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Abstract Panoptic is a custom spherical light field camera
used as a polydioptric system where imagers are distributed
over a hemispherical surface, each having its own vision of
the surroundings and a distinct focal plane. The spherical
light field camera records light information from any direc-
tion around its center. This paper revises previously devel-
oped Nearest Neighbor and Linear blending techniques.
Novel Gaussian blending and Restricted Gaussian blending
techniques for vision reconstruction of a virtual observer
located inside the spherical geometry are presented. These
new blending techniques improve the output quality of the
reconstructed image with respect to the ordinary stitch-
ing techniques and simpler image blending algorithms. A
comparison of the developed blending algorithms is also
given in this paper. A hardware architecture based on Field
Programmable Gate Arrays (FPGA) enabling the real-time
implementation of the blending algorithms is presented,
along with the imaging results and resource utilization com-
parison. A recorded omnidirectional video is attached as a
supplementary material.
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1 Introduction

A trend in constructing high-end computing systems con-
sists of parallelizing large numbers of processing units. A
similar trend is observed in digital photography, where mul-
tiple images of a scene are used to enhance performance of
the capture process. The most common applications relate to
increasing image resolution [1] and obtaining high dynamic
range images [2, 3]. Virtualized reality and view interpola-
tion for creating the illusion of a three-dimensional scene is
another use of multi-view systems [4].

Early systems for capturing multiple views were based
on a translating [5] or rotating [6–8] high-resolution camera
for capturing and later rendering the scene. The advantage
of a rotating camera is in its capability to acquire a high-
resolution omnidirectional image, however at the cost of a
long acquisition time. Therefore, it is difficult to use such
systems to acquire a dynamic scene or a high frame rate
video. Another disadvantage of these concepts is the limited
vertical field-of-view, due to rotation around a single center.
These concepts were later extended to a dynamic scene by
using a linear array of still cameras [9].

An alternate approach to omnidirectional acquisition is
a catadioptric system, which consists of a convex mirror
placed above a single camera sensor [10]. Catadioptric sys-
tems have the advantage of real-time and high frame rate
video acquisition. However, such systems are limited to the
resolution of the sensor. Furthermore, their overall field-of-
view (FOV) is limited, since it is restricted to the area below
the sensor.
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For capturing large data sets, researchers focused on
arrays of video cameras. In addition to the synchronization
of the cameras, very large data rates present new challenges
for the implementation of these systems. The first camera
array systems were built only for recording and later offline
processing on Personal Computers (PC) [4]. Other such sys-
tems [11–13] were built with real-time processing capability
for low resolution and low frame rates. Another commercial
omnidirectional camera was developed by Pointgrey [14].
This camera provides real-time capability, however using a
limited number of sensors.

A general-purpose camera array system was built at Stan-
ford University [15] with limited local processing at the
camera level. This system was developed for recording large
amounts of data and its intensive offline processing, and not
for real-time operations. Recently, a camera system able to
acquire an image frame with more than 1 gigapixel resolu-
tion was developed [16]. The camera uses a very complex
lens system comprising of a parallel array of microcameras
to acquire the image. Due to the extremely high resolution
of the image, it suffers from a very low frame rate, even at
low output resolution. A similar system using multiple sen-
sors and a single ball lens is presented in [17]. This design
also lacks the ability to process data with high frame rates.

Most developed camera-array systems are bulky and
not easily portable platforms. Their control and opera-
tion depend on multi-computer setups. In addition, image
sensors on camera arrays are usually mounted on planar sur-
faces which prohibits them from covering the full view of
their environment. Full view or panoramic imaging finds
application in various areas such as autonomous navigation,
robotics, telepresence, remote monitoring and object track-
ing. Several solutions for acquiring omnidirectional images
and their application have been presented in [18].

A new approach for creating a multi-camera system dis-
tributed over a spherical surface is presented in [19, 20].
This new multi-camera system is referred to as the Panoptic
camera. The Panoptic camera is an omnidirectional imager
capable of recording light information from any direction
around its center. It is also a polydioptric system where each

CMOS camera sensor has a distinct focal plane. Figure 1
depicts two prototypes of a custom-made Panoptic camera.

The Panoptic camera is an image-based rendering sys-
tem. Similarly to other such concepts [5, 21, 22], Panoptic
acquires light ray information and interpolates it at render-
ing time. There are two main advantages of Panoptic over
these systems: storage requirements and computation time.
The light field/lumigraph methods require eight [22], five
[5] or four [21] dimensional information in order to render
the image. In contrast, Panoptic requires only the light ray
intensity, since the rendering is based on a small set of cal-
ibration parameters. The rendering algorithm is explained
in Section 2. This small set of parameters and the efficient
rendering algorithm allow real-time high frame rate video
reconstruction, which the previously mentioned concepts
fail to achieve.

Reconstruction of the omnidirectional view using a
multi-camera system can be regarded as creation of a photo-
mosaic. A major issue in creating photo-mosaics resides
in the fact that the original images do not have identical
brightness levels. This may be caused by diverging cam-
era orientations in space. Thus, cameras acquire more light
in some of the shots. The problem manifests itself by the
appearance of a visible seam in regions where the images
overlap. Adequate image blending is required to handle the
pixel instensity differences.

