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Abstract This paper presents an innovative solution based on Time-Of-Flight (TOF)
video technology to motion patterns detection for real-time dynamic hand gesture
recognition. The resulting system is able to detect motion-based hand gestures getting
as input depth images. The recognizable motion patterns are modeled on the basis of
the human arm anatomy and its degrees of freedom, generating a collection of synthetic
motion patterns that is compared with the captured input patterns in order to finally
classify the input gesture. For the evaluation of our system a significant collection of
gestures has been compiled, getting results for 3D pattern classification as well as a
comparison with the results using only 2D information.

1 Introduction

Human Computer Interaction (HCI) technologies and algorithms are becoming more
important in the last years, a time in which users ask for new ways of communication
with computers and of interaction with virtual environments. The user experience of
high technological services is not always optimal and HCI might help bringing these
services to the mass market. As mentioned in [21], in the last years 3D user interfaces
(3D UI) are becoming more important in the console gaming scenario123. Besides, in
desktop computers interfaces, the usage of the hand as input device provides natural
human-computer interaction [24]. Usability constitutes a main issue in the development
of HCI systems and some of the aspects are pointed out in [11]; in [3] we find a study
devoted to improve user experience.

Address(es) of author(s) should be given

1 http://wii.com
2 http://www.xbox.com/kinect/
3 http://playstation.com/psmove/
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2 Javier Molina et al.

The ultimate goal of this work is to provide the user with a natural interaction and
a good experience when interacting with a computer in contexts of application such as
the interaction with maps4, allowing intuitive movements of the earth surface. Other
contexts of application of this approach can be the control of multimedia menus [31] or
the point of view on a virtual environment. Other motion based gestures recognition
could allow the interpretation of sign languages [9, 13].

The paper is structured as follows: In Section 2 the State Of Art is exposed and the
innovations of our system are pointed out before giving an overview of it in Section 3.
In Section 4 the proposed dictionary of gestures and the compilation of users executions
is described. In Section 5 the approach followed for gestures detection is explained for
later, in Section 6, presenting the significant user-independent evaluation figures and
enumerating the achieved conclusions in Section 7.

2 Related Work

There are several works focused on hand gesture recognition based on range data,
as the use of depth information has been recurrent in the last years. Some examples
of the use of depth information can be found in [7, 28] where stereo-vision systems
applied to gesture recognition are presented. In [18] they estimate the 3D trajectory
of hand by using markers. Another approach consists in the adjustment of 3D models
to 2D images [1, 32]. A recent research line is the use of Time-of-Flight (TOF) range
cameras that supply real-time depth information per pixel [31] at low cost. An example
of the use of this technology can be found in [8] where it is used to improve people
tracking in a smart room. TOF technology can also present some problems, such as
optical noise existence, unmatched boundaries or temporal inconsistency [16]. The use
of depth information results in an enrichment of the communication between user
and machine by means of gestural interfaces. In [22] some advantages are remarked:
robustness to illumination changes and easy segmentation even when there is camera
motion. In [2] a 3D hand model is adjusted to the cloud of points obtained from the
captured depth image. In [17, 31, 25, 27, 26, 29] experiments, using depth sensors, are
performed over static hand gestures collections, pointing out the advantages of using
depth information. Another technology for obtaining range data is the one proposed
in [23] where the scene is illuminated with a colored pattern, captured by a common
RGB camera and later processed to infer depth information.

More concretely, there are several works which focus on the detection of motion
pattern based gestures. In [36] a system for the detection of shape and motion based
gestures is presented, using 2D images as input. It is evaluated for four different ges-
tures, but only two different trajectories. [37] recognizes 26 alphabetical gestures on
the basis of features of location, angle and velocity. In [5], based on 3D motion cap-
tures obtained with an accelerometer, digits 0 to 9 drawn to the air are recognized.
[15] presents a solution based on neural networks fed with spatiotemporal information.
In [25] two simple motion patterns are taken into account (i.e. MenuOpen and Menu-
Close) which correspond to two of the gestures introduced in Section 4 (i.e. N and S).
In Section 5 of [27] a whole motion-based gestures dictionary is proposed, it is the one
used in this paper. In [19, 35] authours perform experiments using the MSRGesture3D

