
PARAMETERIZED SETS OF DATAFLOW
MODES AND THEIR APPLICATION TO
IMPLEMENTATION OF COGNITIVE RADIO
SYSTEMS

Shuoxin Lin, Lai-Huei Wang, Aida
Vosoughi, Joseph R. Cavallaro, Markku
Juntti, Jani Boutellier, Olli Silvén, Mikko
Valkama, Shuvra S. Bhattacharyya

S. Lin
Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA.
E-mail: slin07@umd.edu

L. Wang
Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA.
E-mail: laihuei@umd.edu

A. Vosoughi
Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005, USA
E-mail: vosoughi@rice.edu

J. Cavallaro
Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77005, USA
E-mail: cavallar@rice.edu

M. Juntti
Department of Communications Engineering, and
Department of Computer Science and Engineering,
University of Oulu, Finland FI-90014
E-mail: markku.juntti@ee.oulu.fi

J. Boutellier
Department of Communications Engineering, and
Department of Computer Science and Engineering,
University of Oulu, Finland FI-90014
E-mail: jani.boutellier@ee.oulu.fi

O. Silvén
Department of Communications Engineering, and
Department of Computer Science and Engineering,
University of Oulu, Finland FI-90014
E-mail: olli.silven@ee.oulu.fi

M. Valkama
Department of Communications Engineering,
Tampere University of Technology,
Tampere, Finland FI-33101

To appear in the Journal of Signal Processing Systems.

2 S. Lin et al

Abstract Cognitive radio networks present challenges at many levels of design,
including configuration, control, and cross-layer optimization. To meet require-
ments of bandwidth, flexibility and reconfigurability, systematic methods to model
and analyze cognitive radio designs on signal processing platforms are desired. To
help address these challenges, we present in this paper a novel dataflow modeling
technique, called parameterized set of modes (PSM). PSMs allow efficient repre-
sentation, manipulation and application of related groups of processing configura-
tions for functional design components in signal processing systems. PSMs lead to
more concise formulations of actor behavior, and a unified modeling methodology
for applying a variety of techniques for efficient implementation. We develop the
formal foundations of PSM-based modeling, and demonstrate its utility through
two case studies involving the mapping of reconfigurable wireless communication
functionality into efficient implementations.

Keywords Cognitive radio · dataflow graphs · embedded signal processing ·
heterogeneous multiprocessors · model-based design.

1 Introduction

Cognitive Radio is an emerging technology that enables a wireless transceiver
to cognitively manage its wireless spectrum for improved agility and efficiency.
Flexibility and reconfigurability of the implementation at various layers, including
RF, baseband, and MAC layers, with cross-layer modeling and control, will be
important to realize the efficiency potential of spectrum sharing. Realizing the po-
tential of cognitive radio will also require transceivers to dynamically reconfigure
communication parameters based on multidimensional criteria, including channel
conditions, link performance, and user requirements. Meanwhile, increasing band-
widths and data rates pose new challenges to the baseband (BB) processing chain,
as well as to radio frequency (RF) processing.

The above challenges motivate important new research directions in both
software- and hardware-based design of wireless communication systems. On the
software side, software defined radio (SDR) now utilizes various kinds of high-
performance computing devices, ranging from multi-core programmable digital
signal processors (PDSPs), streaming SIMD extensions (SSE), to general pur-
pose graphics processing units (GPGPUs). On the hardware side, programmable
baseband computation and related design chains have significantly developed to
enable more efficient control of computational resources and hardware. However,
practical and systematic approaches to reconfiguration based on programmable
paradigms are still lacking. For example, software-based adaptive configuration of
radio frequency chains is still in its infancy, but is a key ingredient of the fre-
quency agile radios needed for cognitive devices and flexible RF spectrum use.
The trend of increasing diversity and flexibility in both the functionality and the

E-mail: mikko.e.valkama@tut.fi

S. S. Bhattacharyya
Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA.
E-mail: ssb@umd.edu

3

computational platforms of wireless systems results in complex design spaces that
must be considered during design and implementation. The complexity of these
design spaces and their novel constraints strongly motivate the development of
new design methodologies.

Dataflow models offer a promising foundation for such design methodologies
in part because they provide scalable and retargetable representations of signal
processing applications [3]. Designers can migrate a common dataflow model of
an application across different types of computing platforms, while changes are
localized to the implementations of individual actors (dataflow-based functional
components). The scalability and retargetability of dataflow models reduces the
designer’s effort in debugging, validating, and fine-tuning a complex signal pro-
cessing application that must satisfy stringent, multi-dimensional constraints.

To express dynamics in complex signal processing applications, a number of dy-
namic dataflow models have been proposed, including parameterized synchronous
dataflow (PSDF) [2], Boolean dataflow (BDF) [7], and core functional dataflow
(CFDF) [15]. PSDF provides semantics to manipulate application parameters in
dataflow models at run-time. BDF introduces special control actors to allow data-
dependent invocation of actors. CFDF applies the concept of actor “modes”, where
different modes can have differing dataflow behavior, and mode transitions can
be data-dependent. CFDF is tailored to natural design of actors with dynamic
functionality, and facilitates prototyping of dataflow applications, as well as iden-
tification of more specialized dataflow behaviors [16], such as BDF, cyclo-static
dataflow (CSDF) [5] or synchronous dataflow (SDF) [13].

When using CFDF, a designer specifies the behavior of the different modes
of each CFDF actor, and the transitions among these modes. However, as the
number of modes grows and the mode transitions become more complex, CFDF
formulations can become unwieldy in terms of actor specification, analysis and
implementation. In this paper, we present a novel modeling method, called pa-
rameterized set of modes (PSM), which is a high-level abstraction that efficiently
represents parameterized functionality within groups of related modes for CFDF
actors. PSMs enable novel ways for representing, manipulating and applying re-
lated
groups of actor modes that lead to more concise formulations of actor behavior,
and a unified modeling methodology for applying a variety of techniques for effi-
cient implementation. We develop the formal foundations of PSM-based modeling,
and demonstrate its utility through two case studies involving the mapping of re-
configurable wireless communication functionality into efficient implementations.

2 Background and Related Work

2.1 Background

Dataflow modeling has proven to be valuable in allowing designers of signal pro-
cessing systems to describe applications in an intuitive and structured manner [3].
As system complexity increases, coarse-grained, dynamic dataflow models have
gained increasing significance for their flexibility and their power in exposing high
level application structure that is relevant for deriving optimized implementations.

4 S. Lin et al

Core functional dataflow (CFDF) is a deterministic sub-class of enable-invoke
dataflow (EIDF) [15] in which dynamic functionality in an actor is specified as a set
of actor modes. In each mode, the actor possesses deterministic dataflow behavior,
meaning that the production/consumption rates on all actor output/input ports
are known, constant values. Upon each invocation (actor firing), the actor executes
in its current mode, and in addition to consuming input tokens and producing
output tokens, the actor selects one next mode from its set of modes. This next
mode determines the mode in which the next actor invocation executes (unless
the actor mode is reset or otherwise overridden by the controlling scheduler). The
next mode determined during an actor invocation can be fixed (known at compile
time) or data dependent.