Blending is usually realized as a post-processing opera-
tion on a PC. However, real-time blending is often required
in multi-camera systems, which can be a very challeng-
ing problem. The algorithms based on a weighted average
between pixels in every image, e.g., “Cut and paste” algo-
rithm [23], are possible to implement in real-time. Further-
more, they can reduce or even completely remove the visible
seams. However, the drawback of a weighted average lies
in a high-frequency blurring in the presence of any small
image alignment error. This work focuses on the real-time
implementation of these algorithms and the comparison of
their results. Additionally, new algorithms are presented
which resolve high-frequency blurring without the need for
complex processing hardware.

Figure 1 Side view of the
fabricated Panoptic cameras
with a hemispherical diameter
of a 2 r� = 129 mm with 104
camera positions and b
2 r� = 30 mm with 15 camera
positions.
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The omnidirectional vision reconstruction algorithm is
presented in Section 2. Several additional abilities of Panop-
tic are discussed in the same section. An overview of the
implemented blending algorithms is discussed in detail in
Section 3. Hardware implementation of the system is given
in Section 4. Imaging results and comparisons are presented
in Section 5.

2 Omnidirectional Vision Reconstruction Algorithm

The omnidirectional vision of a virtual observer located
anywhere inside the hemisphere of the Panoptic structure
can be reconstructed by combining the information col-
lected by each camera in the light ray space domain (or light
field [5]).

In this process, the omnidirectional view is estimated on
a discretized spherical surface Sd of directions. The sur-
face of this sphere is discretized into an equiangular grid
with Nθ latitudes and Nφ longitudes samples, where each
sample represents one pixel. Figure 2a shows a pixelized
sphere with sixteen pixels for Nθ and Nφ each. A unit vec-
tor ω ∈ Sd , represented in the spherical coordinate system
ω = (θω,φω), is assigned to the position of each pixel.
Possible pixel distributions over the sphere are discussed in
Section 2.1.

The construction of the virtual omnidirectional view
L (q,ω) ∈ R, where q determines the location of the
observer, is performed in two steps. The first step consists of
finding a pixel in each camera image frame that corresponds
to the direction defined by ω. The second step consists of
blending all pixel values corresponding to the same ω into
one. The result is the reconstructed light ray L (q,ω).

To reconstruct the omnidirectional view, all the cameras
having an ω in their angle-of-view are first determined. To
extract the light intensity in that direction for each contribut-
ing camera, a pixel in the camera image frame has to be
found. Due to the rectangular sampling grid of the cameras,
the ω does not coincide with the exact pixel grid locations on
the camera image frames. The pixel location is chosen using
the nearest neighbor method, where the pixel closest to the
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Figure 2 Pixelized hemispherical surfaces Sd with Nθ = 16 latitude
pixels and Nφ = 16 longitude pixels (total of 256 pixels) using a
equiangular and b constant pixel density pixelization.

desired direction is chosen as an estimate of the light ray
intensity. The process is then repeated for all ω and results
in the estimated values L (ci ,ω), where ci is the radial
vector directing to the center position of the ith contribut-
ing camera’s circular face. Figure 3a shows an example of
the contributing cameras for a random pixel direction ω

depicted in Fig. 3b. The contributing position Aω of the
camera A, providing L (cA,ω) is also indicated in Fig. 3a.

The second reconstruction step is performed in the space
of light rays given by direction ω and passing through the
camera center positions. Under the assumption of Constant
Light Flux (CLF), the light intensity remains constant on the
trajectory of any light ray. Following the CLF assumption,
the light ray intensity for a given direction ω only varies
in its respective orthographic plane. The orthographic plane
is a plane normal to ω. Such plane is indicated as the “ω-
plane” in Fig. 3b, and represented as a gray-shaded circle
(the boundary of the circle is drawn for clarity purposes).
The light ray in direction ω recorded by each contributing
camera intersects the ω-plane in points that are the projec-
tions of the cameras focal points on this plane. The projected
focal points of the contributing cameras in ω direction onto
the ω-plane are highlighted by hollow points in Fig. 3b.
Each projected camera point Pci on the planar surface is
assigned the intensity value L (ci ,ω), that is calculated in
the first step.

As an example, the projected focal point of camera A
onto the ω-plane (i.e. PA) in Fig. 3b is assigned the intensity
value IA. The virtual observer point inside the hemisphere
(i.e. q) is also projected onto the ω-plane. The light inten-
sity value at the projected observer point (i.e. L (q,ω))
is estimated by one of the blending algorithms, taking
into account all L (q,ω) values or only a subset of them.
In the given example, each of the seventeen contributing
camera positions shown with bold perimeter in Fig. 3b pro-
vides an intensity value which is observed into direction
ω for observer position q = 0. The observer is located
in the center of the sphere and indicated by a bold dot. A
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Figure 3 a Cameras contributing to the direction ω with their con-
tributing pixels in the respective image frames, b projections of camera
centers contributing in direction ω onto planar surface normal to ω.
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single intensity value is resolved among the contributing
intensities through a blending procedure on its respective ω-
plane. The implemented blending algorithms are discussed
in Section 3.

