Skip to main content
Log in

Low Power Semi-systolic Architectures for Polynomial-Basis Multiplication over GF(2m) Using Progressive Multiplier Reduction

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We present low area and low power semi-systolic array architectures for polynomial basis multiplication over GF(2m) using Progressive Multiplier Reduction Technique (PMR). These architectures are explored using linear and nonlinear techniques applied to the polynomial multiplication algorithm. The nonlinear techniques allow the designer, to control the processor workload and reduce the inter-processor communications. The semi-systolic architectures obtained have simple structure with local communication. ASIC implementations of our designs and comparable published designs show that the proposed scalable semi-systolic structures have less area complexity (56.8–94.6 %) and power consumption (55.2–84.2 %) except for a scalable design published by the same authors. However, one of the proposed scalable designs outperforms this design in terms of throughput by 73.8 %. This makes the proposed designs suited to embedded applications that require low power consumption and moderate speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48, 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, H., & Dai, Y. (2005). Fast bit parallel GF(2n) multiplier for all trinomials. IEEE Transactions Comps, 54(4), 485– 490.

    Article  Google Scholar 

  3. Reyhani-Masoleh, A., & Hassan, M. (2004). Low complexity bit parallel architectures for polynomial basis multiplication over GIf (2m). IEEE Transactions Comps, 53(8), 945–959.

    Article  Google Scholar 

  4. Wu, H., & Hasan, M. (1998). Low complexity bit-parallel multiplier for a class of finite fields. IEEE Transactions Comps, 47(8), 883–887.

    Article  MathSciNet  Google Scholar 

  5. Fan, H., & Hasan, M. (2006). Fast bit parallel-shifted polynomial basis multipliers in GF (2n). IEEE Transactions Circulatory and System I. Regular Papers, 53(12), 2606–2615.

    Article  MathSciNet  Google Scholar 

  6. Zhang, T., & Parhi, K. (2001). Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials. IEEE Transactions on Comps., 50(7), 734–749.

    Article  MathSciNet  Google Scholar 

  7. Wu, H. (2002). Bit-par. Finite Field mult. and squarer using polynomial basis. IEEE Transactions on Comps., 51(7), 750–758.

    Article  Google Scholar 

  8. Imana, J., & et al. (2006). Bit-parallel finite field multipliers for irreducible trinomials. IEEE Transactions on Comps., 55(5), 520–533.

    Article  Google Scholar 

  9. Morales-Sandoval, M., Feregrino-Uribe, C., & Kitsos, P. (2011). Bit-serial and digit-serial GF(2m) Montgomery multipliers using linear feedback shift registers. IET Computers & Digital Techniques, 5(2), 86–94.

    Article  Google Scholar 

  10. Morales-Sandoval, M., Feregrino-Uribe, C., Kitsos, P., & Cumplido, R. (2013). Area/performance trade-off analysis of an FPGA digit-serial GF(2m) Montgomery multiplier based on LFSR. Computers and Electrical Engineering, 39(2), 542– 549.

    Article  Google Scholar 

  11. Bayat-Sarmadi, S., Mozaffari-Kermani, M., Azarderakhsh, R., & Chiou-Yng, L. (2014). A dual basis super-serial multiplier suitable for lightweight cryptographic applications. IEEE Transactions on Circular and System-II, 61(2), 125–129.

    Google Scholar 

  12. Tsai, W.C., & Wang, S.J. (2000). Two systolic architectures for multiplication in GF (2m). IEE Proc. Comparative Digital Technical, 147(6), 375–382.

    Article  Google Scholar 

  13. Katti, R., & Brennan, J. (2003). Low complexity multiplication in finite field using ring representation. IEEE Transactions Comps, 52(4), 418–427.

    Article  Google Scholar 

  14. Lee, S., Jung, S., Kim, C., Yoon, J., Koh, J., & Kim, D. (2003). Design of bit parallel multiplier with lower time complexity. In Information Security and Cryptology (pp. 127–139).

  15. Lee, C.Y., & Chiou, C.W. (2005). Efficient design of low-complexity bit-parallel systolic hankel mult. to implement mult. in normal and dual bases of GF(2m). IEICE Transactions on Fundación of Electronic, Commission and Computer Science, E88-A(11), 3169–3179.

    Article  Google Scholar 

  16. kwon, S. (2003). A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type II. In Proceedings of ARITH, 16, 196–202.

    Google Scholar 

  17. Lee, C.Y. (2003). Low-latency bit-par. systolic mult. for irreducible x m + x n + 1 with GCD (m, n) = 1. in normal and dual bases of GF(2m). IEICE Transactions on Fundación of Electrical, Communications and Computer Science, E86-A(11), 2844– 2852.

