Skip to main content
Log in

Robust Interference Management via Linear Precoding and Linear/Non-Linear Equalization

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This work studies the robust design of linear precoding and linear/ non-linear equalization for multi-cell MIMO systems in the presence of imperfect channel state information (CSI). A worst-case design approach is adopted whereby the CSI error is assumed to lie within spherical sets of known radius. First, the optimal robust design of linear precoders is tackled for a MIMO interference broadcast channel (MIMO-IBC) with general unicast/multicast messages in each cell and operating over multiple time-frequency resources. This problem is formulated as the maximization of the worst-case sum-rate assuming optimal detection at the mobile stations (MSs). Then, symbol-by-symbol non-linear equalization at the MSs is considered. In this case, the problem of jointly optimizing linear precoding and decision-feedback (DF) equalization is investigated for a MIMO interference channel (MIMO-IC) with the goal of minimizing the worst-case sum-mean squared error (MSE). Both problems are addressed by proposing iterative algorithms with descent properties. The algorithms are also shown to be implementable in a distributed fashion on processors that have only local and partial CSI by means of the Alternating Direction Method of Multipliers (ADMM). From numerical results, it is shown that the proposed robust solutions significantly improve over conventional non-robust schemes in terms of sum-rate or symbol error rate. Moreover, it is seen that the proposed joint design of linear precoding and DF equalization outperforms existing separate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. We recall that one way to obtain varying channels in the frequency domain is to have flat-fading channels but with asynchronous interference [23].

  2. If the constraints were not satisfied with equality for some optimal solution, it would be possible to decrease at least one γ i for some i, without violating the constraints. This would in turn allow a larger value of the corresponding rate R i to be selected, which would result in a contradiction.

  3. For a review of the convergence properties of the ADMM algorithm, we refer to [27] for the case K=2 and to [30] for the general case.

References

  1. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., & Zhang, J.C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Huh, H., Papadopoulos, H.C., & Caire, G. (2010). Multiuser MISO transmitter optimization for intercell interference mitigation. IEEE Transactions on Signal Processing, 58(8), 4272–4285.

    Article  MathSciNet  Google Scholar 

  3. Stotz, D., & Bolcskei, H. Degrees of freedom in vector interference channels. arXiv:1210.2259.

  4. Weeraddana, P.C., Codreanu, M., Latva-aho, M., Ephremides, A., & Fischione, C. (2012). Weighted sum-rate maximization in wireless networks: A review. Foundations and Trends in Networking, 6(1–2), 1–163.

    MATH  Google Scholar 

  5. Gomadam, K., Cadambe, V.R., & Jafar, S.A (2011). A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 57(6), 3309–3322.

    Article  MathSciNet  Google Scholar 

  6. Hong, M., Sun, R.-Y., Baligh, H., & Luo, Z.-Q. (2013). Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 31(2), 226–240.

    Article  Google Scholar 

  7. Jafar, S.A. (2011). Interference alignment: a new look at signal dimensions in a communication network. Foundations and Trends in Communications and Information Theory, 7(1), 1–136.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tajer, A., Prasad, N., & Wang, X. (2011). Robust linear precoder design for multi-cell downlink transmission. IEEE Transactions on Signal Processing, 59(1), 235–251.

    Article  MathSciNet  Google Scholar 

  9. Gharavol, E.A., & Larsson, E.G. (2013). The sign-definiteness lemma and its applications to robust transceiver optimization for multiuser MIMO systems. IEEE Transactions on Signal Processing, 61(2), 238–252.

    Article  MathSciNet  Google Scholar 

  10. Eldar, Y.C., & Merhav, N. (2004). A competitive minimax approach to robust estimation of random parameters. IEEE Transactions on Signal Processing, 52(7), 1931–1946.

    Article  MathSciNet  Google Scholar 

  11. Patcharamaneepakorn, P., Doufexi, A., & Armour, S. (2013). Leakage-based transceiver designs for MIMO interfering broadcast channels. In Proceedings IEEE wireless communications and signal processing (WCSP 2013), Hangzhou, China.