4 Atlas Gloves: A DIY Hand Gesture Interface for Google Earth,
http://atlasgloves.org/about
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Real-time Motion-based Hand Gestures Recognition from Time-of-Flight Video 3

dataset5, which includes 12 dynamic American Sign Language gestures. Among these
gestures, following the taxonomy proposed in [27], we can find pose-based, pose-motion
based and compound gestures, while the approach proposed in this paper is focused
in motion-based ones. There are other datasets, such as MSRC-12 Kinect gesture data
set [6], which includes a collection of gestures based on human body parts movements,
something out of the scope of this work.

In this paper we present a novel non intrusive (i.e. there is no need of gloves or
markers like in [13, 14, 34] or accelerometers like in [5]) real-time approach to the
detection of intuitive motion based gestures usable in different application contexts.
The learning phase of our approach does not need the capture of ground-truth real
data, since the patterns are defined synthetically by using a human arm model (see
Section 5.1) making it is user independent (differently to [36, 37, 5, 15]). During eval-
uation, performed with the collaboration of several users, the system worked properly,
as the results presented in this paper confirm (see Section 6). Thanks to the proposed
normalization (see Section 5.4) and the representativity of the chosen arm model (see
Section 5.1) the system is robust to variations in the distance to the camera, in the
height of the user and in the size of arm and hand. The use of TOF technology, apart
from providing an accurate segmentation robust to low illumination conditions (not as
in color camera based systems [32, 4, 28, 38, 33]), offers a representative point of the
hand motion, the closest one to the camera, with no need of application of traditional
segmentation techniques.

3 System Overview

In Figure 1, an overview of the system is presented. First of all, the depth data range
is limited to a maximum distance of 3 meters, as explained in Section 4. The Point
Of Interest (POI) to be tracked is computed, storing its coordinates from frame to
frame (i.e. each pi represents the 3 coordinates of the POI at frame i) which are an
estimation of the hand trajectory. More concretely, the proposed POI is the point
detected closest to the camera. An alternative POI is also proposed for evaluating
purposes, this is the geodesic center of the segmented hand mask (see section 5.3).
Five samples trajectory segments (i.e. four translation segments) are compared with
synthetically generated motion patterns (i.e. each ξai represents the coordinates of
pattern associated to gesture a at sample i) using the Dynamic Time Warping (DTW)
distance as explained in Section 5.4. So, each translation segment will be locally labeled
with the closest synthetic pattern. This results, along a gesture execution, in a collection
of assigned labels to several translation segments. The final label of the gesture will be
the most common assigned label.

4 Data Set

It is very important to have a representative data collection in order to obtain significant
evaluation results. For this we use one of the dictionaries described in the dataset
proposed in [27]. This is compound of nine gestures (see Figure 2): slaps in 8 directions
(named as the cardinal directions: N, NE, E, SE, S, SW, W and NW) and one slap

5 http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
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4 Javier Molina et al.

Fig. 1: Overview of the system.

getting closer and further to the camera (named IO, Inwards-Outwards). For compiling
this collection 11 users were asked to execute 5 repetitions of each of the 9 gestures, what
makes a total of 495 videos6. This collection is entirely used for evaluation purposes,
since the knowledge used by the detection system is expressed by the motion patterns
defined via the arm model described in Section 5.1. For recording the videos a TOF
camera (SR4000 developed by Mesa Imaging7) was placed 1.5 meters above the floor,
with an horizontal orientation orthogonal to the user. This camera captures depth
images with QCIF resolution (176x144 pixels) and a depth precision of ±1cm. It was
configured to capture 30fps and to operate in a 3m depth range (0.3m-3.3m) in order
to remove background objects. The recorded users were not asked to keep a certain
distance to the camera neither to perform the gestures with any speed restriction. As
well, the users had different heights, what makes the collection certainly representative
of the potential users of the system. Some captures of this data set can be found in
Figure 3.

