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Abstract This paper proposes a new high-level approach for optimising field pro-
grammable gate array (FPGA) designs. FPGA designs are commonly implemented
in low-level hardware description languages (HDLs), which lack the abstractions
necessary for identifying opportunities for significant performance improvements.
Using a computer vision case study, we show that modelling computation with
dataflow abstractions enables substantial restructuring of FPGA designs before
lowering to the HDL level, and also improve CPU performance. Using the CPU
transformations, runtime is reduced by 43%. Using the FPGA transformations,
clock frequency is increased from 67MHz to 110MHz. Our results outperform com-
mercial low-level HDL optimisations, showcasing dataflow program abstraction as
an amenable computation model for highly effective FPGA optimisation.

1 Introduction

FPGAs are successfully used in many application areas, including consumer elec-
tronics, the automotive industry, medical imaging, data centres and signal pro-
cessing. The key advantage of FPGAs over conventional CPUs is configurability.
Resource allocation and memory hierarchy on CPUs must perform well across a
range of applications, whereas FPGA designs leave many of those decisions to
the application designer to optimally use logic gates to implement one specific
application. Moreover, they can be significantly faster as their nature supports
fine-grained, massively parallel and pipelined execution. Programs for FPGAs are
most often specified directly in hardware description languages such as Verilog.
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The lack of abstraction at this low level makes it very difficult to identify oppor-
tunities for restructuring FPGA designs to optimise performance. HDL synthesis
tools focus on efficiently mapping a hardware design onto specific FPGA models
using low-level techniques, but do not restructure algorithmic implementations.

This paper advocates dataflow program modelling as a high-level program
representation that is amenable to restructuring using transformation techniques
to target both FPGAs and conventional CPUs. The mean shift tracking algo-
rithm [10] is used as a computer vision case study to demonstrate advantages of
high level program transformation for FPGAs and CPUs. Mean shift is widely
used in tracking segmentation applications, and the algorithmic properties repre-
sent interesting challenges for an FPGA implementation. Specifically, it includes a
feedback loop and a convergence criteria of varying complexity. This contrasts with
feed-forward algorithms composed of synchronised functional blocks with constant
latency, which can more straightforwardly be mapped onto FPGAs.

It bridges the knowledge gap between software-competent domain experts who
may know little about optimisation and paralellisation, and hardware engineers
who may know little about abstract models of computation and software trans-
formation techniques. Most software optimisations are compiler-embedded passes
driven by heuristic knowledge of targeted processor architectures and by known
combinations of passes that generally work well together in most cases. And whilst
dataflow transformations have been embedded into dataflow language compilers
e.g. [14], the key difference of our approach is that we apply transformations based
on architecture specific simulation and trace-based profiling, with a current limi-
tation of requiring manual application of the transformations. The profiles include
FPGA clock frequency bottlenecks, FPGA resource utilisation, code traces on
CPUs and CPU runtime. We use these profiles with a consideration for the trade-
off between hardware space, runtime, redundant computation, clock frequency and
throughput.

We show that it is possible to start from a common initial naive dataflow
representation of an algorithm, and apply transformations to increase FPGA clock
frequency, and separately to shorten CPU runtime. To the best of the authors
knowledge, expressing computer visions algorithms as dataflow graphs and profile-
driven dataflow transformations targeting FPGAs are both largely unexplored
areas.

This paper is an elaboration of earlier work [4], which took the same case
study expressed with the CAL dataflow language [12], and optimised it for shorter
CPU runtime. Here, we significantly extend that work by first defining a set of
dataflow transformations, and obtain profiles using methodical dataflow simulation
and FPGA simulation. We then optimise the original dataflow implementation to
increase FPGA clock frequency using these transformations. The contributions of
this paper are:

– A categorisation of trace based and simulation based methods for dataflow
profiling on FPGAs and CPUs.

– A definition of 8 portable dataflow transformations, with discussion on the
likely benefits and drawbacks of applying them when targeting CPUs and FP-
GAs. Additionally, we define two FPGA specific computation transformations.

– Defining and applying various dataflow profiling techniques to optimise a naive
dataflow implementation of the mean shift person tracking algorithm for FP-
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GAs and CPUs. Actor-by-actor FPGA simulation, holistic dataflow profiling
and trace-based profiling are used to identify opportunities for FPGA and CPU
improvements.

The paper is structured as follows. Section 2 describes simulation and trace-
based dataflow profiling methods. Section 3 presents 8 dataflow and 2 algorith-
mic transformations. Section 4 describes the mean shift algorithm and presents
a dataflow implementation of it. Section 5 describes the mean shift profiling ap-
proaches on FPGAs and CPUs, and presents performance results after applying
dataflow transformations. Section 6 concludes.

2 Dataflow Profiling

2.1 Dataflow Modelling

A dataflow graph models a program as a directed graph. The model is depicted
in Fig. 1. Tokens move between asychronously communicating stateful and well
defined functional blocks called actors. They transform input streams into output
streams via ports. Ports are connected with wires. Inside an actor is a series of fire-
able sequences of instructions. These instructions are encapsulated within actions,
and the steps an actor takes determine the which ports tokens are consumed and
emitted and also which state-modifying instructions are executed. The conceptual
dataflow model of explicit data streaming and functional units maps well onto
FPGA design comprising explicit wires and basic building blocks [19].

action

state

Actors Guarded actions

FSM
Ports

FIFO

Fig. 1: The Dataflow Process Model

The mean shift implementation and optimisations in this paper are based on
the CAL dataflow language [18]. The language includes a number of expressive
constructs. A guard can be attached to an action to predicate its firing not only
on the availability of a token on a given port, but also on its value. The language
permits explicit finite state machine (FSM) transitions between actions, an implicit
predication on firing actions as only actions reachable within one transition in
the FSM declaration are fireable. Lastly, priority statements declare an inequality
between two actions. When there exists more than one transition from a current
state and more than one action is fireable, priority statements offer the opportunity
for one action to fire over the other. They are often used in conjunction with guards.
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Simulation
based