2.1 Sphere Pixelization Schemes

The pixel directions ω shown in Fig. 2a derive from an equi-
angular segmentation of longitude and latitude coordinates
of a unit sphere into Nφ and Nθ segments, respectively.
This pixelization enables the rectangular presentation of
the reconstructed image suitable for ordinary displays but
results in a non-equal contribution of the Panoptic’s cam-
eras. The density of the pixel directions close to the poles of
the sphere is higher compared to the equator of the sphere
in the equi-angular pixelization scheme. Hence, the cam-
eras positioned closer to the poles of the sphere contribute to
more pixels in comparison to the other cameras of the sys-
tem. The equi-angular pixelization derives mathematically
from Eq. 1:

φω(i) = 2π

Nφ

× i, 0 ≤ i < Nφ

θω(j) = π

2Nθ
×

(
j + 1

2

)
, 0 ≤ j < Nθ (1)

A constant density pixelization scheme resulting in an
approximately even contribution of the cameras is devised
for the Panoptic system. The scheme is based on enforcing
a constant number of pixels per area, as expressed in Eq. 2.
Compared to the equi-angular pixelization, the change is
observed in latitude angles.

Nφ × j∫ 2π
0 dφ

∫ θω(j)

0 sin θ dθ
= Nφ ×Nθ

2π
, 0 ≤ j < Nθ (2)

The pixelization scheme expressed in Eq. 3 is derived
by solving the integral in Eq. 2. The illustration of constant
pixel density pixelization is shown in Fig. 2b.

φω(i) = 2π

Nφ
× i, 0 ≤ i < Nφ

θω(j) = arccos

(
1 − j

Nθ

)
+ θ0, 0 ≤ j < Nθ . (3)

The offset value θ0 is added to the latitude pixelization in
Eq. 3 to avoid repetition of pixel direction for the j = 0
case.

Latitudal pixelization does not need to be a linear or a
trigonometrical function. Moreover, it can be any function,
including Piece-Wise Linear (PWL) ones. PWL functions
are of special interest, since the pixel emphasis can be
placed on several places on the sphere. To achieve such pix-
elization, the full latitudal FOV of π/2 is divided into M

pieces of arbitrary FOV i , where each piece is linearly pix-
elized. A number of pixels pi is chosen for each of the
pieces, separately, based on the desired application and view
specifications. The latitude angles in each segment are lin-
early generated with an angular slope expressed in Eq. 4:

�θ i = FOV i

pi

, 1 < i ≤ M (4)

A comparison between the presented pixelization
schemes is shown in Fig. 4. An arbitrary PWL function
comprising M = 3 pieces is taken for illustration purposes.
This function results in denser pixelization near the pole
and around the equator. The constant pixel density scheme
provides more pixels around the equator, i.e. when lati-
tude angles are higher. Finally, the equi-angular pixelization
provides linearly distributed pixels around the hemisphere.

Apart from region selectivity, the PWL scheme is used
for approximation of functions such as logarithms or expo-
nentials, which is needed for easier hardware implemen-
tation. These functions can be used when more detail is
required around the pole or the equator, respectively.

2.2 Grid Refinement

The presented pixelization schemes can be regarded as sam-
pling grids of the surrounding light field. The total number
of acquired pixels linearly increases with the number of
cameras. Thus, the light field can become oversampled
using several low-resolution cameras. Light field informa-
tion is obtained at the subpixel scale as a benefit of this
particular light field oversampling. Hence, Panoptic system
acquires images in fine detail. In addition to the fact that the
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Figure 4 Latitude angle distribution for Nθ = 256 latitude pixels
using three different pixelization schemes.
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resolution of the reconstructed image can be significantly
smaller than the total number of acquired pixels, this creates
an excess of pixels that are not used in the reconstruction
process.

Nevertheless, the acquisition of the excess pixels can
be useful. If an ω direction in the reconstructed image is
observed by more than one camera, i.e. parallax exists in
each point in space, Panoptic achieves subpixel resolution.

As presented in Section 2.1, Panoptic has the ability
to change pixelization schemes. Additionally, the desired
FOV is also programmable. Hence, a constant output res-
olution with the reduced FOV results in a grid refinement
effect. The example of the refined pixelization is shown in
Fig. 5, where an increased pixel density can be noticed in
the desired FOV.

The effect observed in the reconstructed image is similar
to the effect of digital zoom. However, the subpixel data is
taken from the real and previously unused data, and is not
calculated in an interpolation process as in digital zooming.
Hence, grid refinement provides more truthful light field
rendering than digital zoom.

2.3 Vignetting Correction

Vignetting is an adverse effect observed in cameras, where
the pixels located close to the image frame borders are
significantly darker than the pixels located in the center.
Vignetting also affects the reconstructed omnidirectional
view; thus, pixel intensities in the reconstructed image alter-
natively vary, i.e. certain regions are darker and others are
brighter.

Several methods are proposed in literature for modeling
the vignetting effect and its correction. The chosen model
for Panoptic camera is the Kang-Weiss model [24]. The
Kang-Weiss model takes into account the pixel position in
the camera image frame, the camera focal length and a
camera constant named the vignetting factor. All pixels in
each camera frame are corrected by multiplying the sampled

Nϕ

Nθ

Figure 5 Refined pixelization scheme with Nθ = 16 latitude pixels
and Nφ = 16 longitude pixels. Longitudal FOV is reduced to a quarter
of the hemisphere.

pixel intensity with a correction factor. The corrected pixel
intensity is expressed as:

I ′(u, v) = I (u, v)(1 − αd)
1

(1 + (d/f )2)2 (5)

where α is the vignetting factor, f is the focal length, I (u, v)
is the original pixel intensity at coordinates (u, v) and d =√
u2 + v2.

