Skip to main content
Log in

Optimization-Based Embedding for Wavelet-Domain Audio Watermarking

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This work proposes a new blind digital audio watermarking system by using optimization-based modification on low-frequency amplitude of discrete wavelet transform (DWT). To modify the low-frequency amplitude under the best signal-to-noise ratio (SNR), the proposed embedding system minimizes the difference between the original and the embedded coefficients. Accordingly, an optimization-based embedding formula connecting the SNR and the embedding system is derived. The formula is then applied to embed the synchronization codes and the watermarks. Based on this formula, the number of DWT coefficients for embedding a binary bit can be increased to enhance the robustness without decreasing the audio quality. Consequently, the embedded audio has good quality and good robustness under high capacity. In addition, the system can extract the hidden data without the knowledge of original audio signal. Finally, the performance of the proposed watermarking method is tested. Experimental results indicate that the performance of proposed system is better than other DWT amplitude modification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gerzon, M. A., & Graven, P. G. (1995). A high-rate buried-data channel for audio CD. Journal of the Audio Engineering Society, 43(1/2), 3–22.

    Google Scholar 

  2. Bassia, P., Pitas, I., & Nikolaidis, N. (2001). Robust audio watermarking in the time domain. IEEE Transactions on Multimedia, 3(2), 232–241.

    Article  Google Scholar 

  3. Gruhl, D. (1996). Echo hiding. In Proc. 1st Information Hiding Workshop, LNCS, vol.1174 (pp. 295–315). Berlin, Germany.

  4. Zaidi, A., Boyer, R., & Duhamel, P. (2006). Audio watermarking under desynchronization and additive noise attacks. IEEE Transactions on Signal Processing, 54, 570–584.

    Article  Google Scholar 

  5. Kim, H. J. (2003). Audio watermarking techniques, Pacific Rim Workshop on Digital Steganography. Kitakyushu: Kyushu Institute of Technology.

    Google Scholar 

  6. Alaryani, H., & Youssef, A. (2005). A novel audio watermarking technique based on frequency components. Proceedings of the Seventh IEEE International Symposium on Multimedia.

  7. Boney, L., Tewfik, A. H., & Handy, K. N. (1996). Digital watermarks for audio signals. In Proc. 3rd IEEE Int. Conf. Multimedia Computing and Systems (pp. 473–480).

  8. Ciloglu, T., & Karaaslan, S. U. (2000). An improved all-pass watermarking scheme for speech and audio. In Proc. 3 rd IEEE Int. Conf. Multimedia Computing and Exposition (ICME) (pp. 1017–1020).

  9. Kim, H. (2000). Stochastic model based audio watermark whitening filter for improve detection. In Proc. 3 rd IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) (pp. 1971–1974).

  10. Ko, B. S., Nishimura, R., & Suzuki, Y. (2002). Time-spread echo method for digital audio watermarking using PN sequence. In Proc. IEEE Int. Conf. Acoustics, Speech and Signal processing, vol. II (pp. 2001–2004).

  11. Lie, W. N., & Chang, L. C. (2006). Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Transactions on Multimedia, 8(1), 46–59.

    Article  Google Scholar 

  12. Xiang, S., & Huang, J. (2007). Histogram-based audio watermarking against time-scale modification and cropping attacks. IEEE Transactions on Multimedia, 9(7), 1357–1372.

    Article  Google Scholar 

  13. Huang, J., Wang, Y., & Shi, Y. Q. (2002). A blind audio watermarking algorithm with self-synchronization. In Proc. IEEE Int. Symp. Circuits and Systems, vol. 3 (pp. 627–630).

  14. Wu, S., Huang, J., Huang, D., & Shi, Y. Q. (2005). Efficiently self- synchronized audio watermarking for assure audio data transmission. IEEE Transactions on Broadcasting, 51(1), 69–76.

    Article  Google Scholar 

  15. Bender, W., Gruhl, D., & Morimoto, N. (1996). Techniques for data hiding. IBM Systems Journal, 35(3/4), 131–336.

    Google Scholar 

  16. Wu, C. P., Su, P.-C., & Kuo, C. C. J. (1999). Robust frequency domain audio watermarking based on audio content analysis. In Proc. Int. Symp. Multimedia Information Processing, ISMIP (pp. 37–45).

  17. Li, X., & Yu, H. H. (2000). Transparent and robust audio data hiding in sub-band domain. In Proc. IEEE Int. Conf. Information Technique: Coding and Computing (pp. 74–79).

  18. Wang, Y. (1998). A new watermarking method of digital audio content for copyright protection. In Proceedings of the. 4th International Conference on Signal Processing, vol. 2 (pp. 1420–1423).

  19. Wang, X., & Zhao, H. (2006). A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Transactions on Signal Processing, 54, 4835–4840.

    Article  Google Scholar 

  20. Xiang, S., & Huang, J. (2007). Robust audio watermarking against the D/A and A/D conversions, CoRR arXiv:0707.0397v1.

  21. He, X., & Scordilis, M. S. (2008). Efficiently synchronized spread-spectrum audio watermarking with improved psychoacoustic model, Research Letters in Signal Processing, vol. 2008, Article ID 251868, 5 pages.

  22. Chen, S.-T., Huang, H.-N., Chen, C.-J., & Wu, G.-D. (2010). Energy-proportion based scheme for audio watermarking. IET Proceedings on Signal Processing, 4(5), 576–587.

    Article  Google Scholar 

  23. Chen, S.-T., Wu, G.-D., & Huang, H.-N. (2010). Wavelet-domain audio watermarking scheme using optimization-based quantization. IET Proceedings on Signal Processing, 4(6), 720–727.

    Article  MathSciNet  Google Scholar 

  24. Lewis, F. L. (1986). Optimal control. New York: John Wiley and Sons.

    MATH  Google Scholar 

  25. Chong, E. K. P., & Zak, S. H. (2001). An introduction to optimization. New York: John Wiley and Sons, Inc.

    MATH  Google Scholar 

  26. Salovarda, M., Bolkovac, I., & Domitrovic, H. (2005). Estimating perceptual audio system quality using PEAQ algorithm. In 18 th International Conference on Applied Electromagnetics and Communications (IECCom2005) (pp. 1–4). doi:10.1109/ICECOM.2005.205017.

  27. http://www.opticom.de/technology/technology.html: PEAQ information from OPTICOM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo-Tsung Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HN., Chen, ST., Lin, MS. et al. Optimization-Based Embedding for Wavelet-Domain Audio Watermarking. J Sign Process Syst 80, 197–208 (2015). https://doi.org/10.1007/s11265-013-0863-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0863-y

Keywords

Navigation