Runtime
tracing

Abstract
Model

Hardware
Specific

TURNUS

Orcc profiler

Xilinx ISE
(FPGA)

Intel VTune
(CPU)

Fig. 2: Choices for dataflow profiling

2.2 Profiling

Profile guided optimisation is used to shorten execution runtimes and to improve
hardware resource utilisation across different architectures. Profilers have been em-
bedded into compilers e.g. for automatic function inlining [9], into profile guided
JIT compilers that compile bytecode of frequently used methods to native code [1],
into runtime systems to reduce memory access latency on NUMA architectures us-
ing automatic page placement [21] and into IDE tool support for semi-automatic
parallel refactorings e.g. by introducing parallel algorithmic skeletons [6]. Profilers
either trace a program’s execution on a target hardware platform to identify run-
time costs and resource utilisation, or they predict runtime costs or resource util-
isation without executing machine code. Moreover, profilers can either be scoped
to a specific model of computation such as the dataflow model, or can be hardware
target specific, e.g. profiling FPGAs or CPUs (Fig. 2).

Simulation-based profiling provides contextual information, such as critical path
analysis through actors, and abstract computational cost models and cost prove-
nance of actors, actions, private state variables and FIFOs are preserved. Orcc [28]
is primarily a compiler for the CAL dataflow language, though it also includes a
CPU based dataflow simulator that traces action firings and workload on actors
and connections. The Orcc profiler is used to identify bottlenecks in the context of
high-level dataflow execution, by identifying actions on the critical path through
the dataflow graph and finding where FIFOs are being starved of tokens. TUR-
NUS [8] is a dataflow profiler that evaluates the computational load of actions
inside actors in terms of executed operator and control statements and analysis
of the critical path through an actor network. Xilinx ISE [27] is a software tool
for synthesis, simulation and analysis of HDL designs targeting FPGAs. Synthesis
tools can be used to provide simulation profiles for dataflow actors and graphs
by compiling to HDL and synthesising separately and then all together. For a
particular hardware design, e.g. derived from a CAL dataflow graph with a Ver-
ilog Orcc backend, it calculates clock frequency and device resource utilisation. In
contrast to dataflow simulators, HDL synthesis tools do not preserve the dataflow
attributes of actions, private state variables and FIFOs.

Runtime trace-based profiling records program execution on a target architecture.
They provide insights into bottlenecks at the source code level, e.g. Intel VTune [17]
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traces C source code performance analysis on x86 CPUs. It reports stack sampling,
thread profiling and hardware event sampling. Trace based profilers can assist a
programmer in re-writing their source code, or compiler writers generating more
efficient code if their source to source compiler targets a system in languages such
as C as an intermediate language. We use the Intel VTune profiler to trace CPU
clock cycles for every line of C code for both actors and the runtime scheduler that
the Orcc compiler generates, and identify bottlenecks in the CPU scheduler and
hotspots within action implementations.

Trace-based profiling of dataflow programs can complement dataflow simula-
tion tools such as TURNUS. CAL statements such as loops and branching used
in action bodies resemble a subset of C, and Orcc compiles CAL actions to very
similar C code. CPU bottlenecks for executing actions can therefore be detected
by trace-based profilers, and likewise bottlenecks in the C scheduler can be high-
lighted. The main drawbacks to trace-based profiling are that 1) these tools are
unaware of the higher-level dataflow model so no holistic analysis is possible e.g.

critical path analysis, 2) the code generated by a dataflow compiler is a moving tar-
get e.g. improved C source code generation from Orcc may shift CPU bottlenecks
to other parts of the code, and 3) the traces depend on the input dataset.

3 Dataflow Transformations

Architecture specific compilers such as C compilers for x86 CPUs or HDL tools
for synthesising FPGA hardware designs include fine tuned low level optimisa-
tions, such as peephole optimisations on CPU assembly or timing optimisations
and register replication on HDL for FPGAs. In contrast, our high-level dataflow
transformation approach takes place much earlier in the design process, and tar-
gets much more coarse grained program restructuring for significant performance
improvement. Dataflow graphs are portable high level portable representations
of programs and are amenable to coarse grained transformation to exploit con-
ventional multi-threaded and SIMD architectures, and wire-exposed architectures
such as FPGAs.

Our dataflow transformations involve composing or decomposing actors and
wires between them, summarised in Table 1. They are influenced by previous
work on dataflow optimisation and verification, data locality optimisation and
parallelism optimisations. The high-level transformation approach is influenced by
software restructuring approaches, e.g. parallel refactoring tools [7], and injecting
parallel algorithmic skeletons [25] into sequential code, e.g. transforming a map
function into a data-parallel farm. Actor fusion and fission have been proposed
elsewhere as dataflow optimisations in [14], named there as vertical fusion and
horizontal fission respectively. Actor pipelining and actor fusion have been proposed
as box calculus transformation rules [16], named there as VCompE and VCompI

respectively, for verified program parallelisation. Actor fusion is also influenced
by task-coarsening techniques for other programming models, e.g. the loop fusion

compiler pass on the array based SaC language [23], to increase shared-memory
locality of previously pipelined loops. Our loop fission transformation is similar to
the for directive in OpenMP [11] which splits different portions of a loop across
multiple threads, though our loop fission transformation is more restrictive as
memory access is also partitioned into memory-isolated actors.
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Transformation Description

1 Actor fusion Combines multiple actors into a single actor.

2 Actor fission Replicates an actor multiple times, and incoming data is load
balanced between each one.

3 Loop fission Promotes a loop in an actor to multiple loops in separate
actors, and incoming data is load balanced between each one.

4 Actor pipelining Spreads the computation inside a single actor into set of actors
connected in a pipeline.

5 Task parallelism Separates an expression into sub expressions which is then
distributed across multiple actors, The implicit dataflow in
the original expression is transformed into explicit dataflow
wires.

6 Loop elimination Removes loops where it is possible to do so.

7 FSM simplification Factors away states (i.e. actions) that always become unreach-
able beyond progression through an actors finite state ma-
chine.