This dictionary of gestures was proposed following usability criteria, slaps executed
in different directions are an intuitive way of interacting with a virtual environment.
Two usability objectives [11] were taken into account in the gestures selection process:
learnability and minimization of support requirements. In terms of learnability, it can
be said that none of the users showed difficulties in learning the dictionary and that
they only required of a brief introduction: they were asked to perform the indicated
gestures as if they were interacting with a menu environment. In terms of minimization
of support requirements, it can be said that no user presented doubts about how to
execute the gestures.

6 http://www-vpu.eps.uam.es/publications/
papermotion/indexpaper.html,
(user: vision, password: visionpaper)

7 http://www.mesa-imaging.ch/
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Real-time Motion-based Hand Gestures Recognition from Time-of-Flight Video 5

Fig. 2: Gestures observed from user’s point of view.

Fig. 3: Depth captures of the proposed gestures for user 1. Notice that the temporal
coordinate of the captures evolves from left to rigth.

5 Methodology

Our approach consists of the definition of synthetic motion patterns which will be
compared with the hand motion estimations computed from the real data set videos.

5.1 Motion Pattern Modelling

An arm model, responding to human anatomy, has been proposed for the definition
of the considered motion patterns. We consider two arm segments (see Figure 4): the
upper arm represented by the vector −→rU which goes from the shoulder to the elbow
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6 Javier Molina et al.

and the lower arm reprensented by −→rL, from the elbow and to the wrist. The hand is
not considered explicitly in this model, since the variation that could introduce is non
significant in comparison with the ones shown by the arm movements. The lengths for
these upper and lower segments were defined with fixed length: |−→rU | = |−→rL| = 1. Finally,
the vector that describes the trajectory of the wrist to be analized is −→r = −→rU +−→rL . In
Figure 4 some set-ups of the arm model are shown. Notice that for a variation of �θ

in angles θx and θy for the upper segment, the lower segment presents a variation of
2�θ, acumulating this way the variation of the upper segment. The expression of the
vectors −→rU and −→rL are the following:

– For gestures N and S (see Figure 4a):

−→rU = [0,−sin(θx), cos(θx)]

−→rL = [0,−sin(2θx), cos(2θx)]

where θx ∈ [0, π/2]. For gesture N θx goes from π/2 to 0, while for gesture S from
0 to π/2. Notice that these two motion patterns are contained in plane yz.

– For gestures E and W (see Figure 4b):

−→rU =−sin(ψ0)

�
cos(θy),

cos(ψ0)

sin(ψ0)
,−sin(θy))

�

−→rL = [−cos(2θy − π/2), 0, sin(2θy − π/2)]

where θy ∈ [π/4, 3π/4] and ψ0 = 25o×πrad
180o . ψ0 is the angle formed by the upper

segment of the arm and −ŷ . For gesture E θy goes from 3π/4 to π/4, while for
gesture W from π/4 to 3π/4. Notice that these two motion patterns are contained
in plane xz.

– For NE, SE, SW and NW : a rotation about the z axis is performed over the
gestures N and S (see Figure 4c). This rotation matrix, R, is:

R =




sin(θz0) cos(θz0) 0 0
−cos(θz0) sin(θ

z
0) 0 0

0 0 1 0
0 0 0 1




and so, the homogenous coordinates for vectors −→rU and −→rL are:

−−−→
rhomU = R× [0,−sin(θx), cos(θx), 0]

�

−−−→
rhomL = R× [0,−sin(2θx), cos(2θx), 0]

�

where θx ∈ [0, π/2] , as for gestures N and S, θz0 = π/4 for gestures NW and SE
and θz0 = 3π/4 for gestures NE and SW. The application of these rotation matrixes
implies that the modelled patterns are contained in the plane xz rotated about the
z axis.
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Real-time Motion-based Hand Gestures Recognition from Time-of-Flight Video 7

(a) N and S gestures. (b) E and W gestures. (c) NW and SE gestures.

Fig. 4: Model set-ups of the arm model. −→rU is a vector that goes from the shoulder
to the elbow and −→rL from the elbow to the wrist. The angles θx and θy are variables
which define the trajectory of the arm in 4a and 4b, while ψ0 and θz0 are fixed angles
that define the position of the elbow at the beggining of the execution of the movement
in Figure 4b and Figure 4c respectively. ψ0 is the angle formed by −→rU and −ŷ (see 4b).
θz0 indicates the rotation angle applied to N and S gestures, which results in the set-up
shown in 4c.

