Skip to main content
Log in

Design of Complex Non-Linear Adaptive Equalizer in Mitigating Severe Intersymbol Interferences

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient architectural design for Adaptive Decision Feedback Equalizer (ADFE) for high-speed reliable data transmission through wired as well as wireless communication channels to minimize Inter Symbol Interference (ISI). High hardware cost of the system makes an urge to redesign it in order to minimize overall circuit complexity and cost. Realization of CORDIC based pipelined ADFE architecture using reformulated LMS algorithm has not only reduced multipliers in its feed forward path, the flexibility and modularity of the components makes it possible for easy implementation also. The realization results area efficient, high speed and throughput with good convergence. The efficacy of the proposed equalizer is corroborated with MATLAB simulations for mitigation of severe channel distortion arise due to ISI in high speed communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Farhang-Boroujeny, B. (2013). Adaptive filters: theory and applications. John Wiley & Sons.

  2. R. Mishra, A. Mandal, (2012). Coordinate rotation algorithm based non-linear Adaptive Decision Feedback Equalizer, In IEEE 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1–5

  3. Volder, J. E. (1959). The CORDIC trigonometric computing technique. IRE Transactions on Electronic Computers, EC-8, 330–334.

    Article  Google Scholar 

  4. Hu, Y. H. (1992). CORDIC-based VLSI architectures for digital signal processing. IEEE Signal Processing Magazine, 9(3), 16–35.

    Article  Google Scholar 

  5. Meher, P. K., et al. (2009). 50 years of CORDIC: algorithms, architectures, and applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1893–1907.

    Article  MathSciNet  Google Scholar 

  6. Banerjee, A., Dhar, A. S., & Banerjee, S. (2001). FPGA realization of a CORDIC based FFT processor for biomedical signal processing. Microprocessors and Microsystems, 25(3), 131–142.

    Article  Google Scholar 

  7. Hu, Y. H., & Liao, H. E. (1992). CALF: a CORDIC adaptive lattice filter. IEEE Transactions on Signal Processing, 40(4), 990–993.

    Article  Google Scholar 

  8. Angarita, F., Canet, M. J., Sansaloni, T., Perez-Pascual, A., & Valls, J. (2008). Efficient mapping of CORDIC algorithm for OFDM-based WLAN. Journal of Signal Processing Systems, 52(2), 181–191.

    Article  Google Scholar 

  9. S. S. Haykin, (2008). Adaptive filter theory, 4 ed., Pearson Education India.

  10. Sung, W., Ahn, Y., & Hwang, E. (2005). VLSI implementation of an adaptive equalizer for ATSC digital TV receivers. Journal of VLSI signal processing systems for signal, image and video technology, 40(3), 301–310.

    Article  MATH  Google Scholar 

  11. Chen, S., Hanzo, L., & Livingstone, A. (2006). MBER space-time decision feedback equalization assisted multiuser detection for multiple antenna aided SDMA systems. IEEE Transactions on Signal Processing, 54(8), 3090–3098.

    Article  Google Scholar 

  12. Chakraborty, M., & Pervin, S. (2003). Pipelining the adaptive decision feedback equalizer with zero latency. Signal Processing, 83(12), 2675–2681.

    Article  MATH  Google Scholar 

  13. Shaik, R. A., & Chakraborty, M. (2013). A block floating point treatment to finite precision realization of the adaptive decision feedback equalizer. Signal Processing, 93(5), 1162–1171.

    Article  Google Scholar 

  14. Magarini, M., Barletta, L., & Spalvieri, A. (2012). Efficient computation of the feedback filter for the hybrid decision feedback equalizer in highly dispersive channels. IEEE Transactions on Wireless Communications, 11(6), 2245–2253.

    Article  Google Scholar 

  15. Raghunath, K. J., & Parhi, K. K. (1993). Parallel adaptive decision feedback equalizers. IEEE Transactions on Signal Processing, 41(5), 1956–1961.

    Article  MATH  Google Scholar 

  16. Gatherer, A., & Meng, T. H. (1993). A robust adaptive parallel DFE using extended LMS. IEEE Transactions on Signal Processing, 41(2), 1000–1005.