8 Built-in constructs Replaces code with equivalent built-in language constructs
that that are better supported with optimised scheduling or
implementation strategies.

Table 1: Dataflow Transformations Summary

Transformation 1 Fusing two finite state machines into one actor

ACT OR A In=⇒Out :
var z;
act0: action In:[x]=⇒

z := x-1;
act1: action=⇒Out:[z]
fsm s0: s0 (act0) --> s1;

s1 (act1) --> s0;

ACT OR B In=⇒Out :
var z;
act0: action In:[x]=⇒

z := x+2;
act1: action=⇒Out:[z]
fsm s0: s0 (act0) --> s1;

s1 (act1) --> s0;

=⇒

ACT OR A In=⇒Out :
var z, z’;
act0: action In:[x]=⇒

z := x-1;
act1: action=⇒

z’ := z+2;
act2: action=⇒Out:[z’]
fsm s0: s0 (act0) --> s1;

s1 (act1) --> s2;
s2 (act2) --> s0;

3.1 Graph Transformations

Actor fusion (T1) increases the granularity of actors by consolidating instructions
distributed amongst a set of actors into a single actor. An example is shown in
Transformation 1. The primary motivation is to increase the ratio of computation
and communication time by fusing computationally inexpensive actors, as instruc-
tion sequences in an single actor can communicate via shared memory rather than
with FIFOs. However, fusion increases the memory requirements and potentially
reduces the extent of pipelined parallelism. Another drawback is code reuse, due
to the aggregation of previously well defined modular functional blocks. In the
context of dataflow, fusion is achieved by combining the finite state machines of
multiple actors into a finite state machine of a single actor whilst preserving the
causally ordered transition interactions between the original FSMs.
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Transformation 2 Data parallelism with actor fission

ACT OR A In=⇒Out :
action In:[x]=⇒Out:[x]

ACT OR B In=⇒Out :
action In:[x]=⇒Out:[F x]

ACT OR C In=⇒Out :
action In:[x]=⇒Out:[x]

=⇒

ACT OR A A=⇒O1,O2 :
action In:[x1,x2]=⇒O1:[x1], O2:[x2]

ACT OR B_1 A=⇒Out :
action In:[x]=⇒Out:[F x]

ACT OR B_2 A=⇒Out :
action In:[x]=⇒Out:[F x]

ACT OR C A=⇒Out :
action In:[x]=⇒Out:[x]

Actor fission (T2) is a data-parallelism optimisation that replicates actors and
load-balances tokens between each replica. This transformation can reduce register
pressure and exploit data-parallelism using multithreaded CPU runtime systems,
and also exploit fine-grained parallel communication on FGPAs. An example is in
Transformation 2. ACT ORB is replaced with ACT ORB 1 and ACT ORB 2 thanks
to two determinate properties for ACT ORB. First, the actor maps F : X → Y

for all input tokens x : X and output tokens y : Y , where F is pure (i.e. side-effect
free). Second, the single action implies a deterministic transition sequence through
finite states.

Loop fission (T3) is a second data parallelism transformation that promotes a loop
statement in an actor to multiple data-parallel actors. An example is in Transfor-
mation 3. The original ACT ORA consumes 50 tokens and finds the maximum value
using a loop. In the transformed version, the loop is removed from ACT ORA which
now fans out 25 tokens each to actors ACT ORB 1 and ACT ORB 2 who find the
maximum value in their array partition. ACT ORC reduces those results by com-
paring the two numbers to find the largest. The control instructions around the
original loop structure must be modified to account for the fewer iterations of each
loop. Due to loop body code analysis, loop fission is a more complex transforma-
tion than actor fission, as code analysis must be used to ensure that loop-carrying
operations do not cross between the separated loops in isolated actor memory, e.g.

random access to an array.

Pipelining computation (T4) spreads the execution of multiple instructions across
actors connected in a pipeline. Pipelining transformations can be applied at three
levels of granularity. From largest to smallest: 1) an actor’s FSM can be pipelined
into numerous FSMs each containing fewer actions; 2) a sequence of statements
in an action can be split into actions potentially in separate pipelined actors; and
3) instructions in a loop statement can be pipelined across multiple loops po-
tentially in separate pipelined actors. Pipelining instructions can reduce memory
requirements of an actor or ease register pressure in loops that contain many as-
signments. The transformation favours FPGAs for high-throughput fine-grained
pipelined computation, and avoids utilising scarce FPGA memory. Computation
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Transformation 3 Data parallelism with loop fission

ACT OR A In=⇒Out :
var max := 0;
action In:[arr] repeat 50=⇒Out:[max]

for i in 1..50
max := arr[i] > max ? arr[i] : max

=⇒

ACT OR A In=⇒Out1, Out2 :
action In:[arr] repeat 25=⇒

Out1:[x] repeat 25
action In:[arr] repeat 25=⇒

Out2:[x] repeat 25

ACT OR B_1 In=⇒Out :
var max := 0
action In:[arr] repeat 25=⇒Out:[max]

for i in 1..25
max := arr[i] > max ? arr[i] : max

ACT OR B_2 In=⇒Out :
var max := 0
action In:[arr] repeat 25=⇒Out:[max]

for i in 1..25
max := arr[i] > max ? arr[i] : max

ACT OR C In1, In2=⇒Out :
action In1:[x], In2:[y]=⇒Out:[z]

z := x > y ? x : y

Transformation 4 Loop pipelinig

ACT OR A In=⇒Out :
var a, b;
action=⇒Out:[y] repeat 100

for i in 1..100
a := E1

b := E2

y[i] := a + b

=⇒

ACT OR A In=⇒Out :
action=⇒Out:[a] repeat 100

for i in 1..100
a[i] := E1

ACT OR B In=⇒Out :
action In:[a] repeat 100=⇒

Out:[y] repeat 100
for i in 1..100

y[i] := a[i] + E2

pipelining shifts the balance from computation to communication, which may hin-
der processing elements such as CPUs that would incur scheduling overheads of
very frequent context switching of fine-grained actors.

