Skip to main content
Log in

Coarse-grained Dynamically Reconfigurable Processor for Vision Pre-Processing

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The operations in vision pre-processing, especially two-dimensional convolution, are computation-intensive and demand high flexibility. Reconfigurable hardware has been typically used to achieve a good trade-off between performance and flexibility. A coarse-grained dynamically reconfigurable processor is presented for vision pre-processing. The processor architecture is a combination of a hardware reconfiguration controller, a color space converter, a reconfigurable convolution array, a convolution post-processing module, and a sampling and storing module. The dynamic reconfiguration approach and coarse-grained architecture can improve the performance and flexibility of the processor. The reconfigurable convolution array, which is the main component of the processor, can simultaneously perform convolutions with different masks, with the maximum mask size up to 16 × 16. The hardware reconfiguration controller can shorten the reconfiguration time and reduce the application difficulty. The processor is implemented on an FPGA. Experimental results show that the frame rate of the processor is more than 150 fps, far exceeding the real-time requirement for the vision system. Synthesis results show that the processor can deliver 87.1 GOPS and 3.95 GOPS/mm2 at 140 MHz system clock in SMIC 0.18μm CMOS process. The simulation and experimental results demonstrate that the processor is applicable to real-time vision pre-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Milan, S., Vaclav, H., Roger, B. (2007). Image processing, analysis, and machine vision, 3, Thomson Learning.

  2. Roy, D. (2005). Machine vision: theory, algorithms, practicalities, 3, Singapore: Elsevier.

    Google Scholar 

  3. Javier, R.M. (2008). Tutorial on Gabor Filters. http://mplab.ucsd.edu/tutorials/gabor.pdf.

  4. Hanene, T., Mohamed-Salim, B., Nabil, D.D., Lotfi, K. (2002). A survey and evaluation of edge detection operators application to medical images. In IEEE international conference on systems, man and cybernetics (pp. 706–709).

  5. Nicolas, F., Franck, M., Sebastien, R., Fan, Y., Michel, P. (2009). Fast and robust face detection on a parallel optimized architecture implemented on FPGA. IEEE Transactions on Circuits and Systems for Video Technology, 19(4), 597–602.

    Article  Google Scholar 

  6. Chih-Chi, C., Chia-Hua, L., Chung-Te, L., Liang-Gee, C. (2009). iVisual: an intelligent visual sensor SoC with 2790fps CMOS image sensor and 205GOPS/W vision processor. IEEE Journal of Solid-State Circuits, 44(1), 127–135.

    Article  Google Scholar 

  7. Nao, I., Shingo, K., Koichi, H. (2007). A dynamically reconfigurable architecture combining pixel-level SIMD and operation-pipeline modes for high frame rate visual processing. In IEEE international conference on field-programmable technology (pp. 321–324).

  8. Wan-cheng, Z., Qiu-yu, F., Nan-jian, W. (2011). A programmable vision chip based on multiple levels of parallel processors. IEEE Journal of Solid-State Circuits, 46(9), 1–16.

    Article  Google Scholar 

  9. Abdelhafid, E., Samir, B., Antoine, D., Lionel, L., Jacques-Olivier, K., Roger, R. (2007). Image processing vision systems: standard image sensors versus retinas. IEEE Transactions on Instrumentation and Measurement, 56(5), 1675–1687.

    Article  Google Scholar 

  10. Jun-bao, L., Shuai, W., Yi, L., Jun, H., Xiao-yang, Z. (2010). Configurable pipelined gabor filter implementation for fingerprint image enhancement. In IEEE international conference on solid-state and integrated circuit technology (pp. 584–586).

  11. Kill, B., & Amira, A. (2011). Efficient reconfigurable architectures of generic cyclic convolution. In IEEE 15th international symposium on consumer electronics (pp. 560–564).

  12. Clement, F., Cyril, P., Jefferson, Y.H., Yann, L. (2009). CNP: An FPGA-based processor for convolutional networks. In International conference on field programmable logic and applications (pp. 32–37).

  13. Xinxin, W., & Betram, E.S. (2010). GPU implemention of fast gabor filters. In Proceedings of 2010 IEEE international symposium on circuits and systems (pp. 373–376).