3 Implemented Blending Techniques

The first step in omnidirectional vision construction dis-
cussed in Section 2 consists of determining contributing
pixels from camera image frames and their respective inten-
sities, L (ci,ω). The obtained values may significantly
vary due to diverging camera orientations and misalign-
ment of the pixels. Even though the vignetting correction
equalizes brightness of the individual camera’s image, the
reconstructed image quality mostly depends on the blending
algorithm.

3.1 Nearest Neighbour Blending

When applying the Nearest Neighbor (NN) technique in the
second reconstruction step, the light intensity at the virtual
observer point for each ω direction is set to the light inten-
sity value of the best observing camera for that direction.
The NN technique is expressed in Eq. 6 in mathematical
terms:

j = argmini ∈ I (ri )

L (q,ω) = L (cj ,ω) (6)

where I = {
i|ω · ti ≥ cos

(
αi
2

)}
is the index of the subset of

contributing cameras for the pixel direction ω. A pixel direc-
tion ω is assumed observable by the camera ci if the angle
between its focal vector ti (see Fig. 3a) and the pixel direc-
tion ω is smaller than half of the minimum angle of view αi
of camera ci . The length ri identifies the distance between
the projected focal point of camera ci and the projected vir-
tual observer point on the ω-plane. The camera with the
smallest r distance to the virtual observer projected point on
the ω-plane is considered the best observing camera. As an
illustration, such distance is identified with rA and depicted
by a dashed line for the contributing camera A in Fig. 6.

Reconstructed image using the NN blending is given in
Fig. 7a.

3.2 Linear Blending

The issues resulting from different brightness levels bet-
ween cameras and misalignment can be resolved to a certain
extent using a linear blending algorithm.
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The linear blending scheme incorporates all the cam-
eras contributing into a selected ω direction through a linear
combination [19]. This is conducted by aggregating the
weighted intensities of the contributing cameras. The weight
of a contributing camera is the reciprocal of the distance
between its projected focal point and the projected virtual
observer point on the ω-plane, i.e. rA in Fig. 6. The weights
are also normalized to the sum of the inverse of all the
contributing cameras distances.

The linear blending is expressed in Eq. 7 in mathematical
terms.

L (q,ω) =
∑
i ∈ I

wi ·L (ci,ω)

∑
i ∈ I

wi

wi = 1

ri
(7)

An image resulting from the linear blending algorithm is
shown in Fig. 7b.

3.3 Gaussian Blending

The NN and linear blending present several issues. An
image reconstructed using the NN method shows clear
boundaries between the fields of view of different cameras.
Although some brightness differences are reduced by the
vignetting correction, the boundaries are still visible and
create an unpleasant effect to the human eye.

Linear blending solves the problem of sharp boundaries
to a certain extent. Pixels in the regions where cameras’
fields of view overlap are blended using a weighted average,
as expressed in Eq. 7. The intensity difference is reduced,
but it is still existant. Moreover, the main disadvantage lies
in the appearance of blurred edges in the image due to the
misalignment and linearly chosen weights.

Distributing the weights according to a Gaussian func-
tion with respect to the pixel distance from the frame center
appears to be an appropriate solution to further limit the

A

rA

ω-plane

PA
IA

q = 0

Figure 6 Projections of camera centers onto the orthographic plane.
PA represents the projected focal point of camera A and IA represents
the set of pixel intensities.

brightness difference. The new weights in the weighted
average expression are:

wi,j = 1

ri
· G (dj , σd)

G (dj , σd) = e
− d2

j

2σ2
d (8)

where ri is the same distance as in Eq. 7, dj is the distance
of the jth pixel in the camera image frame from its center
and σd is the variance of the Gaussian distribution function
G .

By adding the Gaussian factor to the weighted average
expression, the borders between cameras are not visible any
more, as shown in Fig. 7c. Furthermore, the Gaussian blend-
ing reduces the difference in brightness in the images from
different cameras and the overlapping regions are equalized
with their respective surroundings. High-frequency blur is
also reduced compared to the linear blending. The value of
variance was empirically determined and set to σd = 100.

3.4 Restricted Gaussian Blending

The NN blending proves to be suitable for processing
the pixels which are close to the camera center. Towards
the boundaries of the camera’s FOV, Gaussian blend-
ing is favorable thanks to the brightness equalization and
reduction of effects originating from the camera misalign-
ment. The Restricted Gaussian (RG) blending technique
aims to restrict the Gaussian blending to the areas where
the reconstructed pixels are not close to the center of a
single camera’s FOV. The NN blending is used in the
areas close to the mentioned centers. Hence, this method
benefits from the advantages of both Gaussian and NN
blending.

One way of implementing this method consists of simul-
taneously constructing the two views and blending them
for the output display. However, the hardware supporting
this method is extremely resource-demanding. The method
doubles the resource usage, since both NN and Gaussian
blending should be operated in parallel. The implementation
of this method on the current Panoptic prototypes is practi-
cally infeasible, since the required resources vastly exceed
the capacity of the utilized FPGA.

A resource efficient implementation of RG blending is
proposed. A new confidence factor is introduced which
is related to each camera’s observation of a given ω

direction. For that purpose, a dot product of the ω and
the focal vector t (see Fig. 3a) is taken as a reference
metric.

