Skip to main content
Log in

High-Throughput Reconfigurable Variable Length Coding Decoder for MPEG-2 and AVC/H.264

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a reconfigurable architecture for two video coding standards, MPEG-2 and AVC/H.264. The proposed reconfigurable architecture dynamically configures the architecture to achieve multiple functions in variable length coding decoder and context-adaptive variable length coding decoder. By means of extracting the commonalities at the low-level dataflow, the designed reconfigurable architecture optimizes hardware resources and increases architectural flexibility through the reconfigurability in the adaptively constructing architecture. On the other hand, the proposed reconfigurable architecture combines several strategies in AVC/H.264 mode, and subsequently revises and integrates these mechanisms to achieve a high-throughput rate. As a consequence, the memory usage of the proposed reconfigurable architecture achieves 37.5 % memory bits saving and 46.7 % memory area reduction as compared to the individual implementation; moreover, in AVC/H.264 mode, this reconfigurable architecture requires only 50 cycles to decode one marcoblock on average. Due to the flexibility, the proposed reconfigurable architecture costs 10.8 K gates by using 0.18 μm CMOS technology at the 108 MHz clock rate, and supports variable length coding in MPEG-2 with 1920 × 1080@30fps and context-adaptive variable length coding in AVC/H.264 with 1920 × 1080@60fps. From the perspectives of architectural costs and supported functions, the proposed architecture surpasses the related works in the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. ITU-T Recommendation H.262: information technology - generic coding of moving pictures and associated audio information: video, https://www.itu.int/rec/T-REC-H.262-199611-S!Cor2/en.

  2. ITU-T Recommendation H.264 advanced video coding for generic audiovisual services, https://www.itu.int/rec/T-REC-H.264-200503-S/en.

  3. Information technology, MPEG systems technologies, part 4: codec configuration representation.

  4. Lee, G. G., Chen, Y.-K., Mattavelli, M., & Jang, E. S. (2009). Algorithm/architecture co-exploration of visual computing on emergent platforms: overview and future prospects. IEEE Transactions on Circuits and Systems for Video Technology, 19(11), 1576–1587. doi:10.1109/TCSVT.2009.2031376.

    Article  Google Scholar 

  5. Bhaskaran, V., Konstantinides, K. (1997). Image and video compression standards: algorithms and architectures, Springer.

  6. Chang, S.-F., & Messerschmitt, D. G. (1992). Designing high-throughput VLC decoder. I. Concurrent VLSI architectures. IEEE Transactions on Circuits and Systems for Video Technology, 2(2), 187–196. doi:10.1109/76.143418.

    Article  Google Scholar 

  7. Mukherjee, A., Ranganathan, N., & Bassiouni, M. (1991). Efficient VLSI designs for data transformation of tree-based codes. IEEE Transactions on Circuits and Systems, 38(3), 306–314. doi:10.1109/31.101323.

    Article  Google Scholar 

  8. Lei, S.-M., & Sun, M.-T. (1991). An entropy coding system for digital HDTV applications. IEEE Transactions on Circuits and Systems for Video Technology, 1(1), 147–155. doi:10.1109/76.109154.

    Article  Google Scholar 

  9. Cho, S. H., Xanthopoulos, T., & Chandrakasan, A. P. (1998). An ultra low power variable length decoder for MPEG-2 exploiting codeword distribution. In Custom Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998, 11–14 May 1998 (pp. 177–180). doi:10.1109/CICC.1998.694957.

  10. Cho, S. H., Xanthopoulos, T., & Chandrakasan, A. P. (1999). A low power variable length decoder for MPEG-2 based on nonuniform fine-grain table partitioning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(2), 249–257. doi:10.1109/92.766752.

    Article  Google Scholar 

  11. Lee, S.-W., & Park, I.-C. (2003). A low-power variable length decoder for MPEG-2 based on successive decoding of short codewords. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 50(2), 73–82. doi:10.1109/TCSII.2003.808893.

    Google Scholar 

  12. Tsai, T.-H., & Liu, C.-N. (2008). A low-latency multi-layer prefix grouping technique for parallel huffman decoding of multimedia standards. Journal of Signal Processing Systems, 53(3), 323–333. doi:10.1007/s11265-008-0210-x.

    Article  Google Scholar 

  13. Hsieh, C.-T., & Kim, S. P. (1996). A concurrent memory-efficient VLC decoder for MPEG applications. IEEE Transactions on Consumer Electronics, 42(3), 439–446. doi:10.1109/30.536141.

    Article  Google Scholar 

  14. Nikara, J., Vassiliadis, S., Takala, J., & Liuha, P. (2004). Multiple-symbol parallel decoding for variable length codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(7), 676–685. doi:10.1109/TVLSI.2004.825840.

    Article  Google Scholar 

  15. Shieh, B.-J., Lee, Y.-S. L., & Lee, C.-Y. (2001). A new approach of group-based VLC codec system with full table programmability. IEEE Transactions on Circuits and Systems for Video Technology, 11(2), 210–221. doi:10.1109/76.905986.

    Article  Google Scholar 

  16. Shieh, B. J., Hsu, T. Y., & Lee, C. Y. (2000). A new approach of group-based VLC codec system. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 I.E. International Symposium on (Vol. 4, pp. 609–612 vol.604). doi:10.1109/ISCAS.2000.858825.