Loop pipelining breaks a single loop into multiple loops. Each new loop has the
same number of iterations as the original, but contains a subset of the statements
of the original loop [20]. The technique is used to create subloops with fewer
dependencies, improve instruction cache locality due to shorter loop bodies and
reduce memory requirements by iterating over fewer arrays [2]. The loop pipelining
transformation is permitted both in the absence of a flow dependence or for the
example in Transformation 4 if there is a E1 → E2 dataflow dependence in the
loop, i.e. a appears in E2.

Task parallelism (T5) separates an expression E into separate actors each contain-
ing one or more redexes ei, where E is composed of reducible expressions (redexes)
{e1, .., en}. An example is in Transformation 5. The transformation extracts the
implicit dataflow between redexes, and generates an explicit dataflow connection
between the newly created actors. The primary benefit of this transformation is the



Profile Guided Dataflow Transformation for FPGAs and CPUs 9

Transformation 5 Decompose expression into task parallel actors

ACT OR A=⇒Out :
action=⇒Out:[y]

y := (e1 · e2 · e3)
=⇒

ACT OR A=⇒Out :
action=⇒Out:[e1]

ACT OR B=⇒Out :
action=⇒Out:[e2 · e3]

ACT OR C In1, In2=⇒Out :
action In1[x], In2:[y]=⇒Out:[x · y]

Transformation 6 Replace a loop with a streaming action

ACT OR A In=⇒Out :
var arr[100]
act0: action In:[x] repeat 100=⇒

arr := x;

act1: action=⇒
for i in 1..100

arr[i] := arr[i-1] + i + 4

act2: action=⇒Out:[x] repeat 100
x := arr;

fsm s0: s0 (act0) --> s1;
s1 (act1) --> s2;
s2 (act2) --> s0;

=⇒

ACT OR A In=⇒Out :
var carry, idx = 0
act0: action In:[x]=⇒

idx := 0
carry := x

act1: action In:[x]=⇒Out:[y]
guard idx < 100

y := carry + x + 4
carry := x

fsm s0: s0 (act0) --> s1;
s1 (act1) --> s1;
s1 (act1) --> s0;

priority act1 > act0

potential for parallel reduction of any redexes with no implicit data dependence be-
tween them. The transformation extracts explicit wires between implicit dataflow
which can be pipelined as fine-grained computation on FPGAs, or mapped across
CPU cores as coarse-grained threads. Thanks to the absence of side-effects when
reducing each pure redex, parallel execution is thread-safe.

Loop elimination (T6) removes the outer-most for loop, which is replaced with a
streaming action. An example is in Transformation 6. The cost of loops for FPGAs
is the memory requirements of intermediate data structures, and the latency be-
tween token consumption and token emission caused by executing loop iterations,
which may reduce throughput on FPGAs. The primary benefit of loop statements
inside actors is the potential for SIMD vectorisation on CPUs & GPUs in the
absence of flow dependence between statements inside the loop.

The transformation targets actors with multiple actions that 1) consume to-
kens into an intermediate data structure e.g. an array, 2) traverses the data struc-
ture, and 3) emits tokens. The transformation can be applied in the absence of
loop-carrying dependence between loop iterations. It creates a single action that
consumes a single token, applies each instruction in the original loop body, then
emits a token. For the loop elimination example in Transformation 6, the loop
in action act1 is replaced with an action that computes and emits token values
on-the-fly. The iteration dependence in arr[i-1] is carried in the scalar variable
carry.
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Transformation 7 FSM minimisation factoring out eventually unreachable states

ACT OR A In=⇒Out :
var v
act0: action=⇒

v := E

act1: action In:[x]=⇒Out:[y]
y := x + v

fsm s0: s0 (act0) --> s1;
s1 (act1) --> s1;

=⇒
ACT OR A(var v) In=⇒Out :
act0: action In:[x]=⇒Out:[y]

y := x + v

Finite state machine minimisation (T7) identifies actions in a FSM that will even-
tually become unreachable. An actor’s FSM is defined as (Σ,S, s0, δ, F ), where Σ
is the non-empty input token set, S is a finite non-empty set of states, s0 is the
initial state, δ : S × Σ → P(S) is non-deterministic state transition function
to a power set S, and F is the set of final states. FSM minimisation transforma-
tion targets an action rule δ : S × Σ → P(S′) such that the linear temporal
logic formula (S′ → 2 ¬ S) holds for all input token sequences ts ∈ Σ for S.
That is, action S cannot be removed at compile-time with dead action elimination
but eventually becomes unreachable after a transition sequence. An unreachable
action is never executed and yet remains an overhead for scheduling, clock syn-
chronisation and hardware resource. Statically analysing an actor to discover such
actions could be used to factor them away from streaming-based FPGAs to other
processing elements on heterogeneous architectures. An example is in Transfor-
mation 7, which factors out the one-time computation of expression E, i.e. action
act0. Instead, ACT ORA is parameterised on the pre-computed value of E and the
FSM is removed.

Built-in constructs (T8) replaces code with behaviourally equivalent built-in lan-
guage constructs, that reduces scheduling or area requirements. Opting for one im-
plementation technique over another can have dramatic effects on hardware space
and runtime, because the implementation of each language feature is entirely tar-
get and compiler-backend specific. An example is shown in Transformation 8. It
emits all values in a local array of 100 elements. A finite state machine could be
used to visit an action that emits a single token 100 times, or use CAL’s repeat

construct i.e. the transformed version for atomic emission of 100 tokens. The first
approach falls back to the scheduler 100 times whilst the second only falls back to
the scheduler after broadcasting all array values.

3.2 Computational Transformation

We now consider two FPGA optimisation techniques. They imply changes to parts
of the implementation of an algorithm, rather than transformations to the dataflow
graph structure.