In the blending phase of the reconstruction, a Gaussian
confidence factor with respect to its ω · ti is multiplied with
the previously calculated wi,j of each camera ci obtained
from the Gaussian blending technique. By expanding (8),
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Figure 7 A computer laboratory at the Swiss Federal Institute of
Technology in Lausanne (EPFL, ELD227). Panoramic construction
with a pixel resolution of Nφ × Nθ = 1024 × 256 a using the nearest

neighbor technique, b using linear blending, c using Gaussian blend-
ing with σd = 100 and d using Restricted Gaussian blending with
σd = 100 and σr = 1/30.
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the RG blending weight and the Gaussian confidence factor
are expressed in mathematical terms:

w̃i,j = 1

ri
· G (dj , σd) · C (ω, ci)

C (ω, ci) = e
− (ω·ti−1)2

σ 2
r (9)

where w̃i,j represents the new blending weight for jth pixel
in the ith camera frame and C represents the RG confidence
factor.

The RG blending favors very high values of ω · t for a
single camera. They represent pixels which are positioned
around the center of the camera frame. These pixels are
considered to be more reliable than the ones located on the
borders of the frame. The majority of ω have one dominant
camera, i.e. these pixels will be around the frame center of
only one camera. Thus, the RG blending should neutralize
the effects of all other cameras by assigning them a very low
confidence factor and keeping only the dominant camera,
similar to NN blending. In cases when an ω has more than
one high value of ω · t, the confidence factors allow blend-
ing using weighted average with more than one contributing
camera, resembling the Gaussian blending.

The proposed RG blending implementation does not
visually differ from the approach consisting of creating two
views. Furthermore, the standard deviation of the confi-
dence factor can be manually adapted to obtain the best
possible image quality.

An example of the RG blending is shown in Fig. 7d,
using an empirically determined σr set to 1

30 . The curve
used for the confidence factor determination is shown in
Fig. 8. The regions drawn over the curve depict the restric-
tions imposed on the Gaussian blending to obtain the RG
blending. NN blending is applied in regions where the
confidence factor is higher than 0.9, or almost 0, while
Gaussian blending is applied in the transition region. This
division reduces the influence of low-confidence over high-
confidence pixels. Thus, the reconstructed image is sharp
in areas close to a single cameras’ center, while the cam-
era overlapping regions located on the periphery are blended
using a Gaussian weight distribution.

4 Hardware Implementation

A custom FPGA board has been designed using a XILINX

Virtex5 XC5VLX50-1FF1153C FPGA as a core process-
ing unit in order to capture and process the video streams
produced by the cameras in real-time. This board interfaces
with twenty PIXELPLUS PO4010N single-chip Common
Intermediate Format (CIF, 352 × 288) cameras with 66◦
minimum angle of view. They provide output data in 16-
bit RGB format with selectable frame rate. The cameras

of the Panoptic system have been calibrated for their true
geometrical position in the world space, and lens distortion
parameters are obtained. The extraction of their intrinsic
parameters is also done a priori [25]. Even though the cam-
era calibration is precise within certain error bounds, the
spherical arrangement of the cameras, i.e. diverging camera
directions, emphasize misalignment problems. This mis-
alignment can be as large as a few pixels; hence, appropriate
blending algorithms are still needed.

The number of cameras connected to a single board
is limited by the user I/O pin availability of the chosen
FPGA chip. To support higher number of camera inter-
faces, multiple identical boards of the same kind are stacked.
For scalability and extension purposes, the designed board
also contains high-speed Low-Voltage Differential Signal-
ing (LVDS) serial links and extension connectors. The board
is also equipped with a Universal Serial Bus (USB) 2.0
device chipset for external access and high-speed data trans-
fer. The FPGA board contains two Zero Bus Turn around
(ZBT) Static Random Access Memories (SRAM) with
36 Mb capacity and an operating bandwidth of 167 MHz,
for each. The maximum achievable throughput using this
SRAM is approximately 3 Gbps.

4.1 Top-level FPGA Architecture

The architecture of the FPGA is depicted in Fig. 9a. The
FPGA design consists of five major blocks. The arrow
lines depicted in Fig. 9a show the flow of image data
inside the FPGA. Image data streaming from the cameras
enters the FPGA via the Camera input channel block. A
time-multiplexing mechanism is implemented to store the
incoming frame data from all the camera modules into one
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of the single data port SRAMs. Hence, the Data transmit
multiplexer block time-multiplexes the data received by the
Camera input channel block and transfers it to the Mem-
ory controller block for storage in one of the SRAMs. The
SRAMs are partitioned into twenty equal segments, one for
each camera. The Memory controller block interfaces with
two external SRAMs available on the board. The Mem-
ory controller block provides access for storing/retrieving
the incoming/previous twenty frames in/from the SRAMs.
The SRAMs swap their roles (i.e. one is used for writing
and one for reading) with the arrival of each new image
frame from the cameras. The Image processing and appli-
cation unit block is in charge of signal processing and
basic functionalities such as single video channel stream-
ing, all channels image capture and omnidirectional view
reconstruction. Thist block accesses the SRAMs via the
Memory controller block and transfers the processed image
data to the Data link and control unit block. The Data
link and control unit block provides transmission capa-
bility over the external interfaces available on the board
such as high-speed LVDS serial links or the USB 2.0 link.
The Cameras control block is in charge of programming
and synchronizing the cameras connected to the FPGA
board.