  12. Jose, J., Prasad, N., Khojastepour, M., & Rangarajan, S. (2011). On robust weighted-sum rate maximization in MIMO interference networks. In Proceedings of IEEE international conference on communications (ICC 2011), Kyoto, Japan.

  13. Huang, Y., Li, Q., Ma, W.-K., & Zhang, S. (2012). Robust multicast beamforming for spectrum sharing-based cognitive radios. IEEE Transactions on Signal Processing, 60(1), 527–533.

    Article  MathSciNet  Google Scholar 

  14. Bolcskei, H., & Thukral, I.J. (2009). Interference alignment with limited feedback. In Proceedings IEEE int. symp. inf. theory (ISIT 2009), Seoul, Korea.

  15. Krishnamachari, R.T., & Varanasi, M.K. (2013). Interference alignment under limited feedback for MIMO interference channels. IEEE Transactions on Signal Processing, 61(15), 3908–3917.

    Article  MathSciNet  Google Scholar 

  16. Shenouda, M.B., & Davidson, T.N. (2007). Tomlinson-Harashima precoding for broadcast channels with uncertainty. IEEE Journal on Selected Areas in Communications, 25(7), 1380–1389.

    Article  Google Scholar 

  17. Ntranos, V., & Caire, G. (2012). A comparison of decoding techniques for interference alignment. In Proceedings IEEE international symposium on communications, control and signal processing (ISCCSP 2012), Rome, Italy.

  18. Sidiropoulos, N.D., Davidson, T.N., & Luo, Z.-Q. (2006). Transmit beamforming for physical-layer multicasting. IEEE Transactions on Signal Processing, 54(6), 2239–2251.

    Article  Google Scholar 

  19. Khojastepour, M.A., Salehi-Golsefidi, A., & Rangarajan, S. (2011). Towards an optimal beamforming algorithm for physical layer multicasting. In Proceedings IEEE inf. theory workshop (ITW 2011), Paraty, Brazil.

  20. Zhu, H., Prasad, N., & Rangarajan, S. (2012). Precoder design for physical layer multicasting. IEEE Transactions on Signal Processing, 60(11), 5932–5947.

    Article  MathSciNet  Google Scholar 

  21. Xiang, Z., Tao, M., & Wang, X. (2013). Coordinated multicast beamforming in multicell networks. IEEE Transactions on Wireless Communications, 12(1), 12–21.

    Article  Google Scholar 

  22. Sesia, S., Toufik, I., & Baker, M. (2011). LTE - The UMTS long term evolution: from theory to practice. Wiley.

  23. Torbatian, M., Najafi, H., & Damen, M.O. (2012). Asynchronous interference alignment. IEEE Transactions on Wireless Communications, 11(9), 3148–3157.

    Article  Google Scholar 

  24. Christensen, S.S., Agarwal, R., Carvalho, E., & Cioffi, J. (2008). “Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design,”. IEEE Transactions on Wireless Communications, 7 (12), 4792–4799.

    Article  Google Scholar 

  25. Shi, Q., Razaviyayn, M., Luo, Z.-Q., & He, C. (2011). An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Transactions on Signal Processing, 59 (9), 4331–4340.

    Article  MathSciNet  Google Scholar 

  26. Borwein, J., & Lewis, A (2006). Convex analysis and nonlinear optimization: theory and examples. Springer Verlag.

  27. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.

    Article  MATH  Google Scholar 

  28. Shenouda, M.B., & Davidson, T.N. (2008). A framework for designing MIMO systems with decision feedback equalization or Tomlinson-Harashima precoding. IEEE Journal on Selected Areas in Communications, 26(2), 401–411.

    Article  Google Scholar 

  29. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

  30. Hong, M., & Luo, Z.-Q. (2012). On the linear convergence of the alternating direction method of multipliers. arXiv:1208.3922.