Floating point to integer based conversion replaces floating point operands of arith-
metic instruction with integer based equivalents. Many scientific applications de-
pends on both the dynamic range and high precision of IEEE double-precision
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Transformation 8 Emitting a token sequence atomically with repeat

ACT OR =⇒Out :
var i := 0, arr[100]
act0:=⇒Out:[arr[i]]
guard i < 100

i++

act1: action=⇒
die

fsm s0: s0 (act0) --> s0,
s0 (act1) --> s0;

priority act0 > act1

=⇒

ACT OR =⇒Out :
var arr[100]
act0: action=⇒Out:[arr] repeat 100

act1: action=⇒
die

fsm s0: s0 (act0) --> s1,
s1 (act1) --> s1;

floating point to maintain numerical stability [26]. Hosting such applications with
high precision requirements on FPGAs is an active research area e.g. [15]. Nev-
ertheless, integer based arithmetic requires significantly less area to implement
and run significantly faster than IEEE formats [13], and some FPGA-targeting
compilers do not support floating point operations. The floating point to integer
based arithmetic transformation is safe to apply when the precision loss incurred
by integer conversion does not comprimise algorithmic robustness. This is the case
for our mean shift case study where precision loss is tolerable, which is discussed
in Section 5.1.

Lookup tables (LUTs) replace runtime computation with pre-calculated values.
They can save on processing time or expensive hardware resource requirements,
since retrieving a value from storage is often cheaper than executing the compu-
tation. LUTs can either be accumulated at runtime by memoizing values returned
from functions with identical input parameters, or by computing values offline.
LUTs can increase throughput on FPGAs, where expensive computation in an
actor may limit clock frequency of the dataflow graph synthesis. The use of LUTs
is limited to the predefined lookup keys. We use a lookup table optimisation in
Section 5.1 for pre-computing square root, generated using a program that gener-
ates lookup tables in CAL from a user defined Int → Int lookup function, which
is available online1.

4 Dataflow Modelling of Meanshift Tracking

Mean shift [10] is a feature-space analysis technique for locating the maxima of
a density function. An example of applying mean shift to image processing for
visual tracking is shown in Fig. 3. The target is successfully tracked from the
initial frame on the left, to the final frame on the right. The algorithm is a kernel
based method normally applied using a symmetric Epanechnikov kernel within a
pre-defined elliptical or rectangular window. The target region of an initial image
is modelled with a probability density function (a colour histogram) and identifies
a candidate position in the next image by finding the minimum distance between
models using an iterative procedure. A summary is given in Algorithm 1.

1 https://github.com/robstewart57/cal-lookuptable-gen

https://github.com/robstewart57/cal-lookuptable-gen


12 Stewart et al.

Fig. 3: Example of single target mean shift visual tracking.

Input: Target position y0 on 1st frame;
Compute Epanechnikov kernel;
Calculate target color model qu(y0)

(e.g. using RGB color histogram);
repeat

Input: Receive next frame;
Calculate target candidate color model: pu(y0);
Compute similarity function ρ(y) between qu(y0) & pu(y0);
repeat

Derive the weights ωi for each pixel
in target candidate window;

Compute new target displacement y1;
Compute new candidate colour model qu(y1);
Evaluate similarity function ρ(y) between qu(y0) & pu(y1);
while ρ(y1) < ρ(y0) do

Do y1 ← 0.5(y0 + y1);
Evaluate ρ(y) between qu(y0) & pu(y1);

end

until |y1 − y0| < ε (near zero displacement);
Output: y1 (Target position for current frame);
Set y0 ← y1 for next frame;

until end of sequence;

Algorithm 1: Summary of Mean-shift tracking

4.1 Functional Decomposition with Dataflow & Actors

Our dataflow CAL implementation of mean shift is a port of an existing sequen-
tial implementation in C++ [5]. Coarse grained functional components were de-
coupled and mapped into separate actors, shown in Fig. 4.

The input frames are streamed through the Stream to YUV 0 actor which sep-
arates the Y , U and V channels before applying the YUV to RGB color space
conversion filter implemented in YUV2RGB TPP, a nested network of actors as
shown in Fig. 5. The Epanechnikov kernel and its derivatives are calculated in
kArray evaluation and kArray derv, respectively. Their constant values are com-
puted once because they depend only on the size of the target window. These
values are passed as streaming tokens cyclically to the update model and displace-

ment actors. The update model actor calculates the colour models qu(y0) & pu(y),
and the histogram as a collection of bins. The histogram function is used to assign
a particular RGB value to a bin in the feature space using the 3 values as an index
into a 3D space modelled using a 1D array. Each bin u in the model is a normalised
sum of all kernel values for the pixels in that bin.
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Fig. 4: Dataflow expression of mean-shift tracking

⇐⇒

Fig. 5: Expanded actor network

Once the model qu is calculated for the initial centre position on the first frame,
subsequent frames are used to calculate the displacement y1 on each frame using
a feedback loop representing steps in Algorithm 1. The update weight actor derives
the weights wi for each pixel in the target candidate window, while the displacement

actor computes the displacement y1 in Eq. (1), where N is the number of pixels in
the target window, x is each pixel’s relative position, its weight wi and g() is the
kernel derivative function.

y1 =

∑N
i=1 xiwig()∑N
i=1 wig()

, (1)

This is iterated by actors Centre XY and Final Centre XY until the conver-
gence criteria (|y1 − y0| < ε) is met using a feedback loop controlled by
boolean tokens passed to the loop status port in the update model actor. Finally
Final Centre XY emits the (x, y) location of the tracked window in consecutive
frames.
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5 Target Specific Mean Shift Optimisation

This section combines the profiling techniques from Section 2 with the transforma-
tions from Section 3, to increase FPGA clock frequency and reduce CPU runtime
from the same naive mean shift tracking implementation as a common starting
point. The frame size and tracking window size are statically defined, at 176×144
and 20× 26 respectively. Orcc [28] is used to compile each CAL dataflow graph to
Verilog for FPGAs and C for CPUs, as shown in Fig. 6. The results in this section
and the final optimised mean shift implementation, is available in an open access
dataset archive [24].