4.2 Image Reconstruction Hardware

The reconstruction algorithm is implemented inside the
Image processing and application unit. The block diagram
is shown in Fig. 9b. This image processing entity com-
prises five modules, which are thoroughly discussed in the
following sections.

4.2.1 Angle and Omega Vector Generation

The Angle generation module generates the spherical coor-
dinates, i.e. (θω,φω), of the ω directions which are of
interest for the reconstruction. It has the ability of generat-
ing angles for both equi-angular and constant pixel density
pixelization schemes from Eqs. 1 and 3. The span and reso-
lution of the output view is selectable within this module. It
is possible to reconstruct a smaller portion of the light field
with an increased resolution, due to the initial oversampling
of the light field (i.e. the cameras record more samples than
the reconstructed image has), as explained in Section 2.2.
Hence, a more detailed image with a limited field of view
can be reconstructed while keeping the same frame rate.
Furthermore, higher resolutions can be achieved by trading
off the frame rate. Since the coordinate angles are repre-
sented by 13 bits, the maximum reconstruction resolution
for a hemisphere is 32 Mpixels at 0.2 frames per second. The
13-bit representation leaves enough margin for truthful rep-
resentation, considering the used CIF imagers and the total
amount of the acquired pixels.

The Omega vector generation module calculates the
radial unit vector pertaining to the spherical position
(θω,φω) received from the Angle generation module.
The vectors are generated according to the following
equation:

ω = sin θω cos φω x + sin θω sin φω y + cos θω z. (10)

Detailed hardware implementation of the Angle genera-
tion and Omega vector generation modules can be found in
[26].
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Figure 9 a System-level architecture, b block diagram of the light field reconstruction unit inside the Image processing and application block.
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4.2.2 Camera Selection and Distance Generation

The Camera select and distance generation module iden-
tifies which cameras contribute (i.e. observe) to the con-
struction of the pixel in ω direction. Concurrently, this
module computes the distance between the focal point pro-
jection and the virtual observer projection on the ω-plane,
for each contributing camera ci in direction ωj, as expressed
in Eq. 11:

ri,j = |(q − ti)− ((q − ti) · ωj)ωj| (11)

When processing the NN blending, the module searches for
the minimum distance through all the calculated distances
for one ω. The index of the closest camera is provided at
the output. When processing any other blending methods
which are based on a weighted average, the module provides
all contributing cameras’ indices and their distances ri,j
from the virtual observer. The pseudo-code of the module’s
operation is provided as Algorithm 1.

4.2.3 Pixel Position Generation

The Pixel position generation module calculates the true
pixel position in the image frame of the cameras selected
in the Camera selection block. This goal is achieved using
a pinhole camera model [27] to obtain the two-dimensional
position (Xu,Xv) on the camera image plane (which is
identified by the vectors u and v) expressed as:

(Xu,Xv) = −
(
ω · u × fu

ω·t ,ω · v × fv
ω·t

)
, (12)

where fu and fv represent the focal lengths in u and v
coordinates of the camera image plane.

In reality, the mapping of a 3-D scene onto an observed
2-D plane of a camera image frame is a complex problem,
which is only coarsely represented by Eq. 12. The intrin-
sic parameters of the camera, categorized in two classes,
characterize the mapping between a 3-D scene and the
observed 2-D plane. The first class is the linear homogra-
phy, defined by a 3×4 camera matrix mapping of 3-D points
coordinates into 2-D pixel coordinates [27]. The second
class models the non-linear effects such as lens distortion.
These parameters are estimated through a calibration pro-
cess [25] and stored for each camera in a Look-Up Table
(LUT). A detailed block diagram of this module is shown
in Fig. 10. The pipeline registers are omitted for clarity
purpose.

The Pixel position generation module interfaces with the
SRAM memory controller to retrieve the pixel value of the
contributing cameras upon calculation of the true pixel posi-
tion. The camera index originating from the Camera select
module is used to access the correct segment of the SRAM,
i.e. the segment where the image frame of the selected
camera is stored. The true pixel position is used to access
the target address within each segment inside the SRAM.
The Pixel position module also calculates the distance of
the selected pixel in the image frame from the image cen-
ter. This distance is represented as R′ in Fig. 10 and it
is further used for Gaussian blending and the vignetting
correction.

4.2.4 Blending

The Blending module receives the pixel light intensity
values from all contributing cameras along with the two
distances ri,j and R′, detailed in Sections 4.2.2 and
4.2.3. The distances are used to calculate the contribut-
ing weights using one of the blending expressions from
Eqs. 7, 8, 9. The weights are later used in the blend-
ing process discussed in Section 3. As a result, the
block estimates a single light intensity value for each ω

direction.
A straightforward implementation of the blending algo-

rithms is very resource demanding. Multipliers and dividers
would be required for each color channel separately. It is
benefitial to share resources which are common for all chan-
nels, e.g. implementation of the denominator in Eq. 7. For
the implementation purpose, Eq. 7 is expressed differently
in Eq. 13:

L (q,ω) =
∑
i ∈ I

ai ·L (ci ,ω)

ai = wi∑
k ∈ I

wk

(13)
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Figure 10 Block diagram of the pixel position generation module.