  31. Boyd, S., Ghaoui, L.E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM Studies in Applied Mathematics.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Fouladgar.

Additional information

This work was supported by InterDigital Inc. Seok-Hwan Park was with New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, when this work was done.

Appendices

Appendix A: Useful Lemmas

In this section, we review some useful lemmas that are used in the derivations presented in the text.

Lemma 3 ((Fenchel Conjugate Function [26]))

Consider a matrix \(\mathbf {E}\in \mathbb {C}^{d\times d}\) with E0. Then, we have the equality

$$ \log\det\left( \mathbf{E}^{-1}\right)=\max\limits_{\mathbf{S}\succeq\mathbf{0}}\left\{ -\text{tr}\left( \mathbf{S}\mathbf{E}\right)+\log\det\left( \mathbf{S}\right)+d\right\} . $$
(35)

Lemma 4 (Sign Definiteness Lemma [9])

Let A, \(\{\mathbf {P}_{i},\mathbf {Q}_{i}\}_{i=1}^{N}\) be given matrices with appropriate sizes and A=A . Then, the condition

$$ \mathbf{A}\succeq\sum\limits_{i=1}^{N}\left( \mathbf{P}_{i}^{\dagger}\mathbf{X}_{i}\mathbf{Q}_{i}+\mathbf{Q}_{i}^{\dagger}\mathbf{X}_{i}^{\dagger}\mathbf{P}_{i}\right) $$
(36)

holds for all X i satisfying ||X i ||≤ε i , i∈{1,…,N} if there exist real nonnegative numbers μ 1 ,…,μ N ≥0 that satisfy the condition

$$ \left[\begin{array}{cccc} \mathbf{A}-{\sum}_{i=1}^{N}\mu_{i}\mathbf{Q}_{i}^{\dagger}\mathbf{Q}_{i} & -\varepsilon_{1}\mathbf{P}_{1}^{\dagger} & {\cdots} & -\varepsilon_{N}\mathbf{P}_{N}^{\dagger}\\ -\varepsilon_{1}\mathbf{P}_{1} & \mu_{1}\mathbf{I} & {\cdots} & \mathbf{0}\\ {\vdots} & {\vdots} & {\ddots} & \vdots\\ -\varepsilon_{N}\mathbf{P}_{N} & \mathbf{0} & {\cdots} & \mu_{N}\mathbf{I} \end{array}\right]\succeq\mathbf{0}. $$
(37)

The converse is also true when N=1 [ 10, Sec. IV][31, Sec. 2.6.3].

Appendix B: Proof of Lemma 1

In this appendix, we show that the optimal solution of the problem (16a) is lower-bounded by that of the problem (17a) in Lemma 1. We first write an epigraph form of the problem (16a16) as

$$\begin{array}{@{}rcl@{}} \!\!&&\underset{\mathbf{V},R,\mathbf{U},\mathbf{S}\succeq\mathbf{0},\gamma}{\text{maximize}} \sum\limits_{i\in\mathcal{B}}\sum\limits_{m\in\mathcal{M}_{i}}R_{i,m} \end{array} $$
(38a)
$$\begin{array}{@{}rcl@{}} &&\quad\mathrm{s.t.}~ R_{i,m}\!\!\leq\!\!-\gamma_{i,m,k}\,+\,\log\det\left( \mathbf{S}_{i,m,k}\right)\,+\,d_{i,m},\text{ for all } i\!\in\!\mathcal{B},\, m\!\in\!\mathcal{M}_{i},\, k\!\in\!\mathcal{D}_{i,m},\qquad \end{array} $$
(38b)
$$\begin{array}{@{}rcl@{}} &&\qquad \gamma_{i,m,k}\!\geq\!\text{tr}\left( \!\mathbf{S}_{i,m,k}\mathbf{E}_{i,m,k}(\mathbf{V},\mathbf{U},\hat{\mathbf{H}}\,+\,\boldsymbol{\Delta})\!\right), \end{array} $$
(38c)
$$\begin{array}{@{}rcl@{}} &&\qquad\text{for all }\{\boldsymbol{\Delta}_{i,k,j}(l)\!\in\!\mathcal{U}_{i,k,j}(l)\}_{l\in\mathcal{L},j\in\mathcal{B}},\, i\!\in\!\mathcal{B},\, m\!\in\!\mathcal{M}_{i},\, k\!\in\!\mathcal{D}_{i,m}, \\ &&\qquad \sum\limits_{m\in\mathcal{M}_{i}}\text{tr}\left( \!\mathbf{V}_{i,m}\mathbf{V}_{i,m}^{\dagger}\!\right)\!\leq\! LP_{i},\text{ for all } i\in\mathcal{B}, \end{array} $$
(38d)