Fig. 6: Compiling CAL to FPGAs & CPUs

5.1 FPGA Optimsations & Results

Supporting floating point arithmetic using IEEE standard libraries on FPGAs
comes at the cost of both area and speed (Section 3.2). Moreover, the Orcc backend
we are using to generate Verilog does not support floating point operations, so an
integer-based adaptation was required. Thankfully, the accuracy loss using integer
based operations for mean shift is tolerable for our sample data, so objects can
still be tracked. Fig. 7 shows the loss of tracking precision due to floating to
integer conversion with a tracking window of 20 × 26. The error is measured by
calculating the Euclidean distance between tracking positions from integer based
implementation against benchmark floating point implementation. The maximum
actual distance for the sample dataset is 8.06 and stays within this tolerable range
for the remaining frames. The floating point to integer based transformation has
been applied to all FPGA based mean shift implementations.

To target FPGAs, the mean shift derivations are compiled with Orcc using
Xronos [3], a Verilog backend that generates an FPGA hardware design from the
application. The Xilinx ISE software is used to synthesise the Verilog for the Xilinx
XC72100-2FFG1156 board, which has 554800 Slice Registers, 277400 Slice LUTs,
755 BRAMs and 2020 DSPs.

FPGA maximum clock frequency is obtained from Xilinx ISE after synthesising
the design. The FPGA synthesis results of the naive mean shift implementation
is in Table 2, showing both the overall program clock frequency ad also actor-by-
actor clock frequency. The range in clock frequencies is 721.5MHz and 55.4MHz.
The clock frequency of the entire program is 55.4MHz, and is constraint by the
slowest actor. The actors we targeted were prioritised starting from actors with
the slowest clock frequency.
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Fig. 7: Tracking Precision Loss after the Floating Point to Integer Transformation

Slice LUT Slice registers Block RAM DSP48E FMax
/FIFO (MHz)

Naive 3664 8777 88 49 55.41

Final XY 76 80 0 0 721.48
Centre XY 182 199 0 0 530.81
Stream to YUV 90 287 24 0 420.07
update model 1042 2399 30 0 148.74
YUV2RGB 300 957 7 0 126.71
displacement 545 1326 2 9 73.40
update weight 556 1544 14 4 66.46
kArray derv 437 1074 1 18 55.44
kArray evaluation 460 1148 1 18 55.41

Table 2: FPGA Synthesis Results for the Naive Version

5.1.1 Applying FPGA Transformations

The loop elimination transformation is applied to Stream to YUV. The synthesis
of the original representation used 90 registers, 287 slice LUTs, 24 BRAMs and ran
at 420MHz. Originally, the stream for an entire frame was completely consumed
and organised with a loop into three two dimensional arrays corresponding to
the frame’s shape for the Y , U and V channels before propagating through the
graph. In the transformed version, the loop was eliminated by switching to FSM
scheduling to propagate stream values into three separate output ports for each
of the three colour channels. This eliminates all intermediate data structures from
the actor. The change in number is 27 registers (down 70%), 85 slice LUTs (down
70%), and no BRAM. Although the clock frequency is reduced to 386.7MHz (down
7.9%), this remains higher than the algorithm’s overall final clock frequency of
110MHz.

The actor fusion transformation is applied to 9 actors that together convert
Y UV pixels to RGB pixels. The original version is in Fig. 8a, and the transformed
version is in Fig. 8b. The synthesis of the original representation used 300 registers,
957 slice LUTs, 7 BRAMs and ran at 420MHz. The transformation fused the finite
state transitions between these actors into a single action in the new YUV to RGB

actor that consumes the Y , U and V values and emits the computed R, G and
B values on-the-fly. The new FPGA numbers are 99 registers (down 67%), 353
slice LUTs (down 63%), no BRAM and a clock frequency of 182.8MHz (up 44%).
This fusion transformation contrasts with the commonly used task and pipelined
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(a) before

=⇒

(b) after

Fig. 8: Applying actor fusion to mean shift

(a) before

=⇒

(b) after

Fig. 9: Applying task parallelism to mean shift

parallelism optimisations targeting FPGAs. However, in this case the costs of
clock synchronisation, increased memory requirements, and the requirement of
implementing 10 additional wires connecting 9 lightweight actors outweighs the
benefits of parallel execution of actors with no flow depending path. Therefore, it is
important to strike a balance between parallel task granularity and communication
overheads.

The task parallelism transformation is applied to Displacement. The original
version is in Fig. 9a, and the transformed version is in Fig. 9b. The synthesis of
the original representation used 545 registers, 1326 slice LUTs, 2 BRAMs, 9 DSPs
and ran at 73.4MHz. The transformation decomposes Eq. (1) into six redexes in
six separate actors. CurPixelWeight maintains the interface with preceding actors
using ports weights and kDervArray, and broadcasts the current pixel weight, and
X and Y values to three new actors WeightSum, XSUM and YSUM. XSUM and
YSUM compute the numerator of Eq. (1) in the X and Y direction respectively.
The WeightSum calculates the denominator of the equation used by actors Cal DX

and Cal DY to compute the displacement y1. The new FPGA numbers are 791
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(a) before

=⇒

(b) after

Fig. 10: Applying actor fission to mean shift

registers, 1210 slice LUTs, 7 BRAMs, and 9 DSPs. Clock frequency is increased
to 110MHz (up 50%).