  14. Ben, C., Peter, Y.K.C., Wayne, L., Sarah, W. (2005). Have GPUs made FPGAs redundant in the field of video processing? In IEEE international conference on field-programmable technology (pp. 111–118).

  15. Takashi, K., Shingo, K., Masatoshi, I. (2004). A dynamicall reconfigurable SIMD processor for a vision chip. IEEE Journal of Solid-State Circuits, 39(1), 265–268.

    Article  Google Scholar 

  16. Gustavo, L.C., Angel, R., Ricardo, C.G., Jiménez-Garrido, F., Servando, E., Rafael, D. (2004). A 1000 FPS at 128128 vision processor with 8-bit digitized I/O. IEEE Journal of Solid-State Circuits, 39(7), 1044–1055.

    Article  Google Scholar 

  17. Wei, M., Qing-yu, L., Wan-cheng, Z., Nan-jian, W. (2008). A programmable SIMD vision chip for real-time vision applications. IEEE Journal of Solid-State Circuits, 43(6), 1470–1479.

    Article  Google Scholar 

  18. Anteneh, A.A., Richard, P.K., Vishal, C., Leo, S., Paul, W., Sebastien, M., Bart, V., Marc, H. (2008). Xetal-II: a 107 GOPS, 600 mW massively parallel processor for video scene analysis. IEEE Journal of Solid-State Circuits, 43(1), 192–201.

    Article  Google Scholar 

  19. Alan, M., Tony, S., Igor, K., Jean, V., Brad, H. (1999). A reconfigurable arithmetic array for multimedia applications. In Proceedings of the 1999 ACM/SIGDA seventh international symposium on field-programmable gate arrays (pp. 135–143).

  20. John, R.H., & John, W. (1997). Garp: a MIPS processor with a reconfigurable coprocessor. In IEEE symposium on field-programmable custom computing machines (pp. 12–21).

  21. Hartej, S., Ming-hau, L., Guangmind, L., Fadi, J.K., Nader, B., Eliseu, M.C.F. (2000). MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE Transactions on Computers, 49(5), 465–481.

    Article  Google Scholar 

  22. Christian, P., & Marco, P. (2005). Zippy-A coarse-grained reconfigurable array with support for hardware virtualization. In Proceedings of the IEEE international conference on application-specific systems, architecture processor (pp. 213–218).

  23. Bingfeng, M., Andy, L., Jean-Yves, M., Diederik, V., Rudy, L. (2005). Architecture exploration for a reconfigurable architecture template. IEEE Design & Test of Computers, 90–101.

  24. PACT XPP technologies, XPP-III processor overview (White Paper). (2006).

  25. Kuizhi, M., Bing, Z., Chenyang, G. (2009). A hierarchical and parallel SoC architecture for vision procesor. IEICE Electronics Express, 6(19), 1380–1386.

    Article  Google Scholar 

  26. Alexey, L. (2011). A SIMD cellular processor array vision chip with asynchronous processing capabilities. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(10), 2420– 2431.

    Article  MathSciNet  Google Scholar 

  27. Perri, S., & Corsonello, P. (2007). VLSI implementations of efficient isotropic flexible 2D convolvers. IET Circuits Devices Systems, 1(4), 263–269.

    Article  Google Scholar 

  28. Michael, D.C. (2004). Advanced digital design with the verilog HDL. India: Prentice Hall India.

    Google Scholar 

  29. Chip-Hong, C., Jiangmin, G., Mingyan, Z. (2004). Ultra low-voltage low-power CMOS 4–2 and 5–2 compressors for fast arthmetic circuits. IEEE Transactions on Circuits and Systems-I, 51(10), 1985–1997.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61231018 and 60905007) and Ministry of education program for New Century Excellent Talents (NCET-11- 0427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Mei, K. & Zheng, N. Coarse-grained Dynamically Reconfigurable Processor for Vision Pre-Processing. J Sign Process Syst 79, 45–61 (2015). https://doi.org/10.1007/s11265-013-0828-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0828-1

Keywords

Navigation