5.2 Motion Pattern Definition

The direction in which the defined intervals are covered depends on the direction of
execution of the specific gesture, for example, in the case of gesture N θx for −→rU begins
in π/2 and ends in 0 while for gesture S is the other way around. In order to consider
different speeds in the execution of the gestures 6 different patterns per gesture are
presented: 1 for the whole arc , 1 for each half and 1 for each third. This makes 6
synthetic patterns per gesture. The selected length for these patterns was 5 samples
(i.e. 4 translation segments) what defines the temporal window used for the comparison
of synthetic and real patterns (see Figure 1).

For the definition of the IO synthetic pattern no angles or arm model were consid-
ered, just a simpler approach was followed: the pattern was defined as a sequence of
movements in the z axis. Three kinds of translations segments (i.e., an homogeneous
motion interval) were considered: I, translation getting closer to the camera; O, moving
away from the camera; S, staticity between two frames (applying the normalization de-
scribed in Section 5.4 spurious translations are considered as staticity). Following the
line of considering different execution speeds, various motion patterns (composed by 4
translation segments) were defined: IIII, IIIS, IISS, SSOO, SOOO, OOOO, IIIO, IIOO
and IOOO. For example, if the execution of the gesture is very fast and only 5 samples
are captured during it, the expected segments pattern would be IISS or SSOO. While,
if the execution is slower sequences such as IIII or OOOO could be detected.
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8 Javier Molina et al.

5.3 Motion Pattern Capturing

In order to capture a representative trajectory of the hand motion it is important to
choose an easily traceable point. An unstable point would present noisy translations
that could produce wrong estimations of the hand motion. The use of range information
provides us with a robust to illumination and easy to detect POI, the closest to the
camera. For the detection of this point it is not even necessary to previously segment
the image.

With the intention of showing the advantages of using depth information, we also
present an approach that makes no use of depth information (except for the depth
range limitation): it extracts the tracking point considering the segmentation mask
image resulting from the depth range limitation as binary (considering foreground all
the pixels of the depth image with value over zero). In this case, the chosen tracking
POI is the geodesic center of the binary mask, which is estimated by performing the
ultimate erosion [20] up to a point.

5.4 Patterns Comparison

The comparison between two patterns is performed, not over the absolute coordinates of
the trajectory, but over the translation of the POI between two frames. For calculating
the distance between two patterns a previous normalization is performed, consisting of
setting to one the length of each displacement between two sucesives samples frames of
the POI. This solution has been used in problems such as hand writing recognition [10]
or motion hand based gestures detection, like in [36] where the length of the translations
is not used as a feature, something equivalent to fixing their length. In order to filter
spurious errors in the detection of the tracked point when it is static (for gesture IO),
this normalization is only applied when the magnitude of the translation of the POI
between consecutive frames is over the third of the maximum one within the gesture
execution. This defines an enough wide range of speeds for the proposed gestures which
are intuitively executed in an homogenous way. The presented normalization makes the
system independent to variations in the distance to the camera, in the angle of view,
in the heigth of the user and in the size of the arm.

Once the synthetic (see Section 4) and captured motion patterns (see Section 5.3)
are normalized, they are compared. The Dynamic Time Warping (DTW) distance
has shown good performance when comparing temporal patterns executed at different
speeds, concretely it has been widely applied to speech recognition problem [30]. An
example of its application to hand gesture recognition can be found in [36]. Notice
that each new captured motion pattern has four translation vectors, which describe
the hand trajectory for five frames. It is then compared with each of the synthetic
motion patterns present in the collection described in Section 5.1. This way we obtain
a histogram of incidence of the closest synthetic patterns to this new captured motion
pattern. The most common one gives us the label to assign to the gesture capture. If
there is a tie between labels, the label ’Unknow’ is the one assigned.
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Real-time Motion-based Hand Gestures Recognition from Time-of-Flight Video 9

6 Experiments

6.1 Experimental Set-up

This section presents two different evaluation scenarios, both of them user independent
since the learning process is performed using synthetic data and the evaluation is done
with 11 different users (see Section 4):

1. 2.5D scenario: the tracked POI is the closest point to the camera and its depth
coordinate (apart from x and y coordinates) is used for modelling the trajectory.

