Skip to main content

Advertisement

Log in

Low Energy Signal Processing Techniques for Reliability Improvement of High-Density NAND Flash Memory

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

High density NAND flash memory employs very fine process technology, such as sub-20 nm process, and multi-level cell data coding. The reduced feature size not only lowers the number of electrons stored at each floating-gate but also increases the cell-to-cell interference (CCI). As a result, the reliability of NAND flash memory has become an important issue that cannot be well solved by only advancing the process technology. In this paper, we present signal processing and error correction techniques that can overcome the reliability problem while minimizing the energy consumption. These techniques include efficient estimation of the threshold voltage distribution, CCI cancellation aware soft-information computation, and low-energy soft-decision error correction. We also include experimental results for the presented techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Wang, M. (2011). Technology trends on 3D-NAND flash storage. Proceedings of interational microsystems, packaging, assembly, and circuit technology conference(IMPACT).

  • Prall, K. (2007). Scaling non-volatile memory below 30 nm. Proceedings of 22nd IEEE non-volatile semiconductor memory workshop, (pp. 5–10).

  • Lee, J., Hur, S., Choi, J (2002). Effects of floating-gate interference on NAND flash memory cell operation. IEEE Electron Device Letters, 23 (5), 264–266.

    Article  Google Scholar 

  • Liu, W., Rho, J., Sung, W. (2006). Low-power high-throughput BCH error correction VLSI design for multi-level cell NAND flash memories. Proceedings of IEEE workshop on signal processing systems(SiPS), (pp. 303–308).

  • Chen, B., Zhang, X., Wang, Z. (2008). Error correction for multi-level NAND flash memory using Reed-Solomon codes. Proceedings of IEEE Workshop on Signal Processing Systems(SiPS), (pp. 94–99).

  • Lee, D., & Sung, W (2013). Estimation of NAND flash memory threshold voltage distribution for optimum soft-decision error correction. IEEE Transactions on Signal Processing, 61 (2), 440–449.

    Article  MathSciNet  Google Scholar 

  • Lee, D., & Sung, W (2013). Decision directed estimation of threshold voltage distribution in NAND flash memory. IEEE Transactions on Signal Processing, 62 (4), 919–927.

    Article  MathSciNet  Google Scholar 

  • Lee, D., & Sung, W (2013). Least squares based coupling cancelation for MLC NAND flash memory with a small number of voltage sensing operations. Journal of Signal Processing Systems, 71 (3), 189–200.

    Article  MathSciNet  Google Scholar 

  • Lee, D., & Sung, W. (2013). Soft-decision decoding with cell-to-cell interference removed signal in NAND flash memory. Proceedings of IEEE international conference on acoustics, speech, and signal processing(ICASSP), (pp. 2518–2522).

  • Kim, J., & Sung, W (2013). Low-energy error correction of NAND Flash memory through soft-decision decoding. EURASIP Journal on Advances in Signal Processing, 2012 (1), 195–205.

    Article  Google Scholar 

  • Takeuchi, K., Kameda, Y., Fujimura, S., Otake, H., Hosono, K., Shiga, H., Watanabe, Y., Futatsuyama, T., Shindo, Y., Kojima, M., et al. (2007). A 56-nm CMOS 99- m m 2 8-Gb multi-level NAND flash memory with 10-MB/s program throughput. IEEE Journal of Solid-State Circuits, 42 (1), 219–232.

    Article  Google Scholar 

  • Park, K., Kang, M., Kim, D., Hwang, S., Choi, B., Lee, Y., Kim, C., Kim, K (2008). A zeroing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND flash memories. IEEE Journal of Solid-State Circuits, 43 (4), 919–928.

    Article  Google Scholar 

  • Li, Y., Lee, S., Fong, Y., Pan, F., Kuo, T., Park, J., Samaddar, T., Nguyen, H., Mui, M., Htoo, K., et al. (2008). A 16 Gb 3 b/cell NAND flash memory in 56 nm with 8 MB/s write rate. Proceedings of IEEE international solid-state circuits conference(ISSCC), (pp. 506–632).

  • Cernea, R., Pham, L., Moogat, F., Chan, S., Le, B., Li, Y., Tsao, S., Tseng, T., Nguyen, K., Li, J., et al. (2009). A 34 MB/s MLC write throughput 16 Gb NAND with all bit line architecture on 56 nm technology. IEEE Journal of Solid-State Circuits, 44 (1), 186–194.

    Article  Google Scholar 

  • Micron Technology, Inc. 64 Gb, 128 Gb, 256 Gb, 512 Gb Asynchronous/Synchronous NAND Features [Online]. Available: https://www.micron.com/parts/nand-flash/mass-storage.

  • Wang, J., Courtade, T., Shankar, H., Wesel, R. (2011). Soft information for LDPC decoding in flash: Mutual-information optimized quantization. Proceedings of IEEE global communications conference(GLOBECOM), (pp. 5–9).

  • You, B., Park, J., Lee, S., Baek, G., Lee, J., Kim, M., et al. (2011). A high performance co-design of 26 nm 64 Gb MLC NAND flash memory using the dedicated NAND flash controller. Journal of Semiconductor Technology and Science, 11 (2), 121–129.

    Article  Google Scholar 

  • Cai, Y., Haratsch, E. F., Mutlu, O., Mai, K. (2013). Threshold voltage distribution in MLC NAND flash memory: Characterization, analysis, and modeling. Proceedings of the conference on design, automation and test in europe(DATE), (pp. 1285–1290).

  • Dong, G., Pan, Y., Xie, N., Varanasi, C., Zhang, T (2012). Estimating information-theoretical NAND flash memory storage capacity and its implication to memory system design space exploration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20 (9), 1705–1714.

    Article  Google Scholar 

  • Tanaka, S., Sawahashi, M., Adachi, F (1997). Pilot symbol-assisted decision-directed coherent adaptive array diversity for DS-CDMA mobile radio reverse link. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 80 (12), 2445–2454.

    Google Scholar 

  • Miccoli, C., Monzio Compagnoni, C., Beltrami, S., Spinelli, A. S., Visconti, A (2011). Threshold-voltage instability due to damage recovery in nanoscale NAND Flash memories. IEEE Transactions on Electron Devices, 58 (8), 2406–2414.

    Article  Google Scholar 

  • Dong, G., Li, S., Zhang, T (2010). Using data postcompensation and predistortion to tolerate cell-to-cell interference in MLC NAND flash memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 57 (10), 2718–2728.

    Article  MathSciNet  Google Scholar 

  • Park, D., & Lee, J (2011). Floating-gate coupling canceller for multi-level cell NAND flash. IEEE Transactions on Magnetics, 47 (3), 624–628.

    Article  Google Scholar 

  • Zhao, K., Zhao, W., Sun, H., Zhang, T., Zhang, X., Zheng, N. (2013). LDPC-in-SSD: Making advanced error correction codes work effectively in solid state drives. Proceedings of 11th USENIX conference on file and storage technologies(FAST), (pp. 244–256).

  • Kim, J., & Sung, W (2014). Rate-0.96 LDPC decoding VLSI for soft-decision error correction of NAND flash memory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22 (5), 1004–1015.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Brain Korea 21 Plus Project and in part by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Education, Science and Technology (MEST), Republic of Korea (No. 2012R1A2A2A0604 7297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyong Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Dh., Kim, J. & Sung, W. Low Energy Signal Processing Techniques for Reliability Improvement of High-Density NAND Flash Memory. J Sign Process Syst 78, 63–71 (2015). https://doi.org/10.1007/s11265-014-0943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-014-0943-7

Keywords

Navigation