As the level of dynamic behavior in each actor grows, the size of the actor’s
mode set may increase significantly. For an actor with a large number of parameters
and corresponding variations in functionality, a large set of modes can be difficult
to specify, analyze, and map into efficient implementations. Such parameterized
modes can arise when applying CFDF to model cognitive radio applications, for
example, due to the handling of different communication modes, sample rates, or
filter configurations. In this paper, we address the problem of efficient integration
of parameterization into the mode-based structure of CFDF actor models.

2.2 Related Work

A technique called mode grouping for CFDF graphs has been developed in [14].
It is demonstrated that mode grouping can improve scheduling results by aid-
ing the discovery of statically schedulable subgraphs. In [18], CFDF is applied in
simulation of dynamic communication systems. CFDF modeling is also applied
as the semantic basis for the lightweight dataflow design environment, which is
introduced and applied to design and implementation of wireless communication
systems in [19]. These works apply the CFDF model in various useful ways, but are
unable to streamline their associated analysis or implementation when manipulat-
ing groups of modes that are related through parameterization. The mode-based
parameterization techniques introduced in this paper are developed to bridge this
gap.

Various research efforts have been directed towards integrating dynamic be-
havior into dataflow models.
In [12], a design framework called SysteMoc is developed for applying dataflow
structures, similar to those used in CFDF, involving guarded invocations and state
transitions specified by finite state machines (FSMs). The work also includes de-
sign space exploration and code synthesis for FPGA platforms. In [21], a dataflow
based analysis method is proposed for SDR applications. This method adopts the
concept of “SDF scenarios” to incorporate some degree of dynamism for better es-
timation of system resource requirements and throughput. Moreover, methods for
quasi-static scheduling of statically-schedulable sub-graphs within larger dynamic
dataflow graphs are explored in [10].

In the context of the related work described above, the main contributions of
this paper are described as follows. We enhance the CFDF model of computation
by introducing the concept of parameterized set of modes (PSM), which incor-
porates dynamic parameterization into actor modes, thereby increasing the effec-

5

tiveness with which designers can design and implement CFDF-based, dynamic
dataflow models for signal processing systems. PSM-based modeling of actors pro-
vides a common framework for integrated specification, analysis and implementa-
tion that deeply integrates mode- and
parameter-based actor characterizations. Although we develop the PSM model in
the context of CFDF in this paper, we envision that the ideas can be adapted
to related dataflow modeling and programming techniques, such as, for example,
SysteMoc [12] and CAL [9]. Exploring and applying such adaptations is a useful
direction for future work.

3 Parameterized Set of Modes

In this section, we define a new modeling concept, called parameterized set of modes
(PSM), which is motivated in Section 2 as a method for incorporating dynamically
parameterized modes efficiently into the CFDF modeling framework.

3.1 Notation

To develop the PSM concept precisely, we first introduce some notation and review
the definition of the CFDF model of computation. For a given dataflow graph
actor A, we denote the set of input ports of A by in(A). We also denote the set
of nonnegative integers by N , and the set of Boolean values by B. We denote the
values in B as true and false.

When using PSMs, we allow CFDF actors to have arbitrary sets of parameters.
Following notation similar to that of parameterized dataflow graphs [2], we denote
the set of parameters of a given actor A as param(A), and for each parameter
in p ∈ param(A), we denote the set of permissible values of p as domain(p).
At any given point during dataflow graph execution, an actor parameter p has
associated with it a unique parameter value v ∈ domain(p), which is referred to
as the configuration of p at that point in time. A configuration for A can then be
specified as a set of configurations for all of the parameters in param(A). Some
combinations of possible parameter values may be considered invalid because they
do not make sense together. The set of all valid configurations for A is denoted
as DOMAIN (A). At a given point during execution, the specific configuration for
A that is determined by its current parameter values is referred to as the active
configuration of A. Similarly, the specific mode that a CFDF actor is in during a
given firing is referred to as the active mode for the actor.

If S1 and S2 are sets, then by S1 ⊂ S2, we mean that S1 is a subset (not
necessarily a proper subset) of S2. Thus, S1 can be empty, equal to S2, or a
proper subset of S2.

3.2 Review of CFDF Semantics

As introduced in [15], each CFDF actor A is characterized by a nonempty set MA

of modes in which it can execute, and for any given mode m ∈ MA, the actor A
consumes a fixed number of tokens per firing on each input port, and produces

6 S. Lin et al

a fixed number of tokens per firing on each output port. These production and
consumption rates may vary across different modes, but must be constant for any
given mode. Each CFDF actor A is also characterized by its enabling function εA,
which determines whether or not, based on a given set of token populations on
its input FIFOs, A is enabled. If A has at least one input port, then this enabling
function can be viewed as a mapping

εA : (TA ×MA) → B, (1)

where TA = N |in(A)| denotes the set of all possible buffer populations for input
ports of A (assuming some underlying ordering of these ports) [15]. If A has no
input ports, then its enabling function reduces simply to the Boolean constant
true. The CFDF formulation of enabling functions can easily be generalized to take
into account finite-capacity output buffers (i.e., by requiring sufficient free space
on output buffers before allowing an actor to be fireable). For brevity and clarity,
we suppress these details of bounded buffer CFDF execution in this paper, and
we simply assume that FIFOs have unbounded token capacity, unless otherwise
stated.

3.3 Motivation for Parameterized Sets of Modes

The CFDF formulation can become unwieldy when working with parameterized
actors that have large parameter sets, especially if one or more actor parameters
can affect the production and consumption rates of an actor. For example, con-
sider a parameterized downsampler actor that provides an N : 1 downsampling
of its input signal. Such an actor requires N distinct modes in its CFDF specifi-
cation even though the operation of all N alternative modes have closely related
(parameterized) functionality. Using the PSM concept introduced in this section,
we can group all of these related modes together into a single mode set σ, where
the individual mode in σ that is active during any given actor firing is determined
uniquely by the actor parameter set (in this case, by the parameter N).

As a slightly more elaborate example, consider an actor S that can function
either as a downsampler or an upsampler depending on its configuration. Such
an actor could be useful, for example, as part of a programmable, multistage
subsystem for sample rate conversion. This actor can be parameterized with two
parameters u and N , where u is Boolean-valued and indicates whether or not S
functions as an upsampler (if u = false, then the actor functions as a downsam-
pler), and N provides the upsampling or downsampling factor. Using the PSM
concept, this actor can be specified precisely using two mode sets — one for the
upsampling-related modes, and the other for the downsampling-related modes.
In any given mode set, the production and consumption rates are determined
uniquely by the actor parameters. For example, in the mode set associated with
upsampling (u = true), N = 3 yields a consumption rate of 1 and production rate
of 3.