where we have defined the variables \(\gamma \triangleq \{\gamma _{i,m,k}\}_{i\in \mathcal {B},m\in \mathcal {M}_{i},k\in \mathcal {D}_{i,m}}\) and \(\tilde {\mathbf {S}}\triangleq \{\tilde {\mathbf {S}}_{i,m,k}\}_{i\in \mathcal {B},m\in \mathcal {M}_{i},k\in \mathcal {D}_{i,m}}\) with \(\tilde {\mathbf {S}}_{i,m,k}\triangleq \mathbf {S}_{i,m,k}^{1/2}\).

From the MSE expression in Eq. 13, we can see that the constraints (38c) are equivalent to the conditions

$$\begin{array}{@{}rcl@{}} &&\gamma_{i,m,k}\!\!\geq\!\! \sum\limits_{j\in\mathcal{B}}\tau_{i,m,k,j}\,+\,\left\Vert \mathbf{\Sigma}_{i,k}^{1/2}\mathbf{U}_{i,m,k}\tilde{\mathbf{S}}_{i,m,k}\right\Vert_{F}^{2},\text{ for all } i\!\!\in\!\!\mathcal{B},~ m\!\in\!\mathcal{M}_{i},\, k\!\in\!\mathcal{D}_{i,m},\qquad \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} \!\!\!\!\!\!&&\text{and }\tau_{i,m,k,j}\!\geq\!\!\!\!\!\!\!\sum\limits_{q\in\mathcal{M}_{i,m,k,j}}\left\Vert \tilde{\mathbf{S}}_{i,m,k}^{\dagger}\left( \mathbf{U}_{i,m,k}^{\dagger}(\hat{\mathbf{H}}_{i,k,j}\,+\,\boldsymbol{\Delta}_{i,k,j})\mathbf{V}_{j,q}\,-\,\delta_{(i,m),(j,q)}\mathbf{I}\right)\right\Vert_{F}^{2},\, \end{array} $$
(40)
$$\begin{array}{@{}rcl@{}} &&\qquad \text{ for all }\{\boldsymbol{\Delta}_{i,k,j}(l)\!\in\!\mathcal{U}_{i,k,j}(l)\}_{l\in\mathcal{L}},~i,j\!\in\!\mathcal{B},\, m\!\in\!\mathcal{M}_{i},\, k\!\in\!\mathcal{D}_{i,m}, \end{array} $$

where we have introduced auxiliary variables τ i m,,k,j to simplify the expression and the sets \(\mathcal {M}_{i,m,k,j}\) are defined in Eq. 13. After some manipulations, the constraint (40) can be rewritten as

$$\begin{array}{@{}rcl@{}} \tau_{i,m,k,j}&\!\!\geq\!\! & \left\Vert \mathbf{c}_{i,m,k,j}\,+\,\sum\limits_{l\in\mathcal{L}}\mathbf{C}_{i,m,k,j}(l)\mathbf{d}_{i,k,j}(l)\right\Vert^{2},\\ && \text{for all }\left\{\left\Vert \mathbf{d}_{i,,k,j}(l)\right\Vert \!\!\leq\!\!\varepsilon_{i,k,j}(l)\right\}_{l\in\mathcal{L}},\, i,j\!\in\!\mathcal{B},\, m\!\in\!\mathcal{M}_{i},~ k\!\in\!\mathcal{D}_{i,m},\\ \end{array} $$
(41)