    Google Scholar 

  18. Kim, H., Hong, P., & Kwon, S. (2005). A digit-serial multiplier for finite Field GF (2m). IEEE Transactions Very Large Scale Integrated System (VLSI), 13(4), 476–483.

    Article  Google Scholar 

  19. Meher, P.K. (2007). Systolic formulation for low-complexity serial-parallel implementation of unified finite field multiplication over GF (2m). In In Proceedings 18th IEEE International Conference Applied-Specific System, Architectures Processors (pp. 134–139).

  20. Moon, S., Park, J., & Lee, Y. (2001). Fast VLSI arithmetic algorithms for high-security elliptic curve cryptographic applications. IEEE Transactions on Consumer Electron, 47(3), 700– 708.

    Article  Google Scholar 

  21. Chiou, W., Lin, C., Chou, H., & Shu, F. (2003). Low-complexity finite field multiplier using irreducible trinomials. Electron Letters, 39(24), 1709–1711.

    Article  Google Scholar 

  22. Tang, W., Wu, H., & Ahmadi, M. (2005). VLSI implementation of bit-parallel word-serial multiplier in GF(2233). In Proceedings Third International IEEE-NEWCAS Conference (pp. 399–402).

  23. Kim, H., Kwon, S., & Hong, C. (2005). A fast digit-serial systolic multiplier for finite field GF(2m). In In Asia South Pacific Design Automatic Conference (pp. 1268–1271).

  24. Garca-Martnez, M., Posada-Gomez, R., Morales-Luna, G., & Rodrguez-Henriquez, F. (2005). FPGA implementation of an efficient multiplier over finite fields GF(2m). In International Conference Reconfigurable Computing and FPGAs (pp. 21–26).

  25. Meher, P.K. (2008). Systolic and super systolic multipliers for finite field GF(2m) based on irreducible trinomials. IEEE Transactions on Circle and System –1, 55(4), 1031–1040.

    Article  MathSciNet  Google Scholar 

  26. Tenca, A., & Koç, C. (2003). A scalable architecture for modular multiplication based on montgomery’s algorithm. IEEE Transactions on Computers, 9(52), 1215–1221.

    Article  Google Scholar 

  27. Orlando, G., & Paar, C. (1999). A super-serial Galois fields multiplier for FPGAs and its application to public-key algorithms. In Proceedings of Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines 1999 (FCCM’99) (pp. 232–239).

  28. Gebali, F., & Ibrahim, A. Efficient Scalable Serial Multiplier Over GF(2m) Based on Trinomial. Accepted for publication in a future issue of the journal of IEEE transactions on VLSI systems, 2014. doi:10.1109/TVLSI.2014.2359113.

  29. Gebali, F. (2011). Algorithms and Parallel Computers. New York: John Wiley.

    Book  Google Scholar 

  30. (2000). National Institute of Standards and Technology, FIPS 186-2, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2.

  31. Meher, P.K. (2009). On efficient implementation of accumulation in finite field over g f(2m) and its applications. IEEE Transactions on VLSI System, 17(4), 541–550.

    Article  Google Scholar 

  32. Pan, S., & et al. (2013). Low-latency digit-serial and digit-parallel systolic multipliers for large binary extension fields. IEEE Transactions on Circle and System -I, 60(12), 3195–3204.

    Google Scholar 

  33. Jain, S.K., Song, L., & Parhi, K.K. (1998). Efficient semisystolic architectures for finite-field arithmetic. IEEE Transactions Very Large Scale Integrated (VLSI) System, 6(1), 101–113.

    Article  Google Scholar 

  34. Talapatra, S., Rahaman, H., & Mathew, J. (2010). Low comp. digit serial system Montgomery Multiple for special class of GF(2m). IEEE Transactions on V. Large Scale International System, 18(5), 847–852.

    Article  Google Scholar 

  35. Xie, J., Meher, P.K., & He, J. (2013). Low-complexity multiplier for GF(2m) based on all-one polynomials. IEEE Transactions on VLSI System, 21(1), 168–173.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of a Discovery grant from the Natural Sciences and Engineering Research Council to the second author and the support of Sattam Bin AbdulAziz University and Electronics Research Institute for the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atef Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A., Gebali, F. Low Power Semi-systolic Architectures for Polynomial-Basis Multiplication over GF(2m) Using Progressive Multiplier Reduction. J Sign Process Syst 82, 331–343 (2016). https://doi.org/10.1007/s11265-015-1000-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1000-x

Keywords

Navigation