2. 2D information scenario: this second scenario was set-up considering the input im-
ages as binary masks as explained in Section 5.3. The depth information is implic-
itally used in the set-up of the camera (see Section 4), resulting in a segmentation
mask, but this info is not used in the estimation of the hand trajectory. In this
case, the tracked POI is the geodesic center of the binary mask, obtained with
an iterative algorithm process [25]. Although the depth information is used for
the calculation of this mask the z coordinate is not used in the comparison of the
patterns.

The comparison of the results obtained for these two set-ups will permit to obtain
conclusions about the utility of using depth information in hand gesture recognition.

6.2 Results

This section compiles the results obtained for the two evaluation scenarios introduced
in section 6.1:

1. 2.5D scenario: the resulting confussion matrix can be found in Table 1. The obtained
accuracy rate is 0.951.

2. 2D information scenario: The obtained accuracy rate is 0.780 (see Table 2).

From the results compiled in Table 1 there are several aspects to point out:

– The label IO is the one assigned more times erroneously. It introduces 10 false
negatives for executions of other gestures. This is due to the fact that the users
tend to introduce the hand in the interaction area (and move it away) with upward
and downward trajectories. These patterns are present in the definition of other
gestures, apart from IO, producing misclassifications.

– When the assigned labels within an execution results on the same score for 2 or
more gestures the assigned label is Unknown (U). This situation produces 7 mis-
classifications.

– Without taking into account the missclassifications produced by the inclusion of
the IO gesture (i.e. the only one which translation is fundamentally takes place in
the depth coordinate), the obtained accuracy rates are, 0.873 for the 2D scenario
and 0.977 for the 2.5D one. So, the use of depth information improves the results
even when the gestures are apparently detectable using only 2D information.

Table 2 presents not such good results, mainly due to the instability of the geodesic
center. Since no depth information is considered, the representative point to be tracked
needs to be estimated on the basis of a segmentation which is noisy due to variation
in its shape and size. So, noisy translations are added to the real translations of the
hand.
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10 Javier Molina et al.

Table 1: Confusion matrix for the 2.5D scenario. Gestures described in Section 4 and
“U” for Unknown.

U N S W E SW NW SE NE IO
N 0 52 0 0 0 0 0 0 0 3
S 1 0 50 0 0 0 0 0 0 4
W 1 0 0 53 0 0 0 0 0 1
E 0 0 0 0 55 0 0 0 0 0
SW 0 0 0 0 0 55 0 0 0 0
NW 2 2 0 0 0 0 51 0 0 0
SE 2 0 0 0 0 0 0 51 0 2
NE 1 0 0 0 1 0 0 0 53 0
IO 0 1 0 2 0 0 0 0 1 51

Table 2: Confusion matrix for the 2D scenario. Gestures described in Section 4 and “U”
for Unknown.

U N S W E SW NW SE NE IO
N 0 51 0 0 0 0 0 0 0 4
S 1 0 26 0 0 1 0 0 0 27
W 1 0 0 37 0 0 16 0 0 1
E 0 0 0 0 38 0 0 6 9 2
SW 0 0 0 1 0 47 1 0 0 6
NW 2 4 0 2 0 0 44 1 0 2
SE 2 0 0 0 0 0 0 49 0 4
NE 1 2 0 0 0 0 0 0 51 1
IO 0 1 0 1 0 0 7 1 2 43

As far as we know, no user-indepent evaluations have been performed for motion
based gestures detection, consequently we enumerate the evaluation figures of some
works in which the absence of overlap between train and evaluation corpora is not
ensured. In [36] a 0.97 accuracy rate is obtained in separating only two motion patterns.
[5] presents results for an intrusive approach based on the use of an accelerometer:
obtaining 0.93 for 5-fold cross validation and 0.98 for 10-fold cross validation, in the
detection of 0 to 9 digits. [15] separates 6 gestures on the basis of the posture and
motion of the hand, obtaining an accuracy of 0.975 for the best setup. In [37], the
highest accuracy rate in the detection of 26 gestures drawn to the air is 0.932. In [25],
two of the considered gestures were N and S, obtaining a mean recall of 0.938 in their
detection. So we can say that our approach achieves results comparable to the ones of
the State Of Art, even when they do not present user-independent evaluations.