Intuitively, a PSM-enhanced CFDF specification, or PSM-CFDF specification,
allows an actor’s modes to be grouped into “clusters” or sets that have related
functionality, and are therefore efficient to work with as distinct units — e.g., in
terms of design tasks such as specification, analysis, optimization, profiling, and

7

integration. In general, the actor groups may overlap, but collectively, they should
“cover” the entire set of modes of the associated CFDF actor. Furthermore, the
actor groups in a PSM-based specification should be related uniquely to the actor
modes through the parameters of the given actor.

3.4 Formal Definition of PSM-CFDF

Given a PSM-CFDF actor A with mode set MA, a PSM ρ for A is a 3-tuple
ρ = (S,C, f), where S ⊂ MA, C ⊂ DOMAIN (A), and f : C → S. The set C,
denoted as psa domain(ρ), can be viewed as the set of possible actor configurations
when the actor is firing in mode set S. The set S, denoted psa modeset(ρ), is the
set of modes in actor A that is associated with ρ — i.e., whenever A fires in PSM
ρ, it fires one of the modes within psa modeset(ρ). Finally, the mapping f , denoted
Fρ, specifies the unique mode within psa modeset(ρ) that is active whenever A
executes in mode set S and a given actor configuration is active.

Given a PSM-CFDF actor A with mode set MA, and a set R of PSMs for A,
we say that R covers A if every mode in MA is contained in the mode set of at
least one element of R — that is, if

MA =
⋃

ρ∈R

psa modeset(ρ). (2)

A PSM-CFDF actor A is a CFDF actor with an associated set R of PSMs
that covers A, and a family of mappings {psa nextr,c : I(Fr(c)) → R | r ∈
R and c ∈ DOMAIN (A)}. Here, for a given mode m ∈ MA, I(m) denotes the set
of all possible combinations of inputs — i.e., all possible n-tuples of token vectors,
where n = |in|, and the size of (number of elements in) each token vector is equal
to the consumption rate of the corresponding port in mode m.

In other words, for each pair (r, c), there is a mapping psa nextr,c, called the
next PSM function of PSM r under actor configuration c, that determines uniquely
a specific mode m′ for any given input data set for that mode; this mode m′ can
be interpreted as the next PSM for the actor — i.e., the PSM that should be active
for the next firing of A.

For a PSDF-CFDF actorA, we denote the associated set of PSMs at PSMset(A),
and the associated family of mappings as mappings(A).

The next PSM function is related to the invoking function of A, as defined
by CFDF semantics. In particular, for a given actor firing, the next mode, as
determined by the invoking function, should agree with (be an element of) the
next PSM, as determined by psa next(r, p). For details on the CFDF invoking
function, we refer the reader to [15].

The concept of PSM is a level of abstraction that helps the designer to better
understand and expose connections between the actor’s parameters and modes.
PSM analysis can be combined with various processes in a design framework,
such as scheduling and processor selection, to name a few. By grouping into a
single PSM the modes of an actor that share some common property, a designer
can manipulate the associated modes and apply aspects of the property in an
integrated and systematic way.

8 S. Lin et al

3.5 PSM Transition Graph

For a PSM-CFDF actor, the next PSM function defines the range of modes in
which the actor executes in its next invocation. The structure of transitions among
PSMs therefore can provide valuable information about the actor’s dynamic be-
havior. These transitions can be expressed formally by a construction that we call
the PSM transition graph.

The PSM transition graph for a PSM-CFDF actorA is a directed graphGpsm =
(Vpsm , Epsm), where Vpsm is the set of vertices and Epsm is the set of edges. The
set of vertices is in one to one correspondence with the PSMs of A; the PSM
transition graph vertex associated with PSM r is denoted as vpsm(r). Two PSM
transition graph vertices vpsm(x) and vpsm(y) are connected by a directed edge
e = (vpsm(x), vpsm(y)) if there exist an input vector ν and a configuration c such
that y = psa nextx,c(ν). Such an edge e is annotated with a label, label(e) = c. Note
that multiple edges can have the same label if different next PSMs are “reachable”
from the same current PSM and same configuration under different input vectors.
Compared to finite state machine (FSM) representation of state transitions, the
PSM transition graph contains higher level information on the structure of PSMs.
Such higher level structure may be difficult to extract or intuitively understand
from conventional FSM-style representations (i.e., where each mode corresponds
to a separate FSM state), especially when the number of modes is large or their
connections are irregular.

Figure 1(b) shows an example of a PSM transition graph. Further details about
the actor in this example are discussed in Section 5.4.

3.6 Implementation Considerations

When implementing a PSM-CFDF actor, we do not anticipate that designers will
typically need to explicitly implement the mappings (mathematical functions) Fρ

and psa next{r, p}. These mappings are useful as analytical tools, but their explicit
realization in software is not in general essential for the PSM-CSDF model —
e.g., an actor designer would not need to provide a software function/method or
hardware description language module that is dedicated to implementing each
of these mappings. Instead, for example, critical aspects of Fρ may be validated
through unit testing, and the next PSM may be determined as a by-product of
actor firing — e.g., through an actor-level application programming interface (API)
that is used by schedulers to invoke the actor.

3.7 Application Example

In this section, we show an example of applying PSM-CFDF concepts in actor
design for a reconfigurable OFDM demodulator that is geared towards cognitive
radio systems. Such systems can involve significant
amounts of parameterization in actor designs. Figure 1(a) shows a parameterized
demodulator actor that supports different operational modes, including QPSK and
QAM16. The actor maps the B samples into an M × B bit stream. This actor

9

Fig. 1 An example of a PSM-CFDF actor: OFDM demapper example. (a) Actor interface.
(b) PSM transition graph.

has two parameters: M for the number of bits per sample, and B for the vector-
ization degree (see [17] for fundamental developments on actor-level vectorization
for signal processing dataflow graphs). Since M represents the number of bits for
each symbol, M = 2, 4 correspond, for example, to QPSK, QAM16, respectively.
B can take on any integer value between 1 and Bmax , where Bmax is the maxi-
mum vectorization degree (e.g., as a designer or design tool might set based on
memory constraints). The parameter B allows symbols to be buffered and pro-
cessed together in batches (block processing). For example, if B = 1, then each
actor invocation processes a single input symbol; if B = 10, then 10 symbols are
buffered and processed together in one invocation.

The de-mapper in Figure 1(a) is modeled as a PSM-CFDF actor A as follows.
Actor configurations are specified in the form (M,B). The set of modes of the
actor is given as:

MA = {INIT ,QPSK 1,QPSK 2, . . . ,QPSKBmax
,

QAM16 1,QAM16 2, . . . ,QAM16Bmax
} (3)

Based on the functionality,MA can be clustered into 3 PSMs: {ρi = (Si, Ci, fi) |
i = 1, 2, 3}, where S1 = {QPSKn | 1 ≤ n ≤ Bmax}, C1 = {(2, n) | 1 ≤ n ≤ Bmax},
f1(M,B) = QPSKB ; S2 = {QAM16n | 1 ≤ n ≤ Bmax}, C2 = {(4, n) | 1 ≤ n ≤
Bmax}, f2(M,B) = QAM16B ; S3 = {INIT}, C3 = {(m,n) | m = 2, 4; 1 ≤ n ≤
Bmax}, f3(M,B) = INIT .