    Article  Google Scholar 

  17. Shanbhag, N. R., & Parhi, K. K. (1995). Pipelined adaptive DFE architectures using relaxed look-ahead. IEEE Transactions on Signal Processing, 43(6), 1368–1385.

    Article  Google Scholar 

  18. Yang, M. D., Wu, A. Y., & Lai, J. T. (2004). Fast convergent pipelined adaptive DFE architecture using post-cursor processing filter technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(2), 57–60.

    Article  MathSciNet  Google Scholar 

  19. Chakraborty, M., Dhar, A. S., & Lee, M. H. (2005). A trigonometric formulation of the LMS algorithm for realisation of pipelined CORDIC. IEEE Trans. Circuits and Systems, 52(9), 530–534.

    Article  Google Scholar 

  20. Banerjee, A., & Dhar, A. S. (2013). Pipelined VLSI architecture using CORDIC for transform domain equalizer. Journal of Signal Processing Systems, 70(1), 39–48.

    Article  Google Scholar 

  21. Wu, A., Ng, C. K., & Tang, K. C. (1998). Modified booth pipelined multiplication. Electronics Letters, 34(12), 1179–1180.

    Article  Google Scholar 

  22. Waters, R. S., & Swartzlander, E. E. (2010). A reduced complexity wallace multiplier reduction. IEEE Transactions on Computers, 59(8), 1134–1137.

    Article  MathSciNet  Google Scholar 

  23. Kornerup, P. (2005). Reviewing 4-to-2 adders for multi-operand addition. Journal of VLSI signal processing systems for signal, image and video technology, 40(1), 143–152.

    Article  Google Scholar 

  24. Galbi, D., et al. (1990). U.S. Patent No. 4,901,270. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  25. Kuang, S.-R., Wang, J.-P., & Guo, C.-Y. (2009). Modified booth multipliers with a regular partial product array. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(5), 404–408.

    Article  Google Scholar 

  26. Hu, Y. (1992). The Quantization Effects of the CORDIC Algorithm. IEEE Transactions on Signal Processing, 40(4), 834–844.

    Article  MATH  Google Scholar 

  27. Biswas, D., & Maharatna, K. (2015). A CORDIC-Based Low-Power Statistical Feature Computation Engine for WSN Applications. Circuits, Systems, and Signal Processing, 1–18. doi:10.1007/s00034-015-0041-5.

  28. Noll, T. G. (1991). Carry-save architectures for high-speed digital signal processing. Journal of VLSI signal processing systems for signal, image and video technology, 3(1–2), 121–140.

  29. Meher, P. K., & Park, S. Y. (2013). CORDIC designs for fixed angle of rotation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(2), 217–228.

    Article  Google Scholar 

  30. Lin, Y. C., Jou, S. J., & Shiue, M. T. (2012). High throughput concurrent lookahead adaptive decision feedback equalizer. IET Circuits, Devices and Systems, 6(1), 52–62.

    Article  Google Scholar 

  31. Sailer, T., & Tröster, G. (2003). An Efficient VLSI Architecture for Computing Decision Feedback Equalizer Coefficients from the Channel State Information. Journal of VLSI signal processing systems for signal, image and video technology, 35(1), 91–103.

    Article  MATH  Google Scholar 

  32. Chakraborty, M., Dhar, A. S., & Pervin, S. (2001). CORDIC realization of the transversal adaptive filter using a trigonometric LMS algorithm. In proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001 (ICASSP'01), (2), 1225–1228.

  33. Mandal, A., Mishra, R., Kaushik, B. K., & Rizvi, N. Z. (2015). Design of LMS Adaptive Radar Detector for Non-homogeneous Interferences, IETE Technical Review. doi:10.1080/02564602.2015.1093436.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Mishra, R. Design of Complex Non-Linear Adaptive Equalizer in Mitigating Severe Intersymbol Interferences. J Sign Process Syst 84, 225–236 (2016). https://doi.org/10.1007/s11265-015-1047-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1047-8

Keywords

Navigation