The pseudo-code of the blending module’s operation
is shown as Algorithm 2. The following notation is used
in the algorithm: IRGB represents color intensities of the
contributing pixels; wacc = ∑

k ∈ I

wk; G(R′
i ) is the Gaus-

sian blending factor; C(a, b) is the Restricted Gaussian
confidence factor.

4.3 Scalability

Each FPGA board can interface with 20 cameras. To support
a higher number of cameras and increase the throughput of
the Panoptic camera, multiple FPGA boards must be incor-
porated. Hence, the omnidirectional view reconstruction
workload is distributed and the algorithm operates in paral-
lel on all FPGA boards. Thus, a central FPGA is required
to receive the output data from all FPGA boards, apply the
final blending process and transfer the result to a PC for
display.

A scalable FPGA-based system is devised, using the
designed FPGA board, to support the application develop-
ment of the Panoptic camera. The devised system consists
of four layers: 1) image sensors, 2) FPGA boards handling
local image processing, 3) one central FPGA board for con-
trol, external access and last stage image processing, 4) a
PC in charge of the applicative layer consisting of display-
ing the operation results transmitted from the central FPGA
board. The designed central board supports up to five layer-
2 FPGAs. Figure 11 depicts the devised architecture for a
typical Panoptic system.

The layer-2 FPGA boards implement the architecture
presented in Section 4.1. The outputs of these boards carry
the value related to locally blended pixel values and their
corresponding weight. These two 16-bit values are streamed
to the central unit for the final blending step via an LVDS
link. The LVDS link is implemented in the Data and con-
trol unit shown in Fig. 9a. The 16-bit pixel value and its
weight are split into the most significant byte (MSByte)
and the least significant byte (LSByte). Xilinx embedded
serializer blocks are used to serialize the bytes and transfer
them to the central FPGA. The byte order is as follows: 1)
LSByte of the pixel value, 2) MSByte of the pixel value, 3)

Layer 1
Imagers mounted
on a hemisphere

Layer 2
Local processing

FPGAs

Layer 3
1 central FPGA

Layer 4
PC: display/control

USB 2.0 link

16 I/O lines per
camera

total of 320
inputs per FPGA

LVDS link

Figure 11 Architecture of the multi-layer Panoptic system.
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Table 1 FPGA resource usage
comparison. Blending Nearest neighbor Linear Gaussian Restricted gaussian

Resource Used Available Largest

utilization [%]

Slices 4070 4653 4607 4816 7200 67

Slice Registers 9351 10069 10127 10196 28800 35

BlockRAMs/FIFOs 17 17 21 22 48 46

DSPs 37 47 48 48 48 100

LSByte of the blending weight, 4) MSByte of the blending

weight.

The full-resolution frame is transferred via LVDS, irre-

spective of the FOV of the cameras connected to the

observed layer-2 FPGA. In practice, this means that the pix-

els in the reconstructed image which are not observed by the

connected cameras are also transferred. In such cases, both

the pixel value and the weight are set to zero, i.e. the pixel

is considered purely black and as such the least influential

in the final blending operation.

Furthermore, the LVDS link is used to transfer com-

mands issued from the central to the slave FPGAs. The

implemented commands are “start/stop video stream”, “cap-

ture a single snapshot” and “reset the whole system”.

The central FPGA architecture consists of two main

parts: input buffers that store data from the slave FPGAs and

the image processing unit. The input buffers deserialize the

incoming data and recover pixel values with its respective

weights. All slave boards are synchronized a with maximum

of one clock cycle latency. Hence, short input FIFOs are

used as input buffers and memory storage is avoided. The

processing unit of the central FPGA is significantly simpler

than in the slave FPGA, as it only contains the Blending

module. It calculates the final results based on the pixel val-

ues and the weights calculated in the slave FPGAs. The final

values are sent to the PC for display, via a USB link.

5 Results and Discussion

5.1 System Performance

The Panoptic system with thirty embedded cameras pre-
sented in [26] is used for real-time image extraction and
evaluation. The thirty-camera system contains two FPGA
boards for camera interfacing and one central FPGA.

The operating frequency of the design implemented in
the FPGA is 133 MHz, which allows the system to output
25 frames per second video stream of 1024 × 256 pixels
resolution. Hence, the output video streaming rate of each
FPGA board is 6.6 Mpixels per second. The total latency
of the system is 132 clock cycles, which is less than 1 μs,
using 133 MHz frequency. The power consumption of each
FPGA board in operation is only 5 W.

The discussed blending methods were separately imple-
mented on the FPGA in order to compare the resource uti-
lization of a single FPGA board. The summary is presented
in Table 1. Gaussian and RG blending infer additional LUTs
and multipliers compared to NN and Linear blending. This
is observed through the increase of the used BlockRAMs
and logic slices. However, the increase of resource usage
compared to the linear blending and NN is very small and is
not an influential factor in the overall utilization.

The Panoptic system is compared to the omnidirectional
camera systems and the summary is given in Table 2.
The first column corresponds to the implemented Panoptic

Table 2 Comparison with related camera systems in terms of system performance.