where we have defined the vector \(\mathbf {d}_{i,k,j}(l)\triangleq \text {vec}(\boldsymbol {\Delta }_{i,k,j}(l))\) and the notations c i,m,k,j and C i,m,k,j (l) are defined in Eqs. 1922.

Applying the Schur complement Lemma [29, Appendix C] to the constraint (41), we obtain the following equivalent linear matrix inequality.

$$\begin{array}{@{}rcl@{}} && \left[\begin{array}{cc} \tau_{i,m,k,j} & \mathbf{c}_{i,m,k,j}^{\dagger}\\ \mathbf{c}_{i,m,k,j} & \mathbf{I} \end{array}\right]+\sum\limits_{l\in\mathcal{L}}\left[\begin{array}{cc} 0 & \mathbf{d}_{i,k,j}^{\dagger}(l)\mathbf{C}_{i,m,k,j}^{\dagger}(l)\\ \mathbf{C}_{i,m,k,j}(l)\mathbf{d}_{i,k,j}(l) & \mathbf{0} \end{array}\right]\succeq\mathbf{0},\\ &&\quad \text{ for all }\left\{\left\Vert \mathbf{d}_{i,k,j}(l)\right\Vert \leq\varepsilon_{i,k,j}(l)\right\}_{l\in\mathcal{L}},\, i,j\in\mathcal{B},\, m\in\mathcal{M}_{i},\, k\in\mathcal{D}_{i,m}. \end{array} $$
(42)

From Lemma 4, we can see that the constraint (42) holds if the condition

$$\begin{array}{@{}rcl@{}} \left[\begin{array}{ccc} \tau_{i,m,k,j}\,-\,{\sum}_{l\in\mathcal{L}}\mu_{i,m,k,j}(l) & \mathbf{c}_{i,m,k,j}^{\dagger} & \mathbf{0}\\ \mathbf{c}_{i,m,k,j} & \mathbf{I} & \!-\mathbf{C}_{i,m,k,j}\\ \mathbf{0} & -\mathbf{C}_{i,m,k,j}^{\dagger} & \text{diag}\left( \{\mu_{i,m,k,j}(l)\}_{l\in\mathcal{L}}\right)\otimes\mathbf{I} \end{array}\right]\!\succeq\!\mathbf{0},\\ \end{array} $$
(43)

is satisfied for some \(\{\mu _{i,m,k,j}(l)\geq 0\}_{l\in \mathcal {L}}\) and for all \(i,j\in \mathcal {B}\), \(m\in \mathcal {M}_{i}\) and \(k\in \mathcal {D}_{i,m}\) with the notation \(\mathbf {C}_{i,m,k,j}\triangleq -[\varepsilon _{i,k,j}(1)\mathbf {C}_{i,m,k,j}(1),\,\ldots ,\,\varepsilon _{i,k,j}(L)\mathbf {C}_{i,m,k,j}(L)]\). Also, the converse is true when L=1 (see, e.g., [10, Sec. IV][31, Sec. 2.6.3]). Note that the condition (43) implies (42) but is not equivalent unless L=1. Therefore, replacing the condition (40) with Eq. 43 leads to a problem whose solution lower-bounds that of the problem (38a). Substituting the conditions (39), (40) and (43) into the problem (38a) results in the problem (17a) in Lemma 1, which concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Fouladgar, A.M., Elkourdi, T. et al. Robust Interference Management via Linear Precoding and Linear/Non-Linear Equalization. J Sign Process Syst 83, 133–149 (2016). https://doi.org/10.1007/s11265-015-1042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1042-0

Keywords

Navigation