Based on this decomposition into PSMs, Figure 1(b) illustrates the PSM tran-
sition graph for the demapper actor. Upon initialization or reset, the actor enters
the INIT mode, the only mode in ρ3. After initialization, the actor enters a mode
in ρ1, or ρ2, based on the configuration. For any mode in ρ1, the ratio of the
production rate prd(A) to the consumption rate cons(A) is 2. Similarly, for any
mode in ρ2, prd(A)/cons(A) = 4. To avoid clutter in the diagram, edge labels are
not shown.

3.8 Summary

In this section, we have presented an enhancement to the framework of CFDF
modeling called parameterized set of modes (PSM), and we have introduced the
PSM-CFDF approach to the modeling of dynamic dataflow actors with dynami-
cally variable parameters. To illustrate the approach, we have presented a detailed

10 S. Lin et al

example of an OFDM demapper actor that is modeled in terms of PSM-CFDF se-
mantics. This example and its associated PSM transition graph representation
concretely illustrate the novel form of higher level modeling structure that is
exposed by the PSM modeling concept and the associated PSM-CFDF design
methodology.

4 PSM-level Static Scheduling for CFDF Graphs

In this section, we demonstrate the application of PSM to efficient scheduling of
CFDF-based programs.

A general scheduling approach for CFDF graphs is the so-called canonical
scheduling approach discussed in [16]. In canonical scheduling, a sequential ordering
L of the dataflow graph actors is constructed [16]. At run-time, the scheduler
iteratively traverses the list L, and upon visiting each actor A, the scheduler checks
the enabling condition (availability of sufficient input data) for A, and invokes A if
the enabling condition is satisfied. This scheduling approach is useful in the sense
that it is very general (applicable to any CFDF graph), easy to understand, and
easy to implement. However, the efficiency of canonical scheduling can be relatively
low because of the frequency with which enabling conditions must be checked.

4.1 Statically Schedulable Regions

Static schedules, where the sequence of actor firings is deterministic and uncondi-
tional (not guarded by actor-level checking of enabling conditions) can be signifi-
cantly more efficient and predictable compared to dynamic scheduling approaches,
such as canonical scheduling. Even if the overall dataflow graph does not allow for
static scheduling (due to the presence of dynamic dataflow), it may be possible
to identify “statically schedulable regions” of the graph — i.e., parts of the graph
that can be scheduled statically. Such regions can be scheduled using efficient
static scheduling techniques, which have been developed extensively in the liter-
ature (e.g., see [3]), and then the static schedules for the different regions can be
integrated through a “top-level” dynamic scheduling mechanism.

In this section, we develop PSM-based methods for constructing and applying
statically schedulable regions for efficient implementation of CFDF graphs. The
concept of statically schedulable regions itself is not new, and has been studied
in depth, for example, in the implementation of CAL programs [11]. Our con-
tribution in this section, which we refer to as PSM-level static scheduling, is to
demonstrate methods for integrating the concepts of PSMs and statically schedu-
lable regions, therefore combining the benefits of both approaches, and enabling
structure exposed from PSMs to help guide the construction of efficient schedules.
More specifically, in our development of PSM-level static-scheduling, we utilize
information about actor parameters to form hierarchical PSMs, where each hi-
erarchical PSM is constructed based on combinations of actor modes that share
common scheduling properties.

In the remainder of this section, we outline our proposed PSM-level static
scheduling approach and present experimental results on an application example.

11

4.2 PSM-level Static Scheduling

PSM-level static scheduling is a hierarchical scheduling technique, where subgraphs
within a dataflow specification are combined into hierarchical actors, and execution
of a hierarchical actor corresponds to execution of a schedule for the associated
subgraph. If H is a hierarchical actor with associated subgraph G, we say that H
encompasses G, and G is the nested subgraph of H.

In the class of CFDF-PSM specifications addressed in this work, a hierarchical
actor contains a set of modes, and can also contain a set of PSMs, just as non-
hierarchical (leaf-level) actors. In the case of a hierarchical actor H, each mode m
of H corresponds, respectively, to a mapping Zm : Ve → γ, where Ge = (Ve, Ee)
denotes the graph encompassed by H, γ is the set of all actor modes across all
actors in Ve, and Zm(v) ∈ Mv for all v. Recall here that Mv represents the set of
modes for a given actor v.

Intuitively, execution of H in a given mode m ∈ MH corresponds to execution
of the encompassed graph with all actors operating in the modes specified by
Zm. The duration (termination criterion) of such an execution is a design issue
associated with the construction of H, similar in some ways to the concept of
“subsystem iteration” in parameterized dataflow [2]. In this paper, we assume that
each execution ofH in a given modem corresponds to execution of a minimal static
periodic schedule of the SDF graph, denoted Gsdf (H,m), that results from fixing
the actors in Ge based on the mode assignments specified by Zm. Exploration of
other kinds of termination criteria in this context is a useful direction for further
work.

In our development of PSM-level static scheduling in this paper, we assume
that the hierarchical actors employed are provided as part of the specification —
i.e., as part of the design hierarchy. Another interesting direction for future work
is in the development of automated methods to group (cluster) subgraphs into
hierarchical actors for PSM-level static scheduling.

4.3 Construction of SDF Scheduling PSMs

Building on the concepts introduced in Section 4.2, we introduce a simple method
to partition the mode set MH of a hierarchical actor H in a manner that facilitates
construction of statically schedulable regions. This leads to a unique partitioning
of MH into a set of PSMs that we refer to as SDF scheduling PSMs. The method
is useful in systematically decomposing the structure of a hierarchical PSM-CFDF
actor in a manner that that captures subsystem-level, multi-mode behavior that
is common in cognitive radio systems.

The process of constructing SDF scheduling PSMs operates by iterating through
all modes in H, and dividing the modes into subsets (PSMs) S1, S2, . . . , Sk, where
all modes in a given Si correspond to the same SDF repetitions vector for the
encompassed graph G(e). In other words, if m1,m2 ∈ Si, and a ∈ Ve, then
q1(a) = q2(a), where q1 and q2 denote, respectively, the SDF repetitions vec-
tors of Gsdf (H,m1) and Gsdf (H,m2). The resulting mode sets S1, S2, . . . , Sk are
then parameterized with one more scheduling parameters that can be configured
and adapted based on considerations such as the given performance constraints,
repetitions vectors qi, and structure of G(e). This process depends on fundamental

12 S. Lin et al

Fig. 2 A synthetic CFDF graph that is used to illustrate PSM-level static scheduling concepts.

properties of the SDF repetitions vector and requires that the set of SDF graphs
{Gsdf (H,m) | m ∈ Mh} satisfy SDF consistency conditions. For details on SDF
fundamentals and consistency conditions, we refer the reader to [13].

