Skip to main content
Log in

Clockless Stochastic Decoding of Low-Density Parity-Check Codes: Architecture and Simulation Model

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper introduces clockless stochastic decoding for high-throughput low-density parity-check (LDPC) decoders. Stochastic computation provides ultra-low-complexity hardware using simple logic gates. Clockless decoding eliminates global clocking, which eases the worst-case timing restrictions of synchronous stochastic decoders. The lack of synchronization might use outdated bits to update outputs in computation nodes; however, it does not significantly affect output probabilities. A timing model of clockless-computation behaviours under a 90 nm CMOS technology is used to simulate the BER performance of the proposed decoding scheme. Based on our models, the proposed decoding scheme significantly reduces error floors due to the “lock-up” problem and achieves superior BER performance compared with conventional synchronous stochastic decoders. The timing model includes metastability to verify the affect on BER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Gallager, R. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 8(1), 21–28.

    Article  MATH  MathSciNet  Google Scholar 

  2. MacKay, D. JC. (1997). Good error-correcting codes based on very sparse matrices (p. 113).

  3. Darabiha, A., Chan Carusone, A., Kschischang, F. R. (2008). Power reduction techniques for LDPC decoders. IEEE Journal of Solid-State Circuits, 43(8), 1835–1845.

    Article  Google Scholar 

  4. Zhang, Z., Anantharam, V., Wainwright, M. J., Nikolic, B. (2010). An efficient 10GBASE-T Ethernet LDPC decoder design with low error floors. IEEE Journal of Solid-State Circuits, 45(4), 843–855.

    Article  Google Scholar 

  5. Mohsenin, T., Truong, D. N., Baas, B. M. (2010). A low-complexity message-passing algorithm for reduced routing congestion in LDPC decoders. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(5), 1048–1061.

    Article  MathSciNet  Google Scholar 

  6. Blanksby, A. J., & Howland, C. J. (2002). A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-State Circuits, 37(3), 404–412.

    Article  Google Scholar 

  7. Gaudet, V. C., & Rapley, A. C. (2003). Iterative decoding using stochastic computation. Electronics Letters, 39(3), 299–301.

    Article  Google Scholar 

  8. Sharifi Tehrani, S., Gross, W. J., Mannor, S. (2006). Stochastic decoding of LDPC codes. IEEE Communications Letters, 10(10), 716–718.

    Article  Google Scholar 

  9. Sharifi Tehrani, S., Mannor, S., Gross, W. J. (2008). Fully parallel stochastic LDPC decoders. IEEE Transactions on Signal Processing, 56(11), 5692–5703.

    Article  MathSciNet  Google Scholar 

  10. Sharifi Tehrani, S., Naderi, A., Kamendje, G.-A., Hemati, S., Mannor, S., Gross, W. J. (2010). Majority-based tracking forecast memories for stochastic LDPC decoding. IEEE Transactions on Signal Processing, 58(9), 4883–4896.

    Article  MathSciNet  Google Scholar 

  11. Onizawa, N., Gaudet, V. C., Hanyu, T., Gross, W. J. (2012). Asynchronous stochastic decoding of low-density parity-check codes. In Proceeding of IEEE 42nd international symposium on multiple-valued logic (ISMVL) (pp. 92–97).

    Google Scholar 

  12. Onizawa, N., Gross, W. J., Hanyu, T., Gaudet, V. C. (2012). Clockless stochastic decoding of low-density parity-check codes. In Proceeding of 2012 IEEE workshop on signal processing system (SiPS) (pp. 143–148).

  13. Kschischang, F. R., Frey, B. J., Loeliger, H.-A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.

    Article  MATH  MathSciNet  Google Scholar 

  14. Onizawa, N., Ikeda, T., Hanyu, T., Gaudet, V. C. (2007). 3.2-Gb/s 1024-b rate-1/2 LDPC decoder chip using a flooding-type update-schedule algorithm. In Proceeding 50th Midwest symposium on circuits and systems (pp. 217–220).

  15. Onizawa, N., Hanyu, T., Gaudet, V. C. (2010). Design of high-throughput fully parallel LDPC decoders based on wire partitioning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(3), 482–489.

    Article  Google Scholar 

  16. Onizawa, N., Gaudet, V. C., Hanyu, T. (2009). High-throughput bit-serial LDPC decoder LSI based on multiple-valued asynchronous interleaving. IEICE Transactions on Electronics, E92-C(06), 867–874.

    Article  Google Scholar 

  17. Onizawa, N., Gaudet, V. C., Hanyu, T. (2011). Low-energy asynchronous interleaver for clockless fully parallel LDPC decoding. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8), 1933–1943.

    Article  MathSciNet  Google Scholar 

  18. Christensen, K. T., Jensen, P., Korger, P., Sparso, J. (1998). The design of an asynchronous TinyRISCTM TR4101 microprocessor core. In Proceedings 1998 fourth international symposium on advanced research in asynchronous circuits and systems (pp. 108–119).

  19. Sparsø, J., & Furber, S. (2001). Principles of asynchronous circuit design: a systems perspective.

  20. Onizawa, N., Funazaki, T., Matsumoto, A., Hanyu, T. (2010). Accurate asynchronous network-on-chip simulation based on a delay-aware model. In Proceedings IEEE computer society annual symposium on (pp. 357–362).

  21. Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors. Journal of the Association for Computing Machinery, 2, 226–244.

    Article  MathSciNet  Google Scholar 

  22. Bertsekas, D.P., & El Baz, D. (1987). Distributed asynchronous relaxation methods ror convex network flow problems. SIAM Journal on Control and Optimization, 25, 74–85.

    Article  MATH  MathSciNet  Google Scholar 

  23. Bertsekas, D.P., & Tsitsiklis, J. (1989). Parallel and distributed computation, numerical methods.

  24. Wang, X., Ahonen, T., Nurmi, J. (2006). Prototyping a globally asynchronous locally synchronous network-on-chip on a conventional FPGA device using synchronous design tools. In Proceedings international conference on field programmable logic and applications 2006 (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Onizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onizawa, N., Gross, W.J., Hanyu, T. et al. Clockless Stochastic Decoding of Low-Density Parity-Check Codes: Architecture and Simulation Model. J Sign Process Syst 76, 185–194 (2014). https://doi.org/10.1007/s11265-013-0854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0854-z

Keywords

Navigation