Panoptic Panoptic-100 Ladybug2 Ladybug3 Cockpit [13] Aware2 [16] Yang [12]

Number of cameras 30 100 6 6 8 94 64

Camera resolution 352 × 288 352 × 288 1024 × 768 1600 × 1200 320 × 240 4384 × 3288 320 × 240

System throughput [Mbit/s] 1216 4055 566 600 40 526 66

Output resolution 1024 × 256 1024 × 256 – – 640 × 480 – 320 × 240

Output frame rate [fps] 25 25 15 6.5 20 0.05 18

FOV 360 ◦× 90 ◦ 360 ◦× 90 ◦ 360 ◦× 150 ◦ 360 ◦× 150 ◦ 150 ◦× 110 ◦ 120 ◦× 50 ◦ –

Power consumption [W] 5 < 10 11.2 7.2 – 430 –
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camera with 30 imagers. The second column is an esti-
mate of the system performance if all five slave boards
are used to implement a 100 cameras system. The esti-
mated results give a notion of the full capabilities of the
Panoptic system. Ladybug2 and Ladybug3 cameras [14]
are included in the comparison, as an example of off-
the-shelf systems with similar goal. The remaining three
cameras are scientific cameras and the data shown in the
table is taken from the original publications. The fields
marked with “–” represent data which is either not available
(power consumption and FOV) or scene-dependent (output
resolution).

The Panoptic system and architecture enable the high-
est data throughput or “system-level data throughput”.
Even though the presented prototype uses relatively
low-resolution low-cost cameras, the system architec-
ture is able to process huge amount of data in real-
time. Other systems, such as Aware2, have higher num-
ber of acquired pixels, but they are unable to process
it and have to lower the output frame rate. Further-
more, Panoptic has the lowest power consumption within
the compared systems, thanks to its customized FPGA
architecture.

5.2 Image Quality Discussion

Four captured snapshots of the same scene from the real-
time output (i.e. 25 frame per second) of the Panoptic device
with thirty embedded cameras are shown in Fig. 7. The
horizontal and vertical directions in the shown panoramic
constructions correspond to φ and θ spherical coordinates,
respectively. Constant pixel density pixelization is used
in the reconstruction. During the image acquisition ses-
sion, cameras were set to automatic mode, i.e. exposure
settings, gamma correction and white balancing were pro-
vided by the sensor. As the shooting took place indoors,
settings were different, thus a difference in color tones
is observable in Fig. 7, for several cameras in the setup.
Figure 7a corresponds to the panoramic scene constructed

for a virtual observer located at the center of the sphere
using the NN technique. No automatic gain compensation
or radiometric calibration has been used for the cameras.
Hence, the boundaries between the cameras are apparent
and high intensity changes are visible in Fig. 7a. The linear
blending technique improves the color intensity variations
as observed in Fig. 7b and provides a scene with less
sharp color transitions. However, it also results in a high-
frequency blur, also known as the ghosting effect, altering
the objects that are close to the Panoptic system. The ghost-
ing manifests itself as the duplication of the object’s edges.
Figure 7c shows the omnidirectional view reconstruction
using the Gaussian blending. The color transitions in the
overlapping regions are significantly reduced as a bene-
fit of the applied Gaussian factor. The Gaussian blending
is not a filtering operation, thus it does not reduce the
image sharpness as it only affects the inter-camera bright-
ness differences. Figure 7d shows the result of the Restricted
Gaussian blending. The edges in the image are sharper com-
pared to the linear and Gaussian blending, as the ghosting
effect is almost completely neutralized. This is especially
noticeable in the areas around the desk lamp and some
of the ceiling lights. However, the background brightness
level is less equalized compared to the Gaussian blending
due to differently selected weights. Hence, RG blending
requires an additional pre-processing step such as Gain
Compensation [28] to produce high-quality images.

Furthermore, Fig. 12 depicts the ability of Panoptic to
refine the pixelization grid in a selected portion of space.
This results in increased detail, while keeping the same out-
put image resolution. In Fig. 12 a lamp, a desk and books are
shown in increased resolution. The quality of the magnified
parts is proportional to the number of observing cameras.

A 30 seconds long video is provided as a Supplementary
material showing a video stream record from Panoptic sys-
tem with 15 cameras shown in Fig. 1b. The video shows the
entrance hall of ELA building in EPFL campus.

Figure 12 Detailed image parts obtained using Gaussian blending with grid refinement: a lamp magnified 8x, the books magnified 32x, a desk
magnified 8x.
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6 Conclusion

The abilities of the Panoptic camera system, e.g. change of
pixelization and use of light field oversampling for zoom-
ing, are explained. Several blending techniques enabling the
omnidirectional view reconstruction of the Panoptic camera
are discussed. The introduced Gaussian blending algorithm
decreases the high light intensity variations in the recon-
structed image. Its enhancement version, the Restricted
Gaussian blending, bounds the region where Gaussian
blending is applied only to the parts where one camera
is not dominant over the others. In the remaining areas,
NN blending is used. However, the ghosting effect for the
close objects is still noticeable in a few regions. To further
improve the output of the Panoptic camera, the real-time
implementation of the multi-band blending technique [28,
29] is considered.

The architecture of an FPGA based system supporting
the real-time deployment of the reconstruction algorithm is
presented in detail. Snapshots of the real-time output of the
Panoptic system are presented, along with a recorded exam-
ple video. Furthermore, the ability to display image parts in
finer detail is also presented.

Future work related to the Panoptic device focuses on
Gigapixel resolution real-time light field reconstruction,
High-dynamic-range video, real-time 3-D cinematography
and Application-Specific Integrated Circuit (ASIC) design
of the current system.
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