In cognitive radio systems, actors can often be configured statically or dynam-
ically by various parameters, resulting in large sets of possible actor modes. If the
actors’ mode spaces are viewed independently, the total number of possible mode
combinations to consider can grow exponentially, making the system unwieldy and
inefficient for scheduling analysis. The integration of PSM techniques to hierar-
chical CFDF modeling techniques, as introduced in this section, introduces an
alternative, more compact designs space — the design space of scheduling param-
eters for the PSMs S1, S2, . . . , Sk — that facilitates efficient scheduling, including
the application of SDF scheduling techniques to statically schedulable regions.

4.4 Synthetic Example

To illustrate the PSM-level static scheduling technique introduced in Section 4.2
and Section 4.3, Figure 2 shows a synthetic CFDF graph with 2 parameters, p1
and p2. Intuitively, the parameters p1 and p2 control (select) the modes of A and
C, respectively, and p1 and p2 together control the mode of B. The parameter
values and their corresponding actor modes, production rates, and consumption
rates are shown in Table 1. Here, the special actor ctrl reads parameter values
from an input source (e.g., a file), checks their validity, and sends them as tokens
to A, B and C.

Now suppose that H is a hierarchical actor that encompasses the subgraph
associated with actors A, B, and C. The actors enter “initialization modes” A0,
B0 and C0, respectively, upon system reset, and wait for parameter tokens that
are passed from ctrl . After receiving the parameter values, the actors continue to
their respective operational modes, as specified by the received parameters, until
all data from src has been processed.

Analyzing the repetitions vectors in MH , and the mode space of H, and con-
structing SDF scheduling PSMs leads to the PSMs outlined in Table 2. The com-
mon repetitions vectors in the same scheduling PSM allows a common static sched-
ule to be applied across all modes in that PSM. For example, for PSM1, the static
schedule σ1 = ABC can be applied as the schedule for H. Similarly, for all modes
in PSM2, we can apply the static schedule σ2 = AB(2C). Here, we apply looped
scheduling notation, where a parenthesized term of the form (mX), where m is
a non-negative integer (or a symbolic expression that resolves to a non-negative
integer) and X is a sequence of actor firings, represents the successive execution
m times of the sequence X. For background on the construction and manipulation

13

Table 1 Details of actor parameters, modes, and dataflow rates.

Actor Configuration Mode Prod Cons

A
N/A A0 0 (0,1)
p1 = 0 A1 1 (2,0)
p1 = 1 A2 1 (1,0)

B

N/A B0 0 (0,2)
(p1, p2) = (0, 0) B1 2 (1,0)
(p1, p2) = (0, 1) B2 2 (2,0)
(p1, p2) = (1, 0) B3 1 (2,0)
(p1, p2) = (1, 1) B4 1 (1,0)

C
N/A C0 0 (0,1)
p2 = 0 C1 1 (2,0)
p2 = 1 C2 1 (4,0)

Table 2 Scheduling PSMs of the hierarchical actor H.

PSMs Mode of H Mode of ABC q

PSM1

H0 A0 B0 C0 (1,1,1)
H1 A1 B1 C1 (1,1,1)
H2 A2 B4 C2 (1,1,1)

PSM2
H3 A1 B2 C2 (1,1,2)
H4 A2 B3 C1 (1,1,2)

of looped schedules for synchronous and parameterized dataflow graphs, we refer
the reader to [4,2].

For the entire application graph in this example, we can apply the schedule
σtop = srcσH(nsnk), where n is the mode-dependent firing rate (iteration count)
for snk , and σH is configured dynamically as σ1 or σ2 based on the currently-active
scheduling PSM.

We constructed the PSMs and schedules outlined here by hand, and based on
these constructions, we implemented this synthetic application graph using the
lightweight dataflow environment (LIDE), which is a tool for experimenting with
dataflow techniques in arbitrary simulation- or platform-oriented languages, such
as C, CUDA, MATLAB, and Verilog [19,20]. Specifically, in our experiments we
employed LIDE-C and LIDE-CUDA, which are C- and CUDA-oriented versions
of the LIDE environment, respectively.

We implemented each actor as a simple sample rate converter that inserts or
discards tokens to achieve the specified dataflow rates. The experiment is carried
out using a desktop computer equipped with an Intel Core i7-2600K 8-core CPU,
and 16GB memory. Figure 3 shows the execution time of the graph using CFDF
canonical scheduling and PSM-level static scheduling. For our implementation of
PSM-level static scheduling, we used the hierarchy of schedules σtop , σ1, and σ2

defined above. In this example, the average execution time improvement of PSM-
level static scheduling among the different modes of H is 11.9%.

Although it is based on a synthetic dataflow graph, the simplicity of this exam-
ple helps to demonstrate concisely and concretely the proposed PSM-level static

14 S. Lin et al

Fig. 3 Execution time comparison between canonical scheduling and PSM-level static schedul-
ing for the synthetic example of Figure 2.

Fig. 4 A dynamically configurable RPSK modulator in CFDF.

scheduling approach, and the potential for performance improvement using the
approach.

4.5 Application Example

In this section, we demonstrate a practical example of PSM-level static schedul-
ing that is relevant to the cognitive radio domain. Figure 4 shows a dynamically
configurable RPSK modulator that supports multiple source rates and multiple
Phase-Shift-Keying (PSK) modulation schemes. The hierarchical actor R encom-
passes a subgraph that contains two CFDF actors src (using a minor abuse of
notation), and T , whose modes are shown in Table 3. Here, r and m specify the
source rate and the modulation scheme, respectively.

Using PSM-level static scheduling, we derive 4 PSMs, as shown in Table 4.
The static schedule for each PSM is then constructed by hand, implemented in
LIDE, and compared with canonical scheduling, as in Section 4.4. We see from
the results that in this example, the performance improvement from applying
PSM-level static scheduling is higher compared to that of the small, synthetic
example in Section 4.4. In terms of the execution time per graph iteration (i.e.,
per minimal periodic scheduling iteration of the derived SDF subgraphs), PSM-
level static scheduling outperforms canonical

15

Table 3 Dynamic actors in the RPSK application.

Actor Mode Prod Cons

src
INIT 0 1
src1 1 0
src2 2 0

T

INIT 0 (0,1)
BPSK 1 (1,0)
QPSK 1 (2,0)

16 − PSK 1 (4,0)

Table 4 PSMs of the hierarchical actor R in the RPSK application.

PSM Mode of R Mode of src T q

PSM1

R0 INIT ,INIT (1,1)
R1 src1 , BPSK (1,1)
R2 src2 , QPSK (1,1)

PSM2
R3 src1 QPSK (2,1)
R4 src2 , 16 − PSK (2,1)

PSM3 R5 src1 16 − PSK (4,1)

PSM4 R6 src2 BPSK (1,2)

Fig. 5 Execution time comparison between canonical scheduling and PSM-level static schedul-
ing for the RPSK application.

scheduling by an average of 45.4%, as shown in Figure 5. Here, the average is taken
across the 6 operational modes for the hierarchical actor R.