The fission and lookup table transformations are applied to Update Weight.
The original version is in Fig. 10a, and the transformed version is in Fig. 10b.
The synthesis of the original representation used 556 registers, 1544 slice LUTs, 14
BRAMs, 4 DSPs and ran at 66.5MHz. The new FPGA numbers are 12352 registers,
19878 slice LUTs, 55 BRAMs and 128 DSPs. The clock frequency is 72.5MHz (up
9%). The fission transformation creates 32 new actors, whose computation include
a square root calculation. Each of those actors use 346 registers, 548 slice LUTs, no
BRAM and 4 DSPS. The clock frequency is 72.5MHz. The execution is dominated
by the square root calculation. We apply the lookup table transformation to
replace the computation code consisting of a nested while loop with an array-
based square root lookup table. The new FPGA numbers for each instance of
this actor are 139 registers, 227 slice LUTs, and no DSPs. The clock frequency is
368.2MHz, up by 408%, at the expense using 32 BRAMs. Combining the fission
and lookup table transformation, the FPGA numbers for implementing the update

weights mean shift functionality are 7907 registers, 38544 slice LUTs, 1028 BRAM
and no DSPs. The new clock frequency is 225.9MHz, an increase of 240%.

The loop promotion transformation is applied to the kArray Derive actor.
The original version is in Fig. 11a, and the transformed version is in Fig. 11b.
The synthesis of the original representation used 437 registers, 1074 slice LUTs,
1 BRAM, 18 DSPs, and the clock frequency was 55.4MHz. There was a loop that
traversed over all 20×26 = 520 positions in the rectangular tracking window in the
kArr derv actor. There is no iteration dependence in this loop, i.e. all values are
computed independently, and the transformation partitions the two dimensional
space of positions into 8 data-parallel actors. A new actor fan in all reduces all
computed values before propagating through the graph. The new FPGA numbers
are 4447 registers, 12484 slice LUTs, 5 BRAM, 144 DSPs, and the clock frequency
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(a) before

=⇒

(b) after

Fig. 11: Applying loop promotion to mean shift

Functionality Transformation Registers Slice LUTs BRAM DSP Clock (MHz)

None 90 287 24 0 420.0
Stream to YUV

Loop elimination 27 85 0 0 386.7

YUV to RGB
None 300 957 7 0 126.7
Actor fusion (Fig 8) 99 353 0 0 182.8

None 545 1326 2 9 73.4
Displacement

Task parallelism (Fig 9) 791 1210 7 9 110.0

Update weight

None 556 1544 14 4 66.5
Fission (Fig 10) 12352 19878 55 128 72.5

Just square root (none) 346 548 0 4 72.5
Square root Lookup 139 227 32 0 368.2

Combined 7907 38544 1028 0 225.9

None 437 1074 1 18 55.4
k-array derive

Loop promotion (Fig 11) 4447 12484 5 144 52.7

Table 3: Transformation effects on FPGA results

was 52.7MHz. The slight clock frequency reduction may be due to the data par-
tition size of 65 positions for each data-parallel actor may be too small to benefit
from parallel execution.

The computation related to the Epanechnikov kernel, i.e. its evaluation and
derivation, is required only once before computing mean shift on the first frame.
The kArray derv and kArray evaluation actors therefore do not constitute the stream-
ing part of the naive dataflow graph. The FSM simplification transformation is
applied to factor out the Epanechnikov kernel computation from the implementa-
tion, leaving a significant part of the mean shift algorithm (Algorithm 1) on the
FPGA.

5.1.2 Applying All FPGA Transformations

The effects of FPGA resource utilisation and clock frequency for each transforma-
tion are shown in Table 3. The loop elimination and actor fusion transformations
have reduced the FPGA resource utilisation. The actor fusion, task parallelism,
fission and lookup table transformations increase clock frequency by 56.1MHz,
36.6MHz, 6MHz and 295.7MHz respectively. For our case study, loop promotion



Profile Guided Dataflow Transformation for FPGAs and CPUs 19

Slice LUT Registers BRAM DSP48E Clock (MHz)

Naive version 2751 6582 86 13 66.5

Optimising HDL for speed 2751 6635 86 13 66.5
Optimising HDL for area 2748 6610 87 13 66.5
Dataflow optimisations 10786 51267 1026 9 110.0

Table 4: Comparison of Dataflow and HDL Level Optimisation Results

and loop elimination reduces clock frequency marginally. However, the loop elim-
ination slowdown does not effect overall clock frequency and the loop promotion
transformation is factored away with the FSM simplification transformation. The
goal of our transformations is performance, by increasing clock frequency so that
overall image data throughput increases as well. Applying all transformations in-
creased the area used for the FPGA configuration. We attribute the size increase
to a change in the dataflow structure, e.g. transformations requiring more space
to accommodate more actors. In spite of the bigger size, clock frequency increased
to 110MHz. Clock frequency of a synthesised dataflow graph is determined by the
longest combinatorial path in the FPGA configuration. This critical path is de-
termined by the computational complexity and implicit data dependencies within
actions inside actors, whose impact on frequency has been reduced by the trans-
formations.

The effectiveness of the transformations in Section 3 are compared with lower
level optimisations in the HDL synthesis tool Xilinx ISE version 14.7. The Xilinx
ISE results are obtained by applying two HDL optimisations to the Verilog gen-
erated by the Orcc compiler from the naive version, one targeting increased speed
and another targeting reduced area. A significant partition of the naive mean shift
version is used as a starting point for the HDL optimisations and the dataflow
optimisations in Table 3, with the Epanechnikov kernel computations excluded
and assumed computable with a known tracking window size offline. The ISE op-
timisations are unable to improve either resource utilisation or the clock frequency
which remains at 66.5MHz. In contrast, our higher level dataflow transformations
increase clock frequency to 110MHz, an improvement of 65%.

5.2 CPU Optimsation & Results

The goal of dataflow optimisations for CPU targets was shortening runtime for
tracking a single target over 130 YUV444 frames from a standard tracking sequence
from PETS dataset [22] (S2.L1). The nature of CPUs is very different to FPGAs,
namely that modern CPUs have up to 64 cores that all share memory. Our dataflow
transformations aim for more coarsely granulated parallel actors to match the
degree of multicore CPU parallelism, rather than the fine-grained parallelism of
FPGAs. CPUs are targeted with the Orcc compiler’s C backend, which generates
C for each actor and also emits a multi-threaded scheduler, also implemented in C.
It creates one Operating System thread per CPU core and assigns each an actor
pool, and partitions the actors across these actor pools. Trace-based profiling with
Intel VTune is used on both actor implementations and the Orcc runtime system
— enabling the possibility of optimising both. All CPU runtimes are on an Intel
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Core 2 Quad CPU at 2.8GHz with 6Gb DDR3 memory, running the 64bit Linux
3.15 kernel, and the C was compiled with gcc 4.8.3.

