applica-
tion’s on-demand requests. When the prefetetched group(s)
is/are accessed by the application, Eco-Storage issue a new
grouped prefetching request. Eco-Storage keeps calculating
the pPostion value that determines the first hinted block
to start the next grouped prefetching request from. Eco-
Storage can handle any bandwidth shortage or data block
modification.

5 Performance Evaluation

In this section, we are going to simulate our Eco-Storage
solution in order to provide performance evaluation. First,
we are going to validate the system parameters of our simu-
lators using data collected from real-world storage systems
Then, we are going to present our simulation results.

5.1 System Parameters’ Validations

In this paper, we are going to use system parameters that are
related to the storage system performance and that we have
validated in [1]. Then, we are going to validate the param-
eters that are related to the energy consumption using the
vendors specifications’ documents of our research lab’s test
bed equipments.

The following list summarizes the validated system
parameters:

• Data block size.
• Thdd−ss : Time to fetch a single data block from HDD

and to store the block in SSD.
• Thdd−cache: Time to fetch a single data block from

HDD and to store the block in the cache.
• Tss−cache: Time to fetch a single data block from SSD

and to store the block the cache.
• HDDActive: HDD Power consumptions in active mode
• HDDSleep: HDD Power consumptions in standby mode
• SSDActive: SSD Power consumptions in active mode
• SSDIdle: SSD Power consumptions in idle mode

5.1.1 System Setup

All the system parameters used in our simulator and that are
related to the storage system performance are validated by
the testbed in our laboratory at Auburn. The following are
storage devices tested in our laboratory:

– Memory: Samsung 3GB RAM Main Memory.
– HDD : Western Digital 500GB SATA 16 MB Cache

WD5000AAKS.
– SSD: Intel 2Gb/s SATA SSD 80G sV 1A.

For energy related system parameters, we refereed to above
testbed vendors documents.

In [1], we set the block size to be equal to 10MB because
SSD is guaranteed to exhibit better performance than HDD
at that data block size. We also validated SSD and HDD
read latencies (i.e., Tss−cache, Thdd−cache respectively). We
also validate the Thdd−ss latency which is the time spent in
reading a data block from an HDD and write the block back
to the SSD.

For energy related system parameters, we validated both
HDD and SSD power consumptions in both active and
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sleep/idle cases: HDDActive, HDDsleep, SSDActive, and
SSDIdle. In the next few sections, we are going to discuss
our system parameters’ validations in details.

5.1.2 Block Size

As we mentioned, our preliminary results [1] based on our
storage devices indicate that an SSD is guaranteed to exhibit
better performance than HDD when the data block size is
10 MB for our single node system testbed. So, we are going
to set the block size to 10 MB.

5.1.3 Storage System Performance Parameters’ Validation

Storage system performance parameters that we are going
to validate are the I/O access latencies like Thdd−ss ,
Thdd−cache, and Tss−cache when block size is 10MB.

According to [1], Figs. 3, 4, and 5 show that Thdd−ss

approximately equals to 0.122 seconds, Thdd−cache is
about 0.12 seconds , and Tss−cache is in the neighbour-
hood of 0.052 seconds when block size is 10 MB. Worst
case scenario is used by taking the highest recorded
values.

5.1.4 Energy Consumption Parameters’ Validation

According to our research lab testbed vendors specifica-
tions’ documents [38, 39], our Western Digital HDD con-
sumes 3.7 W/sec on read/writes (when it is in the active
mode) and 0.5 W/sec when it is in the standby mode. Our

Intel SSD consumes 150 mW/sec when active and 100
mW/sec when idle. This show that SSD are more energy
efficient. Please note that we are going to assume no HDD
spin up/down overheads since they are not mentioned in [38,
39]. Even if there are HDD spin up/down overheads, they
will not make a significant increase in the system’s power
consumption due to the long standby intervals as we will
see later.

5.2 The Eco-Storage Simulation

We implement the Eco-Storage algorithm in a trace-driven
simulator written in C++. Power consumption in terms of
(watt) when different cases of MaxBW and groups count
is our performance metric that we used to evaluate Eco-
Storage performance in the simulated two-level (i.e., SSD
and HDD) storage system (see Fig. 1). For each testing
case, we vary the numbers of MaxBW or the prefetching
groups count. The figures below show the Eco-Stroage-
enabled case. However, we found that without Eco-Storage,
the power consumption is always constant. As we assumed
previously, data blocks are initially placed in HDDs. Eco-
Storage groups the informed prefetching process and sends
copies of the original data from the lowest level (i.e HDD) to
the uppermost one (i.e SSD). This aims to give the HDD the
longest possible time to standby (sleep) and save power. The
Eco-Storage mechanism coordinates the prefetching pro-
cess of the hinted blocks from HDDs to SSDs. When the
application issues an on-demand request for a prefetched
data block, it will be found in the SSD.

Figure 3 10 MB: Estimated Thdd−ss is 0.122 s.
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Figure 4 10 MB: Estimated Thdd−cache is 0.12 s.