4.6 Summary of PSM-level Static Scheduling

In this section, we have demonstrated a specific method, called PSM-level static
scheduling, for applying the PSM modeling approach. There are many possible
ways of applying PSMs in the design process, and the method presented in this
section can be viewed as a specific way that we have studied and experimented
with to help validate the utility of the PSM model. Although the PSM-level static

16 S. Lin et al

schedules experimented with in this section were constructed by hand, their foun-
dation in the PSM and CFDF formalisms makes them amenable to derivation
through general, automated techniques. Development of such automated tool sup-
port for PSM-level static scheduling and other applications of PSMs is a useful
direction for further investigation.

5 PSM-level Actor Mapping on Heterogeneous Platforms

5.1 Overview

In this section, we demonstrate the application of PSMs to mapping actors in
a CFDF-based dataflow program onto a heterogeneous platform. The targeted
platform here consists of a general purpose CPU (called “host”), and a graphics
processing unit (GPU) that is used to accelerate selected actors. The GPU is
controlled by the host, and has a separate memory address space.

The execution of an actor in this environment on the GPU device generally in-
volves three steps: host-to-device data transfer, on-device execution, and device-to-
host data transfer. The data transfers between processors can result in significant
overhead, which makes it unfavorable in some scenarios, such as when the amount
of data to be processed is relatively small. Thus, the selection of actors to exe-
cute on the GPU (processor assignment) is an important problem for performance
optimization.

We first formulate a general version of the processor assignment problem that
is addressed in this section, and we describe our PSM-level processor selection ap-
proach in this general context. Then we present experimental results for PSM-level
processor selection on the specific CPU-GPU heterogeneous platform described
above.

5.2 PSM-level Processor Selection

Suppose that we have a CFDF graph G = (V,E), and a target platform consisting
of a (possibly heterogeneous) processor set P = {p1, p2, . . . , pn}. Also, for an actor
A in G, let MA denote the set of CFDF modes of A. The objective of PSM-level
processor selection is to derive a set of PSMs and a “top-level” quasi-static schedule
with the goal of optimizing a pre-defined performance metric. More specifically,
PSM-level processor selection involves the following tasks:

– for each actor A, derivation of a set of n PSMs,
selection(A) = ν(A, 1), ν(A, 2), . . . ν(A,n), where each ν(A, i) represents the
subset of modes in MA that are to be assigned (during graph execution) to
processor pi;

– construction of a “top-level”, quasi-static schedule that executes actors in G
based on the dynamically-determined processor assignment defined by
{selection(A)} | A ∈ V together with the current parameter values (actor
configurations) of the actors in V .

In our development of PSM-level processor selection in the remainder of this
section, our targeted performance metric is throughput. However, the proposed

17

processor selection framework can be readily targeted to other metrics, such as
latency or memory utilization or to composite metrics, such as latency-constrained
throughput optimization, and memory-constrained latency optimization.

5.3 Profile-based Selection

In this section, we develop a profile-driven approach to PSM-level processor se-
lection. We refer to this approach as profile- and PSM-based processor selection
(PAPPS). In PAPPS, a three-dimensional “profile table” is used to characterize
the performance of specific actor modes on specific processors. In particular, for a
given mode m ∈ MA for an actor A, and a given processor p ∈ P , profile(A,m, p)
provides an estimate of the execution time of mode m for actor A on processor p.
The profile table entries for a given actor can be obtained, for example, by iter-
atively (e.g., through appropriate simulation scripts) executing the actor on each
processor in every mode and averaging the results for each mode.

After the profile table is constructed, PSMs for each actor A are formed by
grouping together modes that perform best on a specific processor with ties being
broken arbitrarily. Thus, for each actor A and each i ∈ {1, 2, . . . n}, we have that

ν(A, i) =
⋃

{{m} | i = argminj(A,m, pj)}. (4)

In the PAPPS approach, ties with respect to the argmin function in Equation 4
are resolved arbitrarily (as implied earlier), although more sophisticated schemes
can be envisioned that take ties or “near-ties” (multiple alternatives that have
competitive performance) into account in strategic ways. Such exploration of more
sophisticated PSM-based processor assignment schemes is an interesting direction
for further work.

Once the PSMs are constructed based on Equation 4, a top-level, quasi-static
scheduler is used to visit actors according to some scheduling policy, and to execute
each visited actor A using a target processor that is (dynamically) selected based
on the currently-active PSM for A. In other words, each time an actor A is visited
by the scheduler, the current mode m of A is examined to determine the active
PSM (i.e., the unique ν(A, i) that contains m), and then processor pi is selected
as the processor on which to execute the next firing of A.

Canonical scheduling, described in Section 4, is a general policy that can be
used as the top-level scheduling policy in this context. However, in some cases,
static analysis of the parameterized application structure can be applied to stream-
line the policy — for example, by statically fixing the order of schedule traversal
in a way that eliminates or greatly reduces the need for run-time enable con-
dition checking. We demonstrate a simple example of such static-analysis-based
streamlining in Section 5.4.

5.4 OFDM Demodulation

To demonstrate the PAPPS approach, we have applied it to an OFDM demodu-
lator and a heterogeneous
CPU/GPU implementation platform, as described in Section 5.1. Orthogonal fre-
quency division multiplexing (OFDM) is used extensively in high-speed wireless

18 S. Lin et al

communication systems because of its spectral efficiency, robustness in terms of
multi-path propagation, and high bandwidth efficiency [8]. The OFDM demodu-
lator is one of the fundamental subsystems of LTE and WiMAX wireless commu-
nication systems.

Figure 6 illustrates a runtime-reconfigurable OFDM demodulator that is mod-
eled as a CFDF graph. Here, actor SRC represents a data source that generates
random values to simulate a sampler. In a wideband OFDM system, information
is encoded on a large number of carrier frequencies, forming an OFDM symbol
stream. In baseband processing, a symbol stream can be viewed in terms of con-
secutive vectors of length N . The symbol is usually padded with a cyclic prefix
(CP) of length L to reduce inter-symbol inference (ISI) [1]. In Figure 6, the CP
is removed by actor RCP . Then, actor FFT performs a fast Fourier transform
(FFT) to convert the symbol stream to the frequency domain.

In practical systems, further processing, such as frequency domain synchro-
nization and channel estimation, is required to remove various channel effects. In
this case study, however, we use a simpler design that directly performs symbol
demapping to illustrate the PAPPS methodology. Actor Demap is a parameterized
symbol demapper that performs M -ary QAM demodulation, with a configurable
QPSK configuration (M = 2 or M = 4). The output bits are collected by the data
sink (actor SNK).

For the targeted CPU/GPU platform described in Section 5.1, all of the actors
in our OFDM demodulation system have CPU implementations, and some of the
actors have GPU implementations.

Each actor A has a parameter, called the vectorization degree and denoted
by β(A), which is the number of OFDM symbols to be processed in a single
activation (scheduler visit) of the actor. If the actor A is understood from context,
then we sometimes drop the “(A)” and simply write β. Vectorization of signal
processing dataflow graph actors, also referred to as “block processing”, is useful
in optimizing throughput, which is the targeted objective in our development of
PSM-level processor selection (see Section 5.2) [17]. Here we assume that the same
demapping scheme can be applied to all symbols to be processed in one activation,
so that SIMD processing can be applied in vectorized executions.