6.3 Computational Cost

We can express the computational cost as a function depending on the number of
translation segments for each motion pattern, N , and the number of synthetical pat-
terns, NSynPat, contained in the collection described in section 5.1. We have consider,
as significant, the periods necessary for performing a sum, TS , a product, TP , and a
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square root Tsqrt. The different stages considered on this work will present the following
computational times per frame:

1. POI sampling: In the case of the 2.5D scenario, this is the time needed to compute
the position of the closest pixel, for what is necessary to perform width×height−1
comparisons, so TA−3D = (width×height−1)× (N+1)×TS . In the 2D scenario
we have to take into account the time for extracting the geodesic center of the
binary mask as described in [25], TA−2D = 4.311msec.

2. Trajectory computation: This is the time needed for calculating the trajectory
vector on the basis of the point coordinates, TB = 3×N × TS .

3. Trajectory Normalization: as described in section 5.4, TC = N × (5 × TS + 6 ×
TP + Tsqrt).

4. DTW computation: TD = N2 ×NSynPat × (5× TS + 3× TP + Tsqrt).

Current Float Point Units offer a solution for the computation of arithmetic opera-
tions with dedicated hardware, achieving computational times in the same order of
magnitude for sum, product and squared root. On the basis of Pentium speed tests8

we can establish the following relation between TS , TP and Tsqrt, defining T0 as the
reference computational time: TS � TP = T0 and Tsqrt = 2 × T0. Doing so, and
on the basis of the presented expressions, we obtain a total computational time of
T = TA + TB + TC + TD = TA + T0 ×N × (16 + 10 ×N ×NSynPat). With N = 4
and NSynPat = 54 we obtain T = TA + 8704× T0. A CPU performance test was run
on an Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93Ghz with 2.98GB RAM, as in [25],
being the obtained T0 below 1nsec. So T3D = TA−3D + 8704 × T0 = 135419 × T0

(T3D < 0.136msecs) and T2D = TA−2D + 8704× T0 (T2D < 4.321msecs).

Table 3: Computational Costs per frame and Accuracy for the two considered scenarios.

Scenario→ 2.5D 2D
Comp. Cost(msec/frame) < 0.136 < 4.321

Accuracy 0.951 0.780

As shown in Table 3, the described approaches require much less than 1/25sec per
frame, enabling real-time HCI.

7 Conclusions

In this paper a non intrusive motion-based hand gesture detection system using range
data is presented. It is able to work in real-time allowing the interaction between a user
and a virtual environment or computer menu. It is robust to the relative camera position
and to the speed of execution of the gestures. It is, as well, user-independent, being able
to work with a collection of gestures executed by users of different heights and arm’s
sizes. A novel definition of the motion patterns, based on human anatomy, is presented:
the obtained results bear witness to its remarkable representation capacity. A significant
data set of depth videos has been compiled and made available for researching purposes
(see section 4).

8 http://www.obliquity.com/computer/speedtest.html
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From the results we confirm that the use of depth information for the hand trajec-
tory estimation implies a significant increase in gesture detection accuracy rate. Our
approach (2.5D scenario) works without the need of applying any segmentation algo-
rithm (apart from limitating the depth range of the capture) or calculating the geodesic
center of the hand mask, as in the 2D scenario, which means a lower computation time
(see Table 3). The achieved accuracy rate for the proposed dictionary, performing a
user-independent evaluation , is 0.951, a very promising value, as already mentioned,
comparable to the results of the State Of Art. The experiments performed in this work
also show that the 2.5D approach performs better that the 2D, even without consid-
ering the only gesture with a clear translation just in the depth coordinate, the IO
gesture.

In the light of the results described in Section 6 we consider two main future work
lines:

– The use of a Hidden Markov Model in order to manage the temporal sequence of
detected labels. This could solve some misclasification situations in which the order
of the detections is relevant.

– The use of color-depth registration approaches [12] could improve the quality of the
hand motion estimation, and make feasible the detection of more complex gestures.
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