In [1], we also used both LASR Machine01 and LASR
Machine06 from the LASR trace suite [36, 37]. In this sim-
ulation, we are going to use LASR Machine06 trace because
it has a longer execution time. LASR Machine06 consists

of 51206 I/O read system calls. Each I/O request is access-
ing a data block from the two-level storage system. In our
simulation, each of these I/O reading requests represents
both an application I/O on-demand request and a future

Figure 5 10 MB: Estimated Tss−cache is 0.052 s.
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data block access hint for Eco-Storage informed prefetching
mechanism.

In this simulation, we will use the system parameters
that we validated in the previous subsection. Recall that the
block size equals to 10MB. Data is initially stripped in the
HDD layer of the two-level storage system.

Since both Eco-Storage and the application’s on-demand
requests work concurrently, the maximum number of read
requests issued to HDDs is MaxBW . In this simulation,
we simulate Eco-Storage starting from MaxBW value that
equals to 15. Note that this value is 15 in the TIP study [3]
since they are using 15 disks assuming that each single read
request needs one disk not to face any congestions. Then,
we simulate an increasing values of MaxBW one- by-one up
to 20. The application on-demand request will use one slot
of the maximum available bandwidth MaxBW . The rest are
used for Eco-Storage prefetching.

The Eco-storage prefetching depth does not consume the
SSD space. For example, when MaxBW equals to 15 and
groups count equals to one, Eco-Storage prefetching depth
is equal to 14. In this case, Eco-Storage needs 140 MB.

5.2.1 Reducing Energy Consumption

The experimental results show that Eco-Storage reduces the
total energy consumption. In non-Eco-Storage case, the
system’s power consumption is always constant and equals

to 23349.9 watt. Figures 6, 7, and 8 show the total energy
consumption value in terms of (watt) with different numbers
of prefetching groups count from 1 to 5 and when setting
the MaxBW to subsequent values from 15 to 20. In all cases,
Eco-Storage provides at least 75 % reduction in power
consumption. However, when the prefetching groups count
increases, Eco-Storage will become more efficient as it will
become more able to increase the HDD standby (sleeping)
time intervals. When MaxBW increases, Eco-Storage will
become able to increase the prefetching group’s depth which
boosts it efficiency. Figures 9, 10, and 11 show the total
energy consumption value in terms of (watt) with a vari-
ant numbers of MaxBW from 15 to 20 and when setting
prefetching groups count to different values from 1 to 5.
As we mentioned, increasing the MaxBW values will make
Eco-Storage able to prefetch the data aggressively. When
the groups count increases from 1 to 2, there will be a sig-
nificant decrease in the total power consumption. This is
because the amount of the prefetched data starts to duplicate
at that point.

6 Conclusion & Future Work

In this paper, we presented an energy-aware informed
prefetching technique - Eco-Storage- for hybrid storage sys-
tems. Eco-Storage makes use of the application-disclosed-

Figure 6 Total energy consumption in (watt) when using different number of prefetching groups count from 1 to 5. MaxBW is set to 15 and 16.
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Figure 7 Total energy consumption in (watt) when using different number of prefetching groups count from 1 to 5. MaxBW is set to 17 and 18.

Figure 8 Total energy consumption in (watt) when using different number of prefetching groups count from 1 to 5. MaxBW is set to 19 and 20.
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Figure 9 Total energy consumption in (watt) when using different number of MaxBW from 15 to 20. Prefetching groups count is set to 1 and 2.

Figure 10 Total energy consumption in (watt) when using different number of MaxBW from 15 to 20. Prefetching groups count is set to 3 and 4.
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Figure 11 Total energy consumption in (watt) when using different number of MaxBW from 15 to 20. Prefetching groups count is set to 4 and 5.

hints to prefetch the hinted data to an energy efficient stor-
age device (i.e. SSD) in the hierarchy in order to save power.
The prefetching process is done in groups and in paral-
lel with the application’s on-demand I/O reading requests.
Since SSD’s are more energy efficient than HDDs, Eco-
Storage aims to make the HDDs to standby as much as
possible to reduce their power consumption. Compared with
the existing energy-aware prefetching techniques, our Eco-
Storage approach has the following two salient features.
First, Eco-Storage works in hybrid storage systems. Next, it
performs grouped informed prefetching in parallel with the
application on-demand requests.

We implemented a simulator for our energy-aware
informed prefetching schemes. Our results show that our
Eco-Storage reduces the power consumption by at least
75 % under I/O-intensive workload conditions.

Our solution was tested when only using a single appli-
cation. In reality, there maybe multiple applications run-
ning concurrently. In that case, our solution will stay valid
because it will divide the aggregated bandwidth among
the running applications and will stay able to prefetch the
data in groups and to save energy. However, the expected
performance improvement maybe degraded as the number
of running applications increases. But in the same time,
parallel storage systems can provide very high bandwidth
thanks to their ability to scale up. Our future work is to
test our solution when using several applications running
concurrently.

Our future work also is to develop an energy-aware
predictive prefetching approach for hybrid storage systems.
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