In addition to β, actors in this design have a parameter M , which prescribes
the number of bits per symbol. For example, if M = 4 and β = 10, this means that
the system is operating in a mode that uses QAM16 as the demapping scheme,
and executes actors in blocks of 10 firings each. A third actor parameter is the
OFDM symbol length, which we denote by N .

The parameter values in this example determine the mode of each actor, and
the actor mode determines the production and consumption rates. Note that this
is not always the case in CFDF actors, where, for example, the next mode for
an actor can be different from the current mode even though there is no change
in parameter settings (e.g., see [15]). However, because there is no such dynamics
involved with next mode determination in this example, the actors can be mapped
into corresponding parameterized synchronous dataflow (PSDF) actors [2]. The
example, therefore demonstrates the applicability to PSM techniques to PSDF
graphs.

Table 5 shows the valid parameter values for the actors in our OFDM de-
modulation system. The mode set of Demap is given by Equation 3 in Section 3.

19

Table 5 Actor parameters in the OFDM demodulator system.

Parameter Domain

β {1, 10, . . . , 100}
N {512, 1024}
M {2, 4}

(a)

(b)

Fig. 6 PSM-CFDF model of a configurable OFDM demodulator. (a) Original dataflow graph.
(b) Vectorized dataflow graph.

Similarly, for other actors, valid combinations of parameter values lead uniquely to
their mode settings. These details for the other actors are omitted here for brevity.

5.5 Application of PAPPS to the OFDM Demodulation System

The PSM-CFDF actors RCP , FFT and Demap are each implemented on both
the CPU and GPU processors. Following the profiling approach described in Sec-
tion 5.3, each actor A is profiled in every mode in its mode set MA for both the
CPU and GPU implementations. The results are then used to construct the profile
table profile.

In our experiments, an NVIDIA GTX680 GPU with 2GB memory and an
Intel Core I7 3.4GHz CPU with 8GB memory are used for GPU implementation
and CPU implementation, respectively. Figure 7 illustrates the profile table profile
for the actors. The maximum latency for all vectorization degrees considered is
less than 8 ms, which is tolerable in many software defined radio contexts. In the
case of RCP , which removes the cyclic prefix from the received signal, the CPU
implementation performs better in all settings. This is due to the small amount
of computation performed in this actor compared to the large CPU-GPU memory
transfer overhead. As a result, selection(RCP) contains only one non-empty PSM;
the PSM associated with the GPU has no modes.

For the FFT actor, the GPU implementation always performs better than the
CPU implementation in the same mode. Thus, for this actor, the PSM associated
with the CPU has no modes. For the Demap actor in the 16-QAM modes (M = 4),
the GPU implementation outperforms the CPU implementation for all values of
the vectorization degree β. In the QPSK modes (M = 2), there is less difference
in performance, and the CPU implementation generally performs better for lower
β values, while the GPU implementation performs better for higher β values.
The smaller computational load in the QPSK modes makes the memory transfer
overhead more significant, which leads to a smaller performance gain from the

20 S. Lin et al

(a) (b)

(c) (d)

Fig. 7 Actor profiles for application of PAPPS to the OFDM demodulator: (a) RCP actor;
(b) FFT actor; (c) Demap actor in 16-QAM modes; (d) Demap actor in QPSK modes.

Table 6 PSM grouping based on CPU and GPU performance profiles for processor selection.
PSM1 and PSM2 are the sets of modes that have shorter execution times for CPU- and
GPU-based execution, respectively.

Actor PSM1 PSM2

RCP N = 512, 1024; 1 ≤ β ≤ 100 ∅

FFT ∅ N = 512, 1024; 1 ≤ β ≤ 100

Demap

{N = 1024,M = 4, β = 1} {N = 1024,M = 4, 10 ≤ β ≤ 100}
{N = 512,M = 4, β = 1, 10} {N = 512,M = 4, 20 ≤ β ≤ 100}
{N = 1024,M = 2, β = 1, 10} {N = 1024,M = 2, 20 ≤ β ≤ 100}
{N = 512,M = 2, 1 ≤ β ≤ 40} {N = 512,M = 2, 50 ≤ β ≤ 100}

GPU. In summary, the Demap actor has two non-empty PSMs ν(Demap, p1) and
ν(Demap, p2).

Table 6 shows the grouping of actor modes into PSMs when applying the
PAPPS method based on the achieved profiling results illustrated in Figure 7.

We have implemented the OFDM demodulator system on the targeted
CPU/GPU platform using a PAPPS-based processor selection scheme based on
the PSMs illustrated in Table 6. We streamlined the top-level scheduler (see Sec-
tion 5.3) by observing that even though the production and consumption rates of
actors can vary based on the active actor modes, the variations in this application
are interdependent such that the dataflow graph exhibits SDF behavior, and fur-
thermore, the repetitions vector remains constant. In particular, the repetitions
vector is specified by q(A) = 1 for each actor A regardless of what actor modes
are active. This allows us to implement the top-level scheduler without any run-

21

time checks for actor enabling conditions. Note, however, that even though SDF
techniques are employed, the derived scheduler should not be viewed as a form of
static scheduling because the processor assignment can change dynamically.

As in the case study of Section 4, we implemented the top-level scheduler
by hand. This scheduler implementation incorporates the PAPPS method for dy-
namic processor selection based on the PSM decompositions illustrated in Table 6.
Building on the developments of this section to construct automated scheduler
derivation for PAPPS-based implementation is an interesting direction for future
work.

5.6 Experimental Results

We compared the application throughput of alternative implementations in terms
of the execution time per (vectorized) application iteration, where an application
iteration in this context corresponds to the processing required for (β×N) symbols
of the enclosing OFDM system. Because we compare alternative processor selec-
tion schemes with β fixed for each comparison point, this method of throughput
comparison does not favor any particular kind of scheme.

Figure 8 shows the execution time per application iteration for three types of
processor selection schemes: (1) all actors are assigned to the CPU (“CPU”), (2)
RCP , FFT and Demap, the most computationally-
intensive actors, are assigned to the GPU (“GPU”), and (3) processor selec-
tion is performed dynamically using our implemented PAPPS-based scheduler
(“PAPPS”). The speedups achieved by using PAPPS, compared to methods (1)
and (2), are also shown in the figure. The average speedup achieved by PAPPS
in this application over a CPU implementation is more than 1.5X. In the setting
where the largest amount of data is present (1024-FFT and 16-QAM), the average
speedup is more than 2X over all vectorization degrees. The achieved speedup is
limited by the cost of data transfer between CPU and GPU memory for each actor.
This data transfer overhead has been taken into account in the reported speedup
values.

Compared to the GPU implementation scheme
(scheme (1)), the PAPPS scheme achieves an average of 20% improvement in
throughput over the GPU scheme. However, the vectorization step applied in our
implementation generally results in increased latency for the system. In wireless
communication applications, latency is a critical design constraint, and thus, vec-
torization should be applied carefully to ensure that excessive latency does not
result.