The mean runtime of computing the naive mean shift version was 24.6s. The
profile reported 41% of overall runtime was executing an actor responsible for
writing YUV frames to file. We modified the IO operations in the Orcc runtime

system by replacing costly fseek and fwrite calls with a putc call, and the Orcc
compiler was patched with this fix. The mean runtime using this fix is 2.97s, a
speedup of 8.3 reducing runtime by 88%. All remaining runtimes are measured
using this scheduler optimisation.

In the runtime system, FIFOs are implemented as lock-free C structs shared
between two actors. These become bottlenecks if the two actors reside in the same
actor pool, or if the computational granularity of the actors is too small. The naive
version uses three separate actors to 1) draw a tracking rectangle, 2) convert RGB
values to the YUV colour space and 3) merge individual YUV channels into a
single stream. The profiler reports runtimes of 0.25s, 0.26s and 0.29s respectively
— a total of 0.8s. The actor fusion transformation is applied to eliminate the
two intermediate FIFOs. These three actors are fused into a new single actor, and
profiling reports a runtime of 0.33s for this actor — an actor runtime reduction of
59%. It reduced program runtime by 10%.

By observing the dependencies between actors, and between actions within
actors, the displacement actor was identified as an optimisation candidate. This
actor computes the displacement function in Eq. (1). The task parallelism trans-
formation is the same as the one applied targeting FPGAs (Section 5.1). This
transformation introduced six additional actors connected with 12 additional con-
nections, which is a potential CPU bottleneck and shared memory contention on
RAM which is reflected in a 7% longer program runtime, i.e. the additional com-
munication cost appears to outweigh multi-threaded parallelism in this case.

Trace based profiling showed intensive scheduling of actors that have only a
small number of computationally inexpensive actions. For example, the workload
of the kArray evaluation actor was profiled at using 12.2% of overall CPU run-
time, despite there being only two actions in the actor, one of which computed the
Epanechnikov kernel with no token passing and the other action repeatedly trans-
mitted the kernel values to colour model actors using state transitions to itself. The
latter was initially implemented as a transmission action looping over the kernel
size. The built-in constructs transformation was applied to replace the original
action with CAL’s repeat construct. The profiler reports a workload reduction of
82% for the kArray evaluation actor. It reduced reduced program runtime by 21%.

A FIFO size of 32768 was needed to stream two consecutive YUV frames
through the naive mean shift dataflow graph. Attempting to pass more frames
through the graph deadlocked execution, suggesting that the naive version does
not fully support the streaming model which is required for continuous tracking.
For example, in order to pass 42 frames through the graph required a FIFO size
of 1048576 and to pass 130 frames through required a FIFO size of 16777216. The
Orcc profiler identified a starvation of tokens in the FIFO between the R, G and
B ports and the update model actor, because the tokens were not being consumed
at the same rate by an actor that only computed qu(y0) for the first frame and
update model that computed pu(y) for all consecutive frames.

The FSM minimisation transformation removed the FIFO size bottleneck.
Unlike the FSM minimisation for FPGAs which removed the non-streaming Epanech-
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Functionality Transformation Runtime FPS

Naive version 2.97s 43.8

Updating the model FSM simplification 2.06s 63.1
Displacement Task parallelism 3.17s 41.0
Compute tracking window Loop elimination 2.96s 43.9
RGB to YUV Actor fusion 2.67s 48.7
k-array evaluation Language use 2.34s 55.6

Combined 1.70s 76.5

Table 5: Transformation effects on CPU results

nikov kernel computation, the CPU transformation merged the kernel computation
the qu(y0) and pu(y) computations into update model, using a modified FSM that
visits the action that computes qu(y0) only once. In contrast to FPGAs, once the
computation has been executed the corresponding machine instructions can be re-
moved from memory. The optimisation reduces the FIFO size to 32768 to process
any number of frames, and the algorithm now supports the streaming model.

The naive version had an actor (not shown in Fig. 4) that received X and
Y values for the tracked subject, and was responsible for drawing a rectangular
window around the tracked target. This actor stored the R, G and B values for an
entire frame before using the tracking location to determine which pixels must be
highlighted. The loop elimination transformation was used to track location to
highlight pixels on-the-fly if their position is within the tracking window criteria.

The overall effects on program runtime is shown in Table 5. It shows the
runtime of 2.97s for the naive mean shift version, the effect on runtime for each
transformation separately, and then for all optimisations combined. CPU runtimes
are reduced in four out of five cases. Combining all transformations gives a runtime
of 1.70s, a 43% runtime improvement over the naive version.

6 Conclusions

This paper showcases the dataflow program abstraction as an amenable model
for highly effective FPGA optimisation. It defines 8 dataflow transformations, 2
FPGA specific computational transformations and various approaches to profiling
dataflow graphs. These are combined to optimise a mean shift person tracking al-
gorithm expressed in the CAL dataflow language. The trace-based profiles identify
opportunities for transformations targeting CPUs. For a video of 130 frames, ap-
plying all CPU targeting transformations shortens runtime from 2.97s to 1.7s. The
FPGA clock frequency for each actor identifies transformation opportunities. We
increase the FPGA clock frequency with five transformations, and with all trans-
formations applied increase overall clock frequency from 66.5MHz to 110MHz. As
future work we will investigate all factors that affect frames-per-second through-
put performance. They include: algorithmic parameters e.g. tracking window size,
FPGA performance e.g. clock frequency and computation complexity as a func-
tion on inputs e.g. tracked object velocity and the background scene. We plan
on embedding the dataflow transformations as compiler optimisations guided by
FPGA simulation and CPU traced-based profiling, to assess the generality of our
approach across different application domains.
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