Skip to main content
Log in

AES-GCM and AEGIS: Efficient and High Speed Hardware Implementations

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Authenticated Encryption (AE) is a block cipher mode of operation which provides confidentiality and integrity simultaneously. In terms of the hardware implementation, it produces smaller area compared to two separated algorithms. Therefore, it has become popular and a number of modes have been proposed. This paper presents two efficient hardware implementations for AE schemes, AES-GCM and AEGIS. In terms of AES-GCM, the performance of the system is always determined by the Galois Hash (GHASH) architecture because of the inherent computation feedback. This paper introduces an efficient method for implementing the pipelined Karatsuba Ofman Algorithm (KOA)-based GHASH on FPGAs. In particular, the computation feedback is removed by analyzing the complexity of the computation process. In addition, an efficient AEGIS is also implemented using only five AES rounds. The proposed architectures are evaluated with three different implementations of AES SubBytes (BRAMs-based SubBytes, composite field-based SubBytes, and LUT-based SubBytes) to increase the flexibility of the presented work. The presented architectures are implemented using Xilinx Virtex-5 FPGAs. Our comparison to previous work reveals that our architectures are more performance-efficient (Throughput/Slices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. McGrew, D., & Viega, J. (2005). The security and performance of the Galois/Counter Mode (GCM) of operation. Progress in Cryptology-INDOCRYPT, 377–413.

  2. Wu, H., & Preneel, B. (2013). AEGIS:A Fast Authenticated Encryption Algorithm, Cryptology ePrint Archive Report 2013/695.

  3. IEEE, IEEE Standard for Local and metropolitan area networks–Media Access Control (MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption Standard– 256 (GCM-AES-256) Cipher Suite.

  4. Satoh, A. (2006). High-speed hardware architectures for authenticated encryption mode GCM. IEEE International Symposium on Circuits and Systems. ISCAS.

  5. Crenne, J., Cotret, P., Gogniat, G., Tessier, R., & Diguet, J. (2011). Efficient key-dependent message authentication in reconfigurable hardware. International Conference on Field-Programmable Technology (FPT), 1–6.

  6. Abdellatif, K. M., Chotin-Avot, R., & Mehrez, H. (2014). Authenticated encryption on FPGAs from the static part to the reconfigurable part, microprocessors and microsystems: Elsevier.

  7. Zhou, G., Michalik, H., & Hinsenkamp, L. (2007). Efficient and High-Throughput Implementations of AES-GCM on FPGAs. In International Conference on Field-Programmable Technology, FPT (pp. 185–192).

  8. Zhou, G., Michalik, H., & Hinsenkamp, L. (2009). Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs. Journal of Reconfigurable Computing: Architectures, Tools and Applications, 193–203.

  9. Henzen, L., & Fichtner, W (2010). FPGA parallel-pipelined AES-GCM core for 100g ethernet applications.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim M. Abdellatif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, K.M., Chotin-Avot, R. & Mehrez, H. AES-GCM and AEGIS: Efficient and High Speed Hardware Implementations. J Sign Process Syst 88, 1–12 (2017). https://doi.org/10.1007/s11265-016-1104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1104-y

Keywords

Navigation