In our experiments, the vectorization degree is set to be no more than 100. As
shown in Figure 8, this results in a maximum latency of 8ms, which is reached
when N = 1024 and β = 100. This is at a tolerable level of latency for many
kinds of software radio systems. For example, 8ms is only a small fraction of
the typical 250ms end-to-end delay for data packets, which is described for the
communication systems discussed in [6]. In cases where there are more stringent
latency constraints, the vectorization degree can be bounded more tightly to trade
off throughput performance for decreased latency.

The experiments presented in this section along with the other examples dis-
cussed in this paper are provided to give a concrete idea of the kind of approaches

22 S. Lin et al

(a) (b)

(c) (d)

Fig. 8 Execution time and speedup under three types of processor selection schemes for the
OFDM demodulator system: (a) 1024-pt FFT, 16-QAM; (b) 512-pt FFT, 16-QAM; (c) 1024-pt
FFT, QPSK; (d) 512-pt FFT, QPSK. Solid lines represent execution times while dashed lines
represent the speedup obtained by using the PAPPS approach. The brown dashed line with
an “up-triangle” represents the speedup of PAPPS over CPU (scheme (1)); the black dashed
line represents the speedup of PAPPS over GPU (scheme (2)).

that are supported by the PSM framework. These can be viewed as representative
examples that help to give a sense of the diverse possibilities for applying the pro-
posed methods. Further study into applying these methods and developing design
optimizations that build on them is a useful direction for future investigation.

6 Conclusions

In this paper, we have introduced a new dataflow modeling technique called pa-
rameterized set of modes (PSM) and demonstrated its relevance and application
to design and implementation of signal processing systems for cognitive radio ap-
plications. PSMs enable novel ways for representing, manipulating and applying
related
groups of actor modes that lead to more concise formulations of actor behavior,
and a unified modeling methodology for applying a variety of techniques for effi-
cient implementation. To demonstrate the utility and versatility of PSMs in signal
processing system design processes, we have developed two case studies involving
mapping of important kinds of reconfigurable wireless communication subsystems
into efficient implementations. The PSM methods introduced in this paper allow
implementation techniques like those introduced in the case studies to be devel-
oped according to a common modeling framework, which allows such techniques
to be better understood, integrated, and optimized. Several useful directions for

23

future work have also emerged from the developments of this paper, including the
investigation of automated techniques for applying PSMs to efficient static region
derivation and to processor selection on heterogeneous platforms.

7 Acknowledgement

This work was supported in part by the US National Science Foundation under
grants CNS–1265332 and CNS–1264486; Tekes — the Finnish Funding Agency for
Technology and Innovation — through the WiFiUS program; and the Laboratory
for Telecommunications Sciences.

We are also grateful the anonymous reviewers for their constructive comments,
which have helped significantly to improve the paper.

References

1. van de Beek, J.J., Sandell, M., Isaksson, M., Borjesson, P.O.: Low-complex frame synchro-
nization in OFDM systems. In: Proceedings of the International Conference on Universal
Personal Communications, pp. 982–986 (1995)

2. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP
systems. IEEE Transactions on Signal Processing 49(10), 2408–2421 (2001).
DOI:10.1109/78.950795

3. Bhattacharyya, S.S., Deprettere, E., Leupers, R., Takala, J. (eds.): Handbook of Signal
Processing Systems, second edn. Springer (2013). URL http://dx.doi.org/10.1007/978-1-
4614-6859-2. ISBN: 978-1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online)

4. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Synthesis of embedded software from syn-
chronous dataflow specifications. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology 21(2), 151–166 (1999)

5. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. IEEE
Transactions on Signal Processing 44(2), 397–408 (1996)

6. Blajić, T., Nogulić, D., Družijanić, M.: Latency improvements in 3G long term evolu-
tion. In: Proceedings of the International Convention on Information and Communication
Technology, Electronics and Microelectronics (2006)

7. Buck, J.T., Lee, E.A.: Scheduling dynamic dataflow graphs using the token flow model. In:
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(1993)

8. Edfors, O., Sandell, M., van de Beek, J.J., Landstrom, D., Sjoberg, F.: An introduction
to orthogonal frequency division multiplexing. Tech. rep., Lulea University of Technology,
Sweden (1996)

9. Eker, J., Janneck, J.W.: CAL language report, language version 1.0 — document edition 1.
Tech. Rep. UCB/ERL M03/48, Electronics Research Laboratory, University of California
at Berkeley (2003)

10. Falk, J., Zebelein, C., Haubelt, C., Teich, J.: A rule-based quasi-static scheduling approach
for static islands in dynamic dataflow graphs. ACM Transactions on Embedded Computing
Systems 12(3) (2013)

11. Gu, R., Janneck, J., Raulet, M., Bhattacharyya, S.S.: Exploiting statically schedulable re-
gions in dataflow programs. In: Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, pp. 565–568. Taipei, Taiwan (2009)

12. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert, A.,
Teich, J.: A SystemC-based design methodology for digital signal processing systems.
EURASIP Journal on Embedded Systems 2007, Article ID 47,580, 22 pages (2007)

13. Lee, E.A., Messerschmitt, D.G.: Synchronous dataflow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

14. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the Design Automation
Conference, pp. 923–926. San Francisco (2009)

24 S. Lin et al

15. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional DIF for
rapid prototyping. In: Proceedings of the International Symposium on Rapid System
Prototyping, pp. 17–23. Monterey, California (2008)

16. Plishker, W., Sane, N., Kiemb, M., Bhattacharyya, S.S.: Heterogeneous design in functional
DIF. In: Proceedings of the International Workshop on Systems, Architectures, Modeling,
and Simulation, pp. 157–166. Samos, Greece (2008)

17. Ritz, S., Pankert, M., Meyr, H.: Optimum vectorization of scalable synchronous dataflow
graphs. In: Proceedings of the International Conference on Application Specific Array
Processors (1993)

18. Sane, N., Hsu, C., Pino, J.L., Bhattacharyya, S.S.: Simulating dynamic communication
systems using the core functional dataflow model. In: Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, pp. 1538–1541. Dallas, Texas
(2010)

19. Shen, C., Plishker, W., Wu, H., Bhattacharyya, S.S.: A lightweight dataflow approach for
design and implementation of SDR systems. In: Proceedings of the Wireless Innovation
Conference and Product Exposition, pp. 640–645. Washington DC, USA (2010)

20. Shen, C., Wang, L., Cho, I., Kim, S., Won, S., Plishker, W., Bhattacharyya, S.S.: The
DSPCAD lightweight dataflow environment: Introduction to LIDE version 0.1. Tech. Rep.
UMIACS-TR-2011-17, Institute for Advanced Computer Studies, University of Maryland
at College Park (2011). Http://hdl.handle.net/1903/12147

21. Siyoum, F., Geilen, M., Moreira, O., Nas, R., Corporaal, H.: Analyzing synchronous
dataflow scenarios for dynamic software-defined radio applications. In: Proceedings of
the International Symposium on System-on-Chip, pp. 14–21 (2011)