  17. Chu, J. C., Su, L. F., Yang, Y. C., Guo, J. I., & Su, C. L. (2008). A multi-mode entropy decoder with a generic table partition strategy. In SoC Design Conference, 2008. ISOCC ‵08. International, 24–25 Nov. 2008 (Vol. 01, pp. I-25-I-28). doi:10.1109/SOCDC.2008.4815566.

  18. Tseng, S. Y., & Hsieh, T. W. (2006). A pattern-search method for H.264/AVC CAVLC Decoding. In Multimedia and Expo, 2006 I.E. International Conference on, 9–12 July 2006 (pp. 1073–1076). doi:10.1109/ICME.2006.262720.

  19. Park, S., Min, K., & Chong, J. (2009). The new memory-efficient hardware architecture of CAVLD in H.264/AVC for mobile system. In Communications and Information Technology, 2009. ISCIT 2009. 9th International Symposium on, 28–30 Sept. 2009 (pp. 204–207). doi:10.1109/ISCIT.2009.5341257.

  20. Silva, T. L., Vortmann, J. A., Agostini, L. V., Susin, A. A., & Bampi, S. (2009). Low cost and memoryless CAVLD architecture for H.264/AVC decoder. In VLSI, 2009. ISVLSI ‵09. IEEE Computer Society Annual Symposium on, 13–15 May 2009 (pp. 280–285). doi:10.1109/ISVLSI.2009.20.

  21. Silva, T. L., Pereira, F., Susin, A., Bampi, S., Agostini L. (2009). High performance and low cost architecture for H.264/AVC CAVLD targeting HDTV. Paper presented at the Proceedings of the 22nd Annual Symposium on Integrated Circuits and System Design: Chip on the Dunes, Natal, Brazil,

  22. Lo, C. C., Hsu, C. W., & Shieh, M. D. (2010). Area-efficient H.264 VLC decoder using sub-tree classification. In Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010 Sixth International Conference on, 15–17 Oct. 2010 (pp. 284–287). doi:10.1109/IIHMSP.2010.78.

  23. Bae, J., Cho, J., Kim, B., & Baek, J. (2011). High performance VLSI design of run_before for H.264/AVC CAVLD. IEICE Electronics Express, 8(12), 950–955.

    Article  Google Scholar 

  24. George, T. G., & Malmurugan, N. (2007). The Architecture of Fast H.264 CAVLC decoder and its FPGA implementation. In Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. Third International Conference on, 26–28 Nov. 2007 (Vol. 2, pp. 389–392). doi:10.1109/IIH-MSP.2007.291.

  25. Lee, G. G., Xu, S. M., Chen, C. F., & Hsiao, C. J. (2012). Architecture of high-throughput context adaptive variable length coding decoder in AVC/H.264. In Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, 3–6 Dec. 2012 (pp. 1–5)

  26. Lin, H.-Y., Lu, Y.-H., Liu, B.-D., & Yang, J.-F. (2008). A highly efficient VLSI architecture for H.264/AVC CAVLC decoder. IEEE Transactions on Multimedia, 10(1), 31–42. doi:10.1109/TMM.2007.911299.

    Article  Google Scholar 

  27. Lee, G. G., Lo, C. C., Chen, Y. C., Lin, H. Y., & Wang, M. J. (2010). High-throughput low-cost VLSI architecture for AVC/H.264 CAVLC decoding. IET Image Processing, 4(2), 81–91. doi:10.1049/iet-ipr.2008.0064.

    Article  Google Scholar 

  28. ITU-T Recommendation H.264.1, conformance specification for H.264 advanced video coding, https://www.itu.int/rec/T-REC-H.264.1-200503-S/en.

  29. H.264/AVC reference software JM16.2, http://iphome.hhi.de/suehring/tml/.

  30. Chang, H. C., Lin, C. C., & Guo, J. I. (2005) .A novel low-cost high-performance VLSI architecture for MPEG-4 AVC/H.264 CAVLC decoding. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 23–26 May 2005 (pp. 6110–6113 Vol. 6116). doi:10.1109/ISCAS.2005.1466034.

  31. Alle, M., Biswas, J., & Nandy, S. K. (2006). High performance VLSI architecture design for H.264 CAVLC decoder. In Application-specific Systems, Architectures and Processors, 2006. ASAP ‵06. International Conference on, Sept. 2006 (pp. 317–322). doi:10.1109/ASAP.2006.36.

  32. Chien, C.-D., Lu, K.-P., Chen, Y.-M., Guo, J.-I., Chu, Y.-S., & Su, C.-L. (2006). An area-efficient variable length decoder IP core design for MPEG-1/2/4 video coding applications. IEEE Transactions on Circuits and Systems for Video Technology, 16(9), 1172–1178. doi:10.1109/TCSVT.2006.881873.

    Article  Google Scholar 

  33. Liao, Y. H., Li, G. L., & Chang, T. S. (2012). A 385 MHz 13.54 K gates delay balanced two-level CAVLC decoder for ultra HD H.264/AVC video. IEEE Transactions on Circuits and Systems for Video Technology, 22(11), 1604–1610. doi:10.1109/TCSVT.2012.2202081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

(Chris) Lee, G.G., Chen, CF., Xu, SM. et al. High-Throughput Reconfigurable Variable Length Coding Decoder for MPEG-2 and AVC/H.264. J Sign Process Syst 82, 27–40 (2016). https://doi.org/10.1007/s11265-015-0979-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-0979-